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We present a coupled-cavity model of a laser with frequency-selective feedback, and use it to analyze and
explain the existence of stationary and dynamic spatial solitons in the device. Particular features of soliton
addressing in this system are discussed. We demonstrate the advantages of our model with respect to the
common Lang-Kobayashi approximation.
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I. INTRODUCTION

The study of self-localized beams of light in dissipative
�cavity� optical systems is now well-developed and encom-
passes a range of materials and devices �see �1��. Examples
of systems which support such cavity solitons �CS� include
Kerr �2� and absorptive �3,4� cavities, optical parametric os-
cillators �5�, and semiconductor amplifiers �6,7�. In these
cases a driving field is needed in order to sustain excitation
in the lossy cavity. Use of such a holding beam has the
benefit of allowing relatively straightforward control of CS
motion and position through phase and amplitude gradients
�3,8,9�. However, it comes at the cost of maintaining a
broad-area coherent beam across the transverse extent of the
device.

A cavity soliton laser, on the other hand, would have the
advantage of requiring only incoherent pumping, which need
not even be optical. It would exhibit lasing in a narrow self-
localized beam, or �reconfigurable� ensemble of beams, from
a spatially extended pump. Unfortunately, localized lasing on
a stable dark background requires bistability between two
states and this is not present in the standard laser. Lasers with
injected signal are known to be capable of supporting CS
�10,11� but these bear more resemblance to passive systems,
requiring a coherent holding beam to which the CS is fre-
quency locked.

One promising solution is to add a saturable absorber to
the laser cavity �12,13� or to use coupled lasing and absorb-
ing vertical cavity surface emitting lasers �VCSELs� �14� in
order to create bistability, but at the cost of increased losses
and the complication of a second nonlinear element. In con-
trast, a recently demonstrated alternative �15,16� uses
frequency-dependent feedback to selectively lower the sys-
tem losses and in a way that is entirely linear in the optical
field.

Purely temporal effects in the dynamics of lasers with
optically filtered feedbacks have been studied for some time
�17�. Recently spatially localized structures have been de-
scribed in the single-pass-feedback approximation �18,19�.
Here we present a theoretical description and analysis of the
spatiotemporal dynamics of a laser with intracavity
frequency-selective feedback. We describe the mechanism
for lasing and explore the system’s ability to sustain both
stationary and dynamic spatial solitons.

In Sec. II we introduce our theoretical description of the
laser with frequency-selective feedback �FSF�. Section III
uses traveling-wave modes as a basis for describing the gen-
eral behavior of the system. Since high reflectivities of the
feedback mirror are an experimental requirement of the de-
scribed CS lasers, in Sec. IV we point out the advantages of
our model over more familiar theoretical approaches to lasers
with feedback �17–23�. Section V analyzes single-frequency
solitons, the basic building blocks of our understanding of
the system. Section VI discusses features of soliton address-
ing in the laser and provides a qualitative guide and compari-
son for experiment. Finally, Sec. VII treats more complicated
multifrequency soliton behavior. We end with conclusions
and an outlook on the advantages of FSF with respect to
other proposed CS lasers.

II. MODEL

Our system consists of a VCSEL coupled to an external
cavity which is formed by the addition of an external Bragg
reflector �Fig. 1�. The Bragg reflector provides frequency-
selective feedback, lowering the laser threshold but only in a
narrow frequency range around the peak of the Bragg reflec-
tion. Far from this frequency the feedback is negligible, as
most light is transmitted by the grating. A lot of work has
been devoted to the description of the temporal dynamics of
semiconductor lasers with optical feedback �see, for ex-
ample, �17,23��. The experimental setup of the cavity soliton
laser of Fig. 1 �15,16�, however, requires the inclusion of the
transverse-space degrees of freedom, diffraction, and high
reflectivity of the feedback mirror. The coupling of all these
elements in a single model that can be efficiently integrated
numerically is one of the most relevant achievements of our
work. The model describes a large variety of spatiotemporal
features that can be compared with experimental realizations
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FIG. 1. Schematic of the laser with frequency-selective

feedback.
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because we do not restrict to purely temporal regimes and/or
introduce restrictions in the magnitude of the feedback.

The intra-VCSEL optical field E and carrier density N are
modeled using a similar description to that used for amplifier
CS �6,8,9�. The holding field of the amplifier models is, how-
ever, replaced by the external cavity field at the VCSEL out-
put mirror, F. The complete system is described by the fol-
lowing system of coupled partial differential equations and
mapping:

�tE = − �1 + i��E + i�2E − i��� + i��N − 1�E +
2�T1

�T1 + T2�
F ,

�tN = − ��N − J + �E�2�N − 1� + D�2N� ,

F�t� = e−i��fĜ�t − � f/2��− r1F�t − � f� + t1E�t − � f�� . �1�

Here � is the detuning of the VCSEL cavity with respect to
the chosen reference frequency, � is a coupling constant, � is
the linewidth enhancement factor, and T1 and T2 are the
transmittivities of the VCSEL mirrors. The parameter J rep-
resents the injection current, normalized to the value at trans-
parency. Time is scaled to the VCSEL cavity lifetime, and �
is the ratio of cavity lifetime to carrier response time in the
VCSEL. The term D�2N describes carrier diffusion but will
generally be omitted in what follows.

The external cavity carrier field detuning and the external
round-trip time are denoted by � and � f, respectively, while
r1 and t1 are the �real� amplitude reflection and transmission
coefficients of the VCSEL output mirror, �i.e., T1= t1

2=1−r1
2:

see �24� for a detailed description of the external cavity�. The

operator Ĝ describes the frequency-selective operation of the
Bragg reflector on the field envelope and is taken to be

Ĝ�t��h�t�� =
rg

2�
�

t−2�

t

ei�g�t�−t�h�t��dt� �2�

in the time domain or, equivalently,

Ĝ�	��h�	�� = rge−i���g−	� sinc����g − 	��h�	� �3�

in the frequency domain. The frequency 1 /� determines the
bandwidth of the Bragg reflector while �g is its central fre-
quency �henceforth referred to as the grating frequency� rela-
tive to the reference �carrier� frequency. The parameter rg is
an overall reflection coefficient. Note that in this description
we neglect the transverse wave-vector dependence of the re-
flector response. We have also ignored transverse effects of
free-space propagation �i.e., diffraction� in the external cav-
ity since in the corresponding experiment the VCSEL output
coupler is imaged directly onto the Bragg reflector �15�.

This system of equations has the well-known transverse
translational symmetry found in driven-cavity models. In ad-
dition, however, it has a global phase symmetry, as expected
for a laser but broken by the injected field in driven cavities.
Note that all variables and parameters in Eqs. �1� are dimen-
sionless.

III. TRAVELING-WAVE MODES

We can calculate exact traveling-wave solutions to Eqs.
�1� of the form

E = Aei�K·x−	t�, F = Bei�K·x−	t�, N = N0 =
J + �A�2

1 + �A�2
.

�4�

From Eqs. �1�, B satisfies

B = �− r1B + t1A�rgei�	−���fe−i���g−	� sinc����g − 	�� �5�

and therefore

B =
rgt1Aei
 sinc����g − 	��

1 + rgr1ei
 sinc����g − 	��
�

�T1 + T2�
2�T1

S�	�A , �6�

where


 = �	 − ��� f − ���g − 	� . �7�

From Eqs. �1� and �6�, we have

0 = − 1 +
��J − 1�
1 + �A�2

+ Re�S�	�� , �8a�

f�	� � 	 − � − � + �Re�S�	�� + Im�S�	�� = K2. �8b�

Thus, values of 	 for which f�	��0 correspond to possible
modes of the system. Since f�	� is independent of injection

FIG. 2. Plots of threshold current �upper curve� and square of
transverse wave vector �lower curve� for traveling-wave modes of
the laser. Parameters: �=5, �=0, �=0.45, �=0.01, T1=0.008, T2

=0.0002, �=1.0, rg=0.9, �=0, and � f =50. The horizontal lines in
the threshold current curves are artificially introduced to help delin-
eate their upper envelopes.

FIG. 3. Space-time plots of 1D solitons. External cavity round-
trip time is �a� 5 VCSEL cavity lifetimes �b� 50 VCSEL cavity
lifetimes. Other parameters as in Fig. 2 with J=2.45.
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current J, the modal amplitude for any current value, at a
given frequency, is obtained by solving Eq. �8a�.

An example of the laser modal spectrum is given in Fig.
2, along with the corresponding mode thresholds. The small-
scale oscillations in Fig. 2 reflect the narrow mode spacing of
the external cavity, while the larger-scale modulation is due
to the response of the Bragg reflector. There is clearly a set
of modes grouped around the grating frequency �	=0� and
other modes coming into play around the solitary VCSEL
lasing frequency �	=5�, with a frequency gap in between.
The former modes owe their existence to the strong feedback
provided by the grating in the region of 	=0 and, as a result,
have the lowest thresholds. The latter modes exist where the
feedback is small and so can be termed VCSEL modes, al-
though the influence of the external cavity is still apparent.

The separation of grating-determined modes and VCSEL
modes is accomplished through adjustment of the detuning
between VCSEL and grating frequencies �and of other sys-
tem parameters�. Suitable operating conditions will also cre-
ate a threshold gap between the highest-threshold grating
mode and the lowest-threshold VCSEL mode �Fig. 2�. As a
result, a range of currents opens up where the grating-
determined modes exist �i.e., the system can lase� but where
the laser off state is also stable �i.e., the system can also not
lase�. In this region there is therefore bistability between las-
ing and nonlasing states, and the possibility of observing
localized lasing on a zero-field background: in other words,
laser cavity solitons �15,16�.

FIG. 4. Time sequence of an oscillating 2D soliton. Parameters:
�=9, �=−1, �=0.9, �=0.01, T1=0.008, T2=0.0002, �=1.0, rg

=0.9, �=0.832, and � f =5. �a� t=0, �b� t=2.5, �c� t=3.5, �d� t=4.0,
�e� t=5.0, and �f� t=7.0 VCSEL cavity lifetimes.

FIG. 5. Comparison between external-cavity �solid line� and Lang-Kobayashi �dashed line� models in the vicinity of the grating
frequency �	=0�. �a� and �c� Plane-wave modes K2�	� for the laser with feedback, for rg=0.5 and rg=0.9, respectively. Only portions of
each curve above the line K2=0 are physically relevant. �c� and �d� Threshold current versus 	 for the modes in �a� and �c�, respectively.
Gaps in the threshold curves correspond to intervals where K2�	��0. �d� depicts threshold currents below the transparency value of J=1 for
the LK approximation, indicating lasing even when the laser medium is not amplifying. Parameters: �=9, �=−3, �=0.9, �=0.01, T1

=0.008, T2=0.0002, �=1.0, �=0, and � f =50.
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Numerical integration of Eqs. �1� verifies that laser soli-
tons can indeed be initiated in the current gap. As Figs. 3 and
4 show, the soliton can be either single or multifrequency,
depending on system parameters. This issue will be dis-
cussed in more detail in Sec. VII below.

IV. HIGH REFLECTIVITY OF THE FEEDBACK MIRROR

In this section we briefly comment on the advantages of
the full external-cavity model �Eqs. �1�� that extends to high-
reflectivity feedback mirrors, compared to the more common
Lang-Kobayashi �LK� approximation for modeling lasers
with external feedback �see, e.g., �17–23��. In the latter, the
effects of multiple round trips in the external cavity are ne-
glected, giving rise to a VCSEL feedback field which is sim-
ply a scaled delayed version of the VCSEL output. This can
be justified only if the external cavity finesse is sufficiently
small to neglect multiple-interference effects. The model
given by Eqs. �1� describes operational regimes of CS lasers
with arbitrarily high reflectivities of the frequency-selective
feedback mirror �25�. It also recovers the LK approximation
by setting the VCSEL external reflection coefficient r1 to
zero, thus, allowing for a quantitative comparison.

Figure 5 compares the external cavity and LK models for
two different external cavity finesses, controlled by altering
the reflection coefficient rg of the external Bragg reflector.
Figures 5�a�–5�d� show that there are some quantitative and
qualitative differences which become more pronounced as rg
is increased. This is not unexpected. The key point, however,
is illustrated in Figs. 5�b� and 5�d� which plot the threshold
current as a function of frequency. For an external reflectivity
as low as 0.25, the laser threshold current in the LK model is
almost equal to the transparency current �J=1�. For an ex-
ternal reflectivity of 0.81, which corresponds approximately
to experimental conditions �25�, the LK laser threshold is
well below transparency, indicating that lasing is predicted to
occur even without a population inversion, which is unphysi-
cal.

The source of the problem lies in the failure of the LK
approximation to conserve energy through its one-sided ne-

glect of the reflectivity of the VCSEL output coupler. As
examination of Eqs. �1� shows, this can lead to a feedback
strength which exceeds the VCSEL cavity losses, and hence
to unphysical linear gain even when the laser gain medium is
absorbing rather than amplifying. Numerical simulation of
the system under these conditions does indeed lead to rapid
blowup of the optical field E.

In contrast, a more physical treatment of the feedback
loop as a true optical cavity �24� avoids this problem by
observing the boundary conditions and conserving energy at
the VCSEL output coupler. Moreover, this regularization is
accomplished with essentially no computational overhead
�24�. As Eqs. �1� show, only one extra addition and multipli-
cation are required per time step with respect to the LK ap-
proximation, while the storage requirements for fields at ear-
lier times are the same in both LK and external-cavity
approaches. We note that this last point is made in �24� but
we take this opportunity to re-emphasize it here.

We note that the LK approximation presents no blowup
problem as long as the feedback term cannot exceed the VC-
SEL losses. Even at small values of external reflectivity,

FIG. 6. �a� Effective cavity response �Eq. �10a�� for the coupled-cavity system plotted in the complex C plane. �b� Blowup of �a� showing
the soliton �dashed line� for a current J=1.63 and plane-wave threshold �dotted line� solutions of Eq. �10a�. All soliton solution curves
terminate on the threshold line in the limit where soliton amplitude tends to zero and width tends to infinity. Parameters: �=9, �=−1, �
=0.9, �=0.01, T1=0.008, T2=0.0002, �=0.6, rg=0.8, �=0, and � f =20.

FIG. 7. Soliton creation by means of a localized finite-duration
address pulse: address pulse duration versus amplitude. The shaded
area represents the region of systematic soliton creation. Parameters
as in Fig. 6 with � f =41, 
=5, and 	p=0.
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however, some rescaling of the feedback strength parameter
is required, which complicates the relation between the pre-
dictions of the LK approach and the operation of real laser
systems.

V. SINGLE-FREQUENCY SOLITONS

In this section we describe some properties of single-
frequency laser solitons in order to build a framework for
understanding more complicated behavior. We also restrict
ourselves to one transverse spatial dimension for the mo-
ment. We therefore look for solutions of the form E�x , t�
=A�x�exp�−i	t�.

From Eqs. �1� and �6�, A�x� satisfies

�− i	 + �1 + i�� − S�	��A = i�2A +
��J − 1��1 − i��

1 + �A�2
A .

�9�

Equation �9� has been written in such a way that the left-
hand side contains all frequency-dependent terms, while the
right-hand side is independent of frequency and of the details
of the external and VCSEL cavity properties. Equation �9�
can therefore be separated into two equations,

�− i	 + �1 + i�� − S�	��A = CA , �10a�

i�2A +
��J − 1��1 − i��

1 + �A�2
A = CA , �10b�

whose simultaneous solutions correspond to single-
frequency states of our laser system. Equation �10a� de-
scribes the effective cavity response and can be represented
by a curve in the complex C plane parametrized by 	. Equa-
tion �10b� represents a nonlinear eigenvalue problem for
soliton solutions in which the complex parameter C corre-
sponds to an effective loss and detuning. For a given set of
parameters we can expect bounded solutions only on a null
set in the complex C plane, i.e., a curve at most.

Figure 6 plots the cavity response Eq. �10a� in the com-
plex C plane for a particular set of parameters. Traversing a
loop of this curve corresponds to a phase change of 2� in the

cavity response and hence each loop contains one cavity
mode. The regions of large excursion are due to the strong
response of the cavity near the grating frequency. Superim-
posed on this curve is a line of soliton solutions to Eq. �10b�
for J=1.63, obtained by means of a shooting method �26�. As
this curve is followed from left to right, the corresponding
solutions become broader with lower peak amplitude. It
eventually terminates, with infinite width and zero ampli-
tude, on the straight line C=��J−1��1− i��, parametrized by
current, defining low-amplitude spatially homogeneous solu-
tions to Eq. �10b�.

Figure 6 shows that there can be many intersections be-
tween the cavity response and soliton solution curves, and
hence many single-frequency soliton solutions. Moreover, it
can be seen that changing a system parameter will alter the
soliton and cavity response curves, creating �or destroying�
laser solitons in pairs through saddle-node bifurcations �at
least one of such a pair is necessarily unstable�. Since Re�C�
represents the net cavity loss we expect the system to favor
the soliton which minimizes this quantity. Numerical simu-
lation bears this out: as new solitons appear on changing a
system parameter, the laser has a tendency to shift operation
to the soliton with the smallest losses. We elaborate on this in
the next section.

VI. ADDRESSING OF LASER SOLITONS

In this section we discuss some features of the creation of
solitons in the coupled-cavity laser. Our simulations mimic
experimental procedure �15,16,25� by initiating a soliton
through the application of a spatially-localized rectangular
address pulse P�x , t� of the form

P�x,t� = P0 exp	−
x2


2 − i	pt
rect	 t

�p

 . �11�

Computationally, the amplitude, width, duration, and fre-
quency of the address pulse can all be altered.

Fixing the width and frequency of the address pulse al-
lows us to map a region of successful soliton initiation in the
plane of the remaining two parameters. In Fig. 7 solitons can
be systematically created in the shaded region between the
lower and upper curves. Below the lower curve, the address
pulse is either too short or of too low amplitude to succeed in
dragging the system from the off state into the basin of at-
traction of the soliton before the pulse is switched off. It can
be seen that there is an unsurprising tradeoff between address
pulse amplitude and duration. It should also be noted that
there is an apparent vertical asymptote at the left-hand side
of the curve, for a pump amplitude somewhere between 1.2
and 1.3. This indicates that a minimum peak address power
is required, irrespective of pulse duration.

Above the upper boundary of the shaded region in Fig. 7,
the system appears to overshoot the soliton. The sustained
application of a high-power address pulse drives the system
strongly so that when the address pulse is removed, the sys-
tem can relax either to a soliton or to the off state in a way

FIG. 8. Soliton migration away from center of an address pulse
during switch on. Parameters as in Fig. 7 with P0=1.8, �p=5400.
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that is essentially unpredictable. The strongly nonlinear dy-
namics can also lead to migration of the induced structure
from the center of the address pulse to a location where it is
apparently more easily sustained, as in Fig. 8. Moreover,
successful soliton switching can recur in intervals above the
upper curve in Fig. 7 �not shown�. All of these features ren-
der the upper threshold inherently more difficult to delineate,
and so the curve in Fig. 7 should be seen as a guide rather
than a firm boundary.

In summary, the shaded area in Fig. 7 represents the re-
gion of parameter space in which successful soliton switch-
ing can be reliably predicted. We expect the qualitative fea-
tures of Fig. 7 to be generic for lasers with FSF.

VII. SIDEBAND INSTABILITIES AND MULTIFREQUENCY
LASING

As mentioned above, virtually any system parameter can
be used to bring new single-frequency solitons into exis-
tence. Here we select the reflection coefficient rg of the
Bragg grating as our unfolding parameter. We also choose to
analyze a system with shorter external cavity �round-trip
time � f =5� than in Fig. 6. This increases the external-cavity
mode spacing, decreases the density of loops in the cavity
response curve �Eq. �10a��, and makes it easier to observe the
birth of new soliton solutions.

For rg=0.79, Fig. 9�a� shows a section of the complex C
plane indicating an intersection between soliton and cavity-

FIG. 9. Birth of new soliton pair on changing the feedback reflectivity rg. �a�, �c�, and �e� Cavity response curve �solid curves� and soliton
solution curve �dashed curves� in the complex C plane. �b�, �d�, and �f� Corresponding spectra �solid curves� and traveling-wave transverse
wave-vectors �dashed curves�. �a� and �b� rg=0.79. �c� and �d� rg=0.83. �e� and �f� rg=0.85. Other parameters as in Fig. 6 except � f =5.
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response curves at a frequency 	�1.1. Figure 9�b� shows
the soliton spectrum obtained from a numerical simulation of
Eqs. �1� for these parameters. The soliton is initiated by
means of an address pulse at the grating frequency �	=0�
and the system allowed to relax to its preferred state. The
spectrum in Fig. 9�b� is that of the central point of the soliton
and can be seen to correspond to the predicted soliton fre-
quency at 	�1.1. Also shown for context in Fig. 9�b� is the
�inverse� dispersion curve K2�	� �cf. Fig. 2�. Note the exis-

tence of other solitons at higher values of Re�C� but that the
system selects the one with smallest losses.

Figure 9�e� shows that when rg=0.85 a new soliton has
appeared with 	�0.13. Numerical integration �Fig. 9�f�� us-
ing the previous soliton as initial condition confirms that the
system now selects the new soliton, which has a frequency
closer to the grating frequency and therefore sees even
smaller losses. As Fig. 9�f� shows, the new soliton appears in
the band of modes adjacent to that containing the original

FIG. 10. Appearance and disappearance of CS sideband instability on increasing external cavity length. �a�, �c�, and �e� Space-time plots
of the soliton. �b�, �d�, and �f� Corresponding spectra �solid curves� and traveling-wave transverse wave vectors �dashed curves�. �a� and �b�
� f =24. �c� and �d� � f =28. �e� and �f� � f =37. Other parameters as in Fig. 6.
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soliton, consistent with the fact that the new intersection in
Fig. 9�e� occurs on the next loop of the cavity-response
curve.

However, in an interval between these two values �e.g.,
rg=0.83� the laser soliton contains frequencies correspond-
ing to those of the two single-frequency solitons on either
side �Fig. 9�d��. This is true even before the new lower-
frequency soliton has come into existence �Fig. 9�c�� and this
behavior therefore acts as a precursor to a switch in laser
operation between different frequency bands.

This phenomenology appears to be quite general and
analogous to what happens in a laser with transverse modes
when changing the cavity length �27�, although single-
transverse-mode solutions correspond here to single-
frequency solitons. Increasing the cavity round trip time will
generate a sideband instability of a single-frequency soliton
followed by the eventual appearance of a new single-
frequency soliton in an adjacent band �Figs. 10 and 3�. In
these simulations we have assumed that the external cavity is
in resonance ��=0� for � f =1 and hence for any whole value
of � f.

There is, however, an interesting feature of using � f as a
control parameter in this way: namely, that for a given fre-
quency, the feedback term in Eq. �6� is periodic in � f. This
means that if a CS appears with frequency 	0 via a saddle-
node bifurcation at � f =� f0, there will be an infinite sequence
of such bifurcations for � f =� f0+2n� /	o, where n is an inte-
ger. Each new soliton will appear with the same frequency
	0 and the same amplitude. This periodic behavior with
changing external cavity length is analogous to the periodic-
ity of the spectrum of a scanning Fabry-Pérot resonator.

Of course the periodicity which applies to 	0 does not
apply to other frequencies, and the dynamical instabilities of
these soliton branches may be quite different. On increasing
� f, we observe the system’s preference to switch to a newly
created soliton solution in an adjacent band of modes, as
when the external reflectivity is varied. However, we also
observe a tendency toward a larger number of frequencies in
the transition region between single-frequency behavior, and
to such complicated dynamics that it is very difficult �or even
apparently impossible� to initiate a soliton for certain ranges
of external cavity length. This makes single-frequency opera-
tion, and indeed any form of soliton at all, increasingly dif-
ficult to observe as the external cavity is lengthened. A useful
corollary is that in the limit in which the external cavity
length goes to zero, the system dynamics become simpler
and the laser goes inevitably toward single-frequency behav-
ior. Note that a similar periodicity exists with respect to the
external cavity detuning � �see, for example, Fig. 4� and also
that in practice these two quantities �� and 	0� should be
connected to each other.

VIII. CONCLUSION

We have constructed a model of a VCSEL with external
frequency-selective feedback and shown that it captures
physical features of the corresponding experiment essential
for cavity soliton formation. Our coupled-cavity approach is
capable of describing regimes of CS laser operation with
arbitrary reflectivity of the frequency-selective feedback mir-
ror, thus, improving on the more common Lang-Kobayashi
approximation.

The solitons produced in the laser can be either single
frequency �stationary in intensity� or multiple frequency �os-
cillating intensity�, involving several cavity modes. Investi-
gation of single-frequency solutions through a separation of
cavity and intrinsic effects provides some insight into this
phenomenon, as well as providing a framework in which the
effects of different cavities can be assessed with only trivial
re-computation. Our analysis points toward the fact that
single-frequency behavior occurs in the limit of zero external
cavity length. This result is useful and promising for inte-
grated devices.

Because of the time delay involved in the feedback
mechanism, the optical addressing of laser solitons is non-
trivial. The address beam must be sufficiently sustained or
sufficiently intense to overcome the delay and decay in-
volved in establishing the feedback required to support las-
ing. In addition, a mininum peak power seems necessary.
The minimum threshold curve shown in Fig. 7 is experimen-
tally accessible and should provide a useful qualitative com-
parison with the present model.

The laser with frequency-selective feedback has shown
itself to be a promising candidate for a practical transverse
soliton laser. When compared with other cavity soliton lasers
based either on saturable absorbers �13�, coupled cavities
�14�, or optical injection �11�, VCSELs with FSF present a
high degree of stability of soliton operation and simplicity of
construction. The model described here captures the essential
features of the CS laser with FSF and demonstrates the wide
range of existence, stability, and application of laser CS in
this device. It also provides evidence of the dynamical prop-
erties of laser CS operation with possible applications in the
storage and processing of optical information.
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