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Ideally, strong nonlinearities could be used to implement quantum gates for photonic qubits by well-
controlled two-photon interactions. However, the dependence of the nonlinear interaction on frequency and
time makes it difficult to preserve a coherent pulse shape that could justify a single-mode model for the
time-frequency degree of freedom of the photons. In this paper, we analyze the problem of temporal multimode
effects by considering the pulse shape of the average output field obtained from a coherent input pulse. It is
shown that a significant part of the two-photon state transformation can be derived from this semiclassical
description of the optical nonlinearity. The effect of a nonlinear system on a two-photon state can then be
determined from the density-matrix dynamics of the coherently driven system using input-output theory. As an
example, the resonant nonlinearity of a single two-level atom is characterized. The results indicate that the
most efficient nonlinear effect may not be the widely studied single-mode phase shift, but the transfer of one
of the photons to an orthogonal mode distinguished by its temporal and spectral properties.
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I. INTRODUCTION

Photonic qubits based on the polarization or the
transverse-mode structure of single photons are an attractive
candidate for the implementation of quantum information
protocols because it is relatively easy to establish and to
maintain single-qubit coherences by conventional linear op-
tics. However, the realization of well-controlled two-photon
interactions remains a challenging problem on the road to
larger networks and more efficient operations. Early on, it
has been suggested that nonlinear materials might provide
the interaction necessary to couple pairs of photons �1�, and
sufficiently strong nonlinear effects were demonstrated ex-
perimentally using single atoms in a high-finesse cavity �2�.
Recent advances in solid-state cavity designs seem to be put-
ting the prospect of integrated devices implementing optical
nonlinear quantum gates within the reach of present techno-
logical capabilities �3–7�. However, some quite fundamental
problems still need to be addressed before the proper func-
tions of a quantum gate can be realized. In particular, it is
necessary to preserve single-mode coherence, not only in
polarization and in transverse-mode structure, but also in the
time-frequency domain. The latter problem is fundamentally
linked to the dynamics of optical nonlinearities in time and
space �8–17� and has recently been identified as a critical
problem in the realization of quantum gates �18–20�. Initial
attempts at optimizing the pulse shape and the pulse dura-
tions focused on the possibility of obtaining a large phase
flip, represented by a negative two-photon amplitude in a
single intended target mode �11,21�. In that context, Koshino
and Ishihara pointed out that the two-photon amplitude can
be evaluated from the semiclassical response of the system
�11�. This result suggests that a more detailed analysis of the
relation between semiclassical field expectation values and
the transformation of two-photon wave functions may be

possible. Such an analysis could provide both a more thor-
ough foundation for the evaluation of experimental results
like the ones recently reported in �22,23� and a more detailed
characterization and classification of the spectral and the
temporal features observed in highly nonlinear devices. In
the following, we therefore present a systematic analysis of
the relation between the average field response obtained
from a coherent input and the transformation of the two-
photon component of the quantum-mechanical wave func-
tion.

In Sec. II, a quantum-mechanical formulation of the semi-
classical nonlinear response is developed using field opera-
tors. In Sec. III, the nonlinear interaction is expanded in
terms of its effects on photon number states of suitably de-
fined modes. It is then possible to express the semiclassical
output in terms of the wave functions of these modes. In Sec.
IV, it is shown how the matrix elements of the photon num-
ber expansion can be derived from the overlap integrals of
the semiclassical result. According to the results of Secs.
II–IV, the nonlinear transformation has two distinct effects: a
change in phase and amplitude of the two-photon component
of the linear output pulse and a change in pulse shape repre-
sented by the transfer of a single photon to an orthogonal
mode. In Sec. VI, the magnitude of these effects is investi-
gated for the case of a resonant two-level system. It is shown
that the conditional transfer of one photon to an orthogonal
mode is much stronger than the nonlinear phase shift, sug-
gesting that it may be more efficient to use this effect in
optical quantum gates. In Sec. VII, the pulse shapes of the
modes involved in the nonlinear photon transfer are pre-
sented and the dynamics of the effect is discussed. The con-
clusions are summarized in Sec. VIII.

II. SEMICLASSICAL CHARACTERIZATION
OF A NONLINEAR QUANTUM SYSTEM

In order to analyze the quantum level effects of an optical
nonlinearity, we start by considering the effects of a quantum*hofmann@hiroshima-u.ac.jp
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system on the pulse shape of a coherent input pulse. Such an
input pulse can be described by a classical time-dependent
field amplitude �bin�t�, where bin�t� is the wave function of a
single-mode light field normalized to one photon. Hence, the
input quantum state is effectively a single-mode coherent
state ���. This state interacts with the nonlinear quantum sys-
tem, temporarily exciting it from its initial ground state. Af-
ter this interaction, the system returns to the ground state,
re-emitting any photons it might have absorbed in the pro-
cess of the interaction.

If decoherence effects can be neglected, the total effect of
the interaction on the quantum state of the input pulse can

then be written as a unitary transformation Û acting only on
the state of the light field. In general, this unitary transfor-
mation acts on the full continuum of modes in free space. A
complete characterization of the output state would therefore
require multiphoton coherences between all frequencies or
times observed in the output �9,16,18�. However, we now
simplify this analysis by considering only the expectation

values of the output fields �b̂�t��. Experimentally, this would
correspond to the averages of a homodyne measurement, as
used in the pioneering work of Turchette et al. �2�. Figure 1
shows a schematic illustration of this semiclassical charac-
terization of a quantum level nonlinearity. Theoretically, such
averages are easily obtained from the density-matrix dynam-
ics of the system using input-output theory, as will be ex-
plained in more detail in Sec. V.

In terms of the unitary operation Û describing the effects
of the nonlinear system on the quantum state of the input
light, the average output field is given by the expectation

value of the field operator b̂�t� in the time domain,

bout�t� = �b̂�t�� = ���Û†b̂�t�Û��� . �1�

We can then proceed to analyze the specific form of the
output pulse bout�t� by expanding the output in terms of the
input amplitude �. The nonlinear effect arising from photon-
photon interactions is given by the third-order term in this
expansion. For sufficiently small amplitudes �, the semiclas-
sical effect of photon-photon interactions on the transforma-
tion of an input pulse �bin�t� can therefore be expressed in
terms of the third-order nonlinear response,

bout�t� = �b�1��t� + ����2b�3��t� , �2�

where b�1��t� is the pulse shape of the linear output and b�3��t�
is the pulse shape of the third-order nonlinearity.

If there is neither decoherence nor photon loss in the sys-
tem, b�1��t� describes a normalized single output mode that
characterizes the transformation of the one-photon wave
function from �in�t�=bin�t� to �1�t�=b�1��t�. On the other
hand, b�3��t� is neither normalized nor does it represent a
wave function orthogonal to �1�t�. However, it is possible to

interpret the pulse shape b�3��t� as a linear superposition of a
component proportional to �1�t� and another component pro-
portional to a normalized wave function �2�t� that is or-
thogonal to �1�t�. Since the wave functions �1�t� and �2�t�
are orthogonal, they represent two distinct modes in the
time-frequency continuum. It is therefore possible to quan-
tize the light field by assigning separate annihilation opera-
tors â1 and â2 to these orthogonal modes. The output pulse
shape bout�t� can then be expressed in terms of the two or-
thonormal wave functions �1�t� and �2�t� and the expecta-
tion values �â1� and �â2� of their complex amplitudes,

bout�t� = �â1��1�t� + �â2��2�t� . �3�

The expectation values can be determined by analyzing the
pulse-shape functions b�1��t� and b�3��t� in Eq. �2�. Thus, the
semiclassical representation of the nonlinearity in terms of
field expectation values can be interpreted within a fully
quantum-mechanical model focusing on the two modes de-
fined by the pulse shapes observed in the output field.

III. QUANTUM MECHANICS OF THE PHOTON-PHOTON
INTERACTION

In the previous section, we have shown that the third-
order nonlinear response to a coherent input pulse can be
described in terms of two quantized modes defined by the
linear and the nonlinear parts of the average output field
bout�t�. We can now use this two-mode representation to for-

mulate the matrix elements of the unitary transformation Û
that describes the transitions between the photon number
states of these modes. If photon losses can be neglected, the
unitary transformation preserves the total photon number and
we can look at each subspace of fixed total photon number
separately. In particular, the vacuum state will not be

changed by the interaction with the system, so the effect of Û
on the zero-photon subspace is simply given by

Û�vac� = �vac� . �4�

For low-intensity fields ���1�, the expectation values �b̂�t��
of the field amplitudes are given by the coherence between
the single-photon wave function at t and the vacuum. There-
fore, the linear part of the semiclassical pulse-shape transfor-
mation is equivalent to the transformation of the single-
photon wave function. Specifically, the single-photon input
wave function �in�t�=bin�t� is transformed into the linear
output mode wave function �1�t�=b�1��t�. In terms of the
annihilation operators of the input mode âin and the linear

output mode â1, the effect of the unitary transformation Û in
the single-photon subspace can therefore be expressed as

Û�âin
† �vac�� = â1

†�vac� . �5�
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FIG. 1. Illustration of the semiclassical char-
acterization of an optically nonlinear system us-
ing coherent input light and homodyne detection
of the output pulse shape.
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The transformation in the two-photon subspace is more
complicated, because the photon-photon interaction gener-
ally entangles the wave functions of the two photons �10�.
However, we know from Eq. �2� that a significant part of the
two-photon output wave function can be described in terms
of the modes â1 and â2. We can therefore expand the effect
of Û in the two-photon subspace in terms of these output
modes. Specifically, the contributions to the expectation val-
ues of the annihilation operators in Eq. �3� originate from an
inner product of a one-photon wave function generated by
annihilating a photon from the output two-photon wave func-
tion and the output one-photon state. As a result, the compo-
nents of the two-photon output contributing to the averages
in Eq. �3� must have at least one photon in the linear output
mode â1. The components of the two-photon output that con-
tribute to bout�t� are therefore �i� a state where both photons
are in mode â1 and �ii� a state where one photon is in mode
â1 and one photon is in mode â2. In addition, there is a third
component �rest� that does not contribute to bout�t� because it
does not have any photons in the linear output mode â1.
Thus, the expansion of the two-photon output state can be
written as

Û� 1
	2

âin
† âin

† �vac�
 =
C11

	2
â1

†â1
†�vac� + C12â1

†â2
†�vac� + Cr�rest� ,

�6�

where C11, C12, and Cr are the two-photon amplitudes char-

acterizing the photon-photon interaction described by Û. C11
describes the amplitude of obtaining both photons in the
same mode as the single-photon output, C12 describes a non-
linear transfer of one photon to a well-defined orthogonal
mode, and Cr describes the amplitude of processes where
both photons are transferred to other modes with shapes that
cannot be identified using only the semiclassical output av-
erage bout�t�.

We can now solve Eq. �1� by applying the unitary trans-

formation Û to the single-mode coherent input state ���. In
order to describe the third-order nonlinearity, it is convenient
to expand the coherent state, neglecting all terms that only
contribute terms of fourth or higher order in � to the final
field expectation value in Eq. �1�. The coherent state can then
be approximated by

��� � �1 −
���2

2

�vac� + ��1 −

���2

2

âin

† �vac� +
�2

2
âin

† âin
† �vac� .

�7�

The application of Û to this input state results in an output
state of

Û��� = �1 −
���2

2 
�vac� + ��1 −
���2

2 
â1
†�vac�

+
�2

	2
�C11

	2
â1

†â1
†�vac� + C12â1

†â2
†�vac� + Cr�rest�
 .

�8�

From this output state, we can obtain the expectation values
of â1 and â2,

�â1� = ��out�â1��out� = � + �C11 − 1�����2,

�â2� = ��out�â2��out� =
C12

	2
����2. �9�

These expectation values establish the connection between
the few-mode formulation of bout�t� in Eq. �3� and the expan-
sion up to third order in � given by Eq. �2�. Specifically, the
expression for bout�t� obtained by inserting the results given
by Eq. �9� into Eq. �3� reads

bout�t� = ��1�t� + ����2��C11 − 1��1�t� +
C12

	2
�2�t� .

�10�

Based on this relation, it is possible to obtain the two-photon

amplitudes Ci that characterize the unitary transformation Û
by decomposing the nonlinear output pulse shape b�3��t� of
Eq. �2� into its �1�t� and �2�t� components.

IV. DERIVATION OF TWO-PHOTON AMPLITUDES Ci

FROM SEMICLASSICAL PULSE SHAPES

The two-photon amplitudes Ci characterize the essential
properties of the nonlinear system for applications as an op-
tical quantum gate. In particular, C11 describes any nonlinear
phase shift, with C11=−1 corresponding to the ideal con-
trolled phase flip needed for the implementation of a quan-
tum controlled NOT �8,11,21�. On the other hand, C12 de-
scribes a well-controlled transfer of one photon to a new
mode. Since the output is fully quantum coherent, this pro-
cess may also be a suitable candidate for quantum informa-
tion processing. Finally, the coefficient Cr represents a com-
ponent of unknown coherence that may be interpreted as a
quantitative representation of the dispersion problem dis-
cussed in �18�.

Equation �10� shows how the two-photon amplitudes C11,
C12, and Cr can be determined from the semiclassical de-
scription of the nonlinearity in terms of b�1��t� and b�3��t�.
Specifically, the amplitude of the �1�t� component in b�3��t�
is equal to C11−1 and the amplitude of the �2�t� component
is equal to C12 /	2. Since �1�t� is equal to the linear compo-
nent b�1��t� of the semiclassical output, the �1�t� amplitude
can be determined from the overlap integral of b�3��t� and
b�1��t�. The two-photon amplitude C11 is therefore given by

C11 = 1 +� b�1��t��b�3��t�dt . �11�

As mentioned above, this parameter describes nonlinear
phase shifts that do not change the pulse shape of the photon
wave packets. This kind of single-mode phase shift has been
the focus of most of the previous work on nonlinear optical
quantum gates. In fact, C11 is equivalent to the parameter
previously introduced by Koshino and Ishihara to evaluate
the performance of a quantum nonlinearity based on a semi-
classical result �11�. Our analysis completes this approach by
taking into account the details of the pulse shape b�3��t� that
describes the semiclassical effects of the third-order nonlin-
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earity. In terms of the quantum-mechanical description, this
results in the introduction of the additional output mode �2�t�
and the associated two-photon amplitude C12 describing the
transfer of one photon to this new mode. The magnitude of
this amplitude can be determined by taking the total intensity
of b�3��t� and subtracting the intensity accounted for by C11,

�C12�2 = 2�� �b�3��t��2dt − �C11 − 1�2
= 2�� �b�3��t��2dt − �� b�1��t��b�3��t�dt�2 . �12�

The phase of C12 depends on the definition of �2�t�. It can
therefore always be set to zero. Since the wave function �2�t�
of the target mode can also be obtained from the pulse shape
b�3��t�, the amplitude C12 also describes a fully coherent pro-
cess that may be used to implement well-controlled nonlin-
ear operations on optical quantum states.

All effects that cannot be described by the two-photon
amplitudes C11 and C12 are summarized by the amplitude Cr.
Since the two-photon output wave function given by Eq. �6�
is normalized, Cr can be obtained from

�Cr�2 = 1 − �C11�2 − �C12�2. �13�

Because this amplitude is associated with a two-photon wave
function that cannot be described within the two-mode ex-
pansion of Sec. II, it has to be regarded as a source of deco-
herence in any straightforward implementation of a nonlinear
quantum gate. It thus provides a quantitative measure of the
dispersion problems raised in �18�, and it is an interesting
question to what extent the amplitude Cr can be minimized
while retaining the desired nonlinear effects described by C11
and C12.

Before moving on to specific examples of quantum level
nonlinearities, it may be interesting to consider the natural
limits imposed on semiclassical third-order nonlinearities by
the amplitudes C11 and C12 of the two-photon output com-
ponent. While classical physics imposes no such limits,
quantization makes it impossible to have nonlinear effects
for light field intensities far below the single-photon level. In
the present theory, this limit is expressed quantitatively as
restrictions on the magnitude of b�3��t� corresponding to the
requirement that �C11�2+ �C12�2�1. Considering only C11, the
overlap between b�3��t� and the normalized linear output
b�1��t� is limited by

�� b�1��t��b�3��t�dt + 1� � 1. �14�

Figure 2 shows this limit of the overlap integral between the
nonlinear and the linear output wave functions as a circle in
the complex plane. Note that the real part of the overlap is
always negative, indicating that all third-order nonlinearities
reduce the output amplitude. Moreover, phase shifts of ���
�� /2 are associated with a minimal amplitude reduction of
�1−cos ��. Likewise, a change in pulse shape described by
the photon interaction amplitude C12 imposes a minimum on
the negative value of the overlap between b�1��t� and b�3��t�.

As C12 increases, the radius of the circle in Fig. 2 is reduced
to 	1− �C12�2, resulting in a minimal amplitude reduction of

Re�� b�1��t��b�3��t�dt � − �1 − 	1 − �C12�2� . �15�

Thus, any nonlinearity includes a reduction in the coherent
output amplitude in the linear mode �1�t�=b�1��t�. In particu-
lar, the maximal nonlinear change in pulse shape �C12=1�
requires an overlap of −1 between b�1��t� and b�3��t�.

V. DYNAMICS OF THE NONLINEAR SYSTEM

As shown in the previous section, the two-photon ampli-
tudes Ci can be determined from the output pulse shapes
b�1��t� and b�3��t� obtained from a semiclassical analysis of
the nonlinear optical response. It is therefore possible to de-
termine a significant part of the transformation acting on a
two-photon wave packet by solving the nonlinear dynamics
of the system in response to a specific input pulse shape. In
general, the dynamics of absorption and emission in an op-
tical system excited by a coherent light field pulse can be
represented by the dynamics of the density matrix, where the
excitation is driven by a term linear in the coherent field
amplitude �. Initially, the system is in its ground state ��0�.
Weak excitations are described by a linear response ��1�, such
that the density-matrix dynamics are approximately given by
��t�=��0�+���1�. The field bout�t�=�b�1��t� emitted by the
system is then determined by the dipole or the field expecta-
tion values of ��1� according to input-output theory �24�. To
describe the nonlinear response, the density-matrix dynamics
can be expanded to include higher orders of �. Specifically,
the excitation of the density matrix caused by an input pulse
of intensity ���2 can be described by a term ���2��2�. How-
ever, the dipole or the field expectations of this term are zero
in all symmetric systems since this contribution to � is in-
variant under a change of sign in �. Hence the lowest-order
nonlinearity is obtained from the third-order term ����2��3�

that describes the effects of the excitations on the response of
the system. As the example given in the following will show,
this kind of expansion can be done sequentially, resulting in
a fairly simple and straightforward integration of a series of
linear-response equations.

�

�

Re(C11 − 1)

Im(C11 − 1)

+1

−1

−1−2

FIG. 2. Illustration of the quantum limit of the integral
�b�1��t��b�3��t�dt=C11−1 describing the overlap between the linear
and the nonlinear parts of the semiclassical output pulse.
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One of the most important systems considered for the
realization of nonlinear optical quantum gates is a single
atom in a cavity. As Turchette et al. demonstrated experi-
mentally �2�, such a system exhibits a strong nonlinear phase
shift in the weak-coupling regime, where the cavity dynam-
ics can be adiabatically eliminated and the system response
is described by the Bloch equations of a two-level atom. The
problem of evaluating the strength of the nonlinear response
in this system has recently attracted a lot of interest, largely
motivated by the improved experimental possibilities due to
advances in cavity design �3–7,12,13,17�. Our theory permits
us to analyze the temporal and the spectral properties of this
nonlinear response in terms of realistic pulse shapes without
the complications introduced by a full quantum analysis of
the entangled two-photon wave function. It should be noted
that we achieve this without any approximations, simply by
omitting the parts of the two-photon wave function that do
not contribute to the average field bout�t�. In fact, the third-
order solutions of the semiclassical Bloch equations dis-
cussed in the following can also be obtained from the two-
photon wave functions determined in �9� if one of the two
photons is projected onto the single-photon wave function.
Thus the fully quantum-mechanical analysis of the two-
photon response gives the same results for bout�t� as the
semiclassical analysis. It only provides additional informa-
tion about the elusive component �rest�, which usually re-
quires an infinite number of additional modes for its precise
characterization due to the spectral and the temporal en-
tanglements of the two-photon wave function �10�. For the
coefficient C11, the exact correspondence of the two-photon
response with the semiclassical result was first pointed out
by Koshino and Ishihara in �11�, where they suggested the
application of a coherent amplitude of �=1 /	2 to obtain the
maximal semiclassical response corresponding to C11. In ad-
dition to this evaluation of C11, the more detailed analysis
developed here allows us to identify the photon transfer am-
plitude C12 that describes the nonlinear change in pulse
shape in terms of a conditional transition between the modes
in the two-photon output. As will be shown below, this effect
is actually much stronger than the anticipated phase shift and
may therefore play a significant role in possible realizations
of nonlinear optical quantum gates. Finally, we can also de-
termine the precise pulse shapes �1�t� and �2�t� that charac-
terize the optical modes involved in the output of the quan-
tum operation.

Figure 3 shows a schematic illustration of a single atom-
cavity system and its input-output characteristics. An input
pulse bin�t� is incident on the front mirror of the cavity. The
cavity field adiabatically couples the input pulse to the atom
with a coupling strength corresponding to a cavity-enhanced
spontaneous emission rate of 2�. The atom is excited and
re-emits the absorbed energy by dipole emission through the
cavity. Interference between this dipole emission and the re-
flected input pulse then results in the output pulse bout�t�. In
the following, we assume that the losses of the system are
negligible, so that all of the photons emitted by the atom will
be found in bout�t�. The dipole response of the atom can be
described by the well-known optical Bloch equations �8,24�

d

dt
�	̂−��t� = − ��	̂−��t� − i2	2��bin�t��	̂z��t� , �16�

d

dt
�	̂z��t� = − 2���	̂z��t� + 1

2� + i	2���bin�t��	̂−���t�

− ��bin
� �t��	̂−��t�� , �17�

where 	̂− is the operator describing the atomic dipole and 	̂z
is the operator describing the excitation of the atom. In gen-
eral, the output field can be determined from the input field
and the corresponding dipole response �	̂−� of the atom ac-
cording to input-output theory �8,24�. For a lossless system,
the corresponding relation reads

bout�t� = �bin�t� + i	2��	−��t� . �18�

In general, the dipole response �	−��t� is a nonlinear function
of the input amplitude �. In order to determine the linear and
third-order response in �, we can now apply the procedure
described at the beginning of this section to the Bloch equa-
tions �16� and �17�.

Initially, the atom is in the ground state, so the zero-order
density matrix is described by �	̂z��0��t�=− 1

2 . The linear re-
sponse of the atom then determines the first-order dipole
term ��	̂−��1� according to the linear relaxation dynamics
given by, using �	̂z��0��t�=− 1

2 in Eq. �16�,

d

dt
�	̂−��1��t� = − ��	̂−��1��t� + i	2�bin�t� . �19�

This equation can be solved for any input pulse shape by
simply integrating the linear response. In principle, the sec-
ond order of the density matrix is obtained by using the
first-order result �	̂−��1� as part of the excitation term in the
relaxation dynamics described by Eq. �17�. However, a com-
parison of Eqs. �16� and �17� shows that this equation is
always solved by the absolute square of the first-order dipole
term, �	̂z

�2��= ��	̂−��1��2. We can then determine �	̂−��3��t� from
Eq. �17� by using �	̂z��2��t� instead of �	̂z��0��t�,

d

dt
�	̂−��3��t� = − ��	̂−��3��t� − i2	2�bin�t���	̂−��1��t��2.

�20�

This equation has the same form as Eq. �19� and can there-
fore be solved by the same kind of integration, correspond-

��
��

Atom

�
Γ �

�

Input

Output

R = 1 R < 1

bin(t)

bout(t)

FIG. 3. Schematic representation of an atom-cavity system. If
the reflectivity R of the back mirror is close to 1, the cavity medi-
ated emission determines the coupling � with the field reflected by
the front mirror.
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ing to the linear response of the dipole to a modified input
pulse of −2bin��	̂−��1��2. Specifically, the third-order response
describes the reduction in the linear response by the satura-
tion of the gradually excited atoms, as indicated by the nega-
tive sign of the modified input pulse.

Having obtained the linear and third-order responses of
the atomic dipole, we can now express the output field up to
third order in � using input-output theory as given by Eq.
�18�. The result reads

bout�t� = ��bin�t� + i	2��	̂−��1��t�� + ����2�i	2��	̂−��3��t�� .

�21�

Comparison with Eq. �2� shows how the solutions for the
expectation values of the atomic dipole define the linear and
the nonlinear output pulse shapes b�1��t� and b�3��t�. We can
thus obtain the semiclassical characterization of the optical
nonlinearity necessary for the determination of the two-
photon amplitudes Ci and the wave functions �1�t� and �2�t�
describing the modes used for the quantization by solving the
density-matrix dynamics of the system up to third order in
the coherent excitation amplitude �.

VI. PULSE DURATION DEPENDENCE
OF TWO-PHOTON AMPLITUDES

In general, the two-photon amplitudes Ci depend on the
specific shape of the input pulse defined by bin�t�. In the
following, we focus on resonant pulses since such pulses
seem to be the most promising candidates for strong nonlin-
ear effects �8�. For a fixed pulse shape, the nonlinearity then
depends only on the ratio between pulse duration T and the
relaxation time 1 /� of the atomic dipole. By applying our

method of analysis, we can determine this dependence of
nonlinear effects on the scaled pulse duration �T.

To cover a sufficiently wide range of possible pulse
shapes while keeping the calculations relatively simple and
efficient, we have chosen the four pulse shapes given in
Table I. The most notable difference between the pulse
shapes is that the change in the field is not continuous for the
rectangular and the rising exponential pulse, while it is con-
tinuous for the symmetric exponential and the Gaussian
pulses. Moreover, only the rising exponential pulse is not
symmetric around its peak. It should thus be possible to get
insights into the effects of discontinuities and symmetry on
the nonlinear transformation of the pulses.

For any given pulse shape and pulse duration, the nonlin-
ear output wave functions can be determined by solving Eqs.
�19�–�21�. Using these results, it is then possible to deter-
mine the two-photon amplitudes C11, C12, and Cr from Eqs.
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FIG. 4. Dependence of the squared two-photon amplitudes �Ci�2 on pulse duration �T for �a� rectangular input pulses, �b� rising
exponential input pulses, �c� symmetric exponential input pulses, and �d� Gaussian input pulses. Note that the pulse duration is given on a
logarithmic scale.

TABLE I. Definition of input pulse shapes bin�t�.

Type of pulse Wave function for pulse duration T

Rectangular pulse bin�t� = �1/	T , for − T 
 t 
 0

0, else
�

Rising exponential pulse bin�t� = �	2/T exp�t/T� , for t 
 0

0, for t � 0
�

Symmetric exponential pulse bin�t�=	2 /T exp�−2�t� /T�

Gaussian pulse bin�t�=	2 / �	�T� exp�−2t2 /T2�
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�11�–�13�. The dependence of the results on pulse duration T
for each of the four input pulse shapes is shown in Fig. 4.

All four pulse shapes show a very similar pulse duration
dependence, indicating that the two-photon amplitudes Ci do
not depend much on the specific pulse shape. Significant
nonlinear effects can typically be observed for pulse dura-
tions between about 0.1 /� and 100 /�. For shorter pulses
��T
0.1�, the bandwidth is too broad for resonant absorp-
tion; and for longer pulses ��T�100�, the photon density is
too low for efficient nonlinear interactions. Between these
limits, the amplitude C11 drops from its linear value of 1 to
negative values representing the nonlinear phase flip origi-
nally proposed for use in nonlinear optical quantum gates
�2,8,11�. However, even the maximal values of the negative
amplitude C11 represent only small fractions of the two-
photon output wave function. For the symmetric exponential
input pulse �Fig. 4�c�� and the Gaussian input pulse �Fig.
4�d��, the maximum is at about 0.2, while it is below 0.05 for
the discontinuous pulse shapes of the rectangular input pulse
�Fig. 4�a�� and the rising exponential pulse �Fig. 4�b��. Thus,
the nonlinear phase flip is both limited in magnitude and
sensitive to discontinuities in the input pulse shape.

On the other hand, the squared amplitude �C12�2 describ-
ing the probability of a nonlinear transfer of exactly one
photon to an orthogonal output mode �2�t� has a peak value
of about 2/3 for all four pulse shapes. This means that the
conditional photon transfer is more efficient and less sensi-
tive to pulse-shape effects such as discontinuities. It may
therefore be useful to consider this effect as an alternative
option for the realization of nonlinear optical quantum gates.

VII. ANALYSIS OF OUTPUT PULSE SHAPES AT
MAXIMAL PHOTON TRANSFER PROBABILITY

Since the conditional photon transfer described by C12 is
the strongest nonlinear effect modifying the two-photon out-

put state, it may be useful to take a closer look at the coher-
ent pulse shapes �1�t� and �2�t� that determine about two
thirds of the two-photon output state. These pulse shapes can
be obtained from the semiclassical results for b�1��t� and
b�3��t� using the amplitudes C11 and C12 and Eqs. �2� and
�10�. The maximal values of C12 are �a� �C12�2=0.66 at �T
=1.56 for rectangular input pulses, �b� �C12�2=2 /3 at �T=1
for rising exponential input pulses, �c� �C12�2=0.67 at �T
=0.78 for symmetric input pulses, and �d� �C12�2=0.64 at
�T=2 for Gaussian input pulses. For these pulse durations,
the values of C11 are all vanishingly small, so the probability
of finding both photons in the linear output mode is close to
zero.

Figure 5 shows the output pulse shapes at the maximal
mode transfer amplitudes given above. Interestingly, the
shapes of the nonlinear target modes �2�t� are somewhat
similar in shape to the original input modes, while the wave
functions �1�t� are all delayed and change their sign to nega-
tive amplitudes after an initial positive peak �except for the
rising exponential input in Fig. 5�b�, where the amplitude is
exactly zero until t=0�. This observation suggests a simple
intuitive explanation for the nonlinear mode transfer effect
described by C12. If the pulse duration is perfectly matched
to the absorption time, the atom is excited by one of the two
photons for the entire pulse duration. Therefore, the second
photon cannot be absorbed and passes the atom without the
changes to its wave function otherwise induced by the linear
dipole dynamics. If the transmitted mode �2�t� is orthogonal
to the linear-response mode �1�t�, then the two-photon out-
put wave function will have exactly one photon in each of
the two modes. A particularly interesting case may be that of
the rising exponential input pulse shown in Fig. 5�b�. Here,
the input and the output pulses are clearly separated in time.
It may therefore be possible to distinguish the two modes by
a sufficiently fast time-dependent gate. Specifically, any pho-
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FIG. 5. Output pulse shapes �1�t� and �2�t� describing the linear output wave function and the target pulse of the conditional single
photon transfer associated with C12. �a� shows the pulse shapes for a rectangular input pulse, �b� for a rising exponential input pulse, �c� for
a symmetric exponential input pulses, and �d� for a Gaussian input pulse.

PULSE-SHAPE EFFECTS ON PHOTON-PHOTON… PHYSICAL REVIEW A 80, 013822 �2009�

013822-7



ton detected before t=0 indicates that a second photon was
absorbed by the atom since the linear output is exactly zero
for t
0. This effect could be used for a highly efficient
elimination of multiphoton components in single-mode
quantum states.

VIII. CONCLUSIONS

We have presented an analysis of the relation between the
average field amplitudes obtained from the density-matrix
dynamics of coherently driven systems and the transforma-
tion of two-photon quantum states by a nonlinear system.
The results show how the spectral and the temporal features
of nonlinear field transformations affect the performances of
nonlinear quantum gates operating on few-photon states. It is
thus possible to predict whether a given nonlinear system can
be used to implement a nonlinear optical quantum gate op-
erating on superpositions of quantum states with zero, one,
and two photons based on quantitative data of the intensity
dependence of the coherent output field. In general, such data
can be determined either experimentally, by using coherent

light inputs and homodyne detection or, theoretically, by
solving the density-matrix dynamics.

The application to a resonant single-atom nonlinearity
shows that the most promising nonlinearity may not be the
widely investigated two-photon phase shift, but a nonlinear
photon transfer process to a two-photon output wave func-
tion where exactly one of the two photons is in a mode
orthogonal to the single-photon output mode. The investiga-
tion of the specific pulse shape shows that the effect may be
understood in terms of the saturation of the atom when the
linear output wave function �1�t� is approximately orthogo-
nal to the transmitted wave function �2�t�. If the two wave
functions can be separated by appropriate time-dependent
gates, it may be possible to implement optical quantum gates
based on this fundamental property of single-atom nonlin-
earities.
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