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In a macroscopic realm, in which photons are too many to be counted by any photon-counting detector,
photon statistics can be measured by using detectors simply endowed with linear response. We insert one of
such detectors in a conventional photon-counting apparatus, which returns a voltage every time the detector
responds to light by generating a number of elementary charges via its primary photodetection process. We
only assume that, when a single charge is photogenerated, the probability density of the voltages is a distri-
bution that is narrow with respect to its mean value. Under this hypothesis the output voltages can be suitably
binned so that their probability distribution is the same as that of the photogenerated charges, that is, of the
detected photons.
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I. INTRODUCTION

Measuring photon statistics is a useful approach in under-
standing the behavior of any system that includes electro-
magnetic radiation as a part. The investigation of such sys-
tems may pertain to physics, from astronomy to physics of
matter �1�, as well as to other natural sciences, for instance
biology �2�. The availability of photon-counting detectors
and methods suitable for any situation such as to the spectral
and intensity characteristics of the light to be measured
would then be extremely desirable. The coverage of the most
different spectral ranges is a goal that is pursued by the
search of novel primary photodetection processes, including
thermal processes occurring at cryogenic temperatures.
Among the detectors that operate, in essence, as microcalo-
rimeters, we mention a superconducting transition-edge sen-
sor �TES� with tungsten as the active device material that
was recently demonstrated to work as a photon counter en-
dowed with almost unitary quantum efficiency from uv over
the visible to telecom wavelengths �3�. However, we recog-
nize that detectors based on quantum interactions between
photons and sensitive material are largely used more than
thermal detectors for measuring photon statistics. Detectors
based on either external primary processes �e.g., electron
photoemission� or internal primary processes �e.g., photoge-
neration of carriers by either photovoltaic or photoconduc-
tive effects� ensure reasonable values of the detection quan-
tum efficiency �q in the visible and near-ir spectral ranges.
The main difficulty that still remains with these detectors is
that of measuring photon statistics when the charges photo-
generated in the samples are too many to be counted. Among
photoemissive detectors only few produce distinct outputs
when the number of photoelectrons m changes by a unit. The
best ones are photomultiplier tubes �PMTs� �4,5� and hybrid
photodetectors �HPDs� �5� that can count up to m�5. Rela-
tively more numerous are the photoemissive detectors that

are endowed with sufficiently high and sharp gain to provide
a sizeable charge in the anodic pulse output for m�1 that is
definitely distinguished from that for m=0. There are PMTs
available since the 1950s that were used for the first mea-
surements of light statistics �6–9�. Nowadays single-photon
detectors exist that are based on the most different primary
photodetection processes and offer a remedy to the lack of
good photon counters. In fact, the light to be measured can
be split either in space or in time prior to detection so that at
most one photon at a time hits the detector sensitive area.
However it must be recognized that these techniques in-
vented for counting photons with intensified charge-coupled
device cameras �10�, and multipixel and/or position sensitive
single-photon detectors �11–14� �spatial splitting� or single-
photon avalanche photodiodes �temporal splitting� �15,16�
are rather cumbersome. Their adoption is only justified by
the impossibility of performing direct measurements with
photon counters when the number of detected photons be-
comes macroscopic.

The work described here concerns the direct measurement
of the detected-photon statistical distribution Pm and is mo-
tivated by the fact that, in many of the systems for which
measuring photon statistics is relevant, artificially lowering
m is not permitted either by attenuating the light or by short-
ening the measuring time TM. This is the case for fields that
modify their properties upon attenuation and, obviously, for
pulse fields in which TM cannot be shorter than the light
pulse duration. It is worth noting that measuring photon sta-
tistics when m�1 in TM is a problem that has been faced
since the 1960s. In particular Arecchi et al. �17� suggested a
“linear method” in which the PMT anodic charge corre-
sponding to the photons detected in TM was recorded. More-
over these authors demonstrated that calculating the mo-
ments of the statistical distribution of this charge and those
of the single-electron response �SER� distribution allows ob-
taining of the moments of Pm. Such a result has been used to
verify the agreement with the theoretical Pm moments up to
second order �18�. However, using it to recover Pm would be
at least cumbersome owing to the need of accurate evalua-
tions of SER distribution moments at any order. We will*alessandra.andreoni@uninsubria.it
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show that any detector based on either an internal or an ex-
ternal primary photodetection process and endowed with two
properties rather commonly encountered allow measuring Pm
in a macroscopic realm in which photon counters do not
exist. The two properties are as follows: �i� the detector re-
sponse must be linear up to the maximum m of the measure-
ment, and �ii� the response for m=1 must produce a standard
deviation of the output data that is sufficiently smaller than
the mean value. We further specify that the detector can be
endowed with an internal gain.

II. MODEL

With the help of Fig. 1 we first examine how the detector
output is processed in a typical direct statistical measure-
ment. Normally it is amplified and integrated over a temporal
gate, whose duration fixes the value of the measure time TM
when a continuous-wave light is to be measured. In the case
of pulsed light, the gate is synchronous and covers the TM
interval in which the current output pulse of the detector
occurs. The signal is sampled and digitized afterward and
converted to a voltage v.

As indicated in the figure, we represent the overall m-to-v
conversion by a single factor �. Here we will explicitly take
into account the statistical distribution of the probability den-
sity p� of this conversion factor. The left-hand side of Fig. 1
illustrates the link between the probability density of detect-
ing m photons, Pm, and that, Pn, of having n photons in the
field. Considering the effects of the optics that delivers the
light to the detector and that of the detector quantum effi-
ciency �q�1, and representing these concomitant losses by
an overall photon-detection efficiency � lead to �19�

Pm = �
n=m

+� � n

m
��m�1 − ��n−mPn. �1�

Obviously in any experiment the value of � is up limited by
the product of �q times the coupling efficiency of the optical
delivery system but can be diminished at will if filters are
inserted into the system that delivers the light to the detector.
We point out that, as we deal with direct statistical measure-
ments, neither the delivery optics includes a fiber looping
beam splitter nor the detector is a position sensitive one.

Our aim is to recover Pm for an arbitrary Pn starting from
the only experimental data available, which are the v voltage
values recorded for an ensemble of measurements performed
with given � by using an apparatus characterized by a con-
version factor � with probability distribution p�, mean value
�̄, and variance �2. In the following we indicate by Pv the

probability density of the v variable. We assess that we can
“measure” Pv as the distribution that we would obtain by
casting the experimental v values of an ensemble of mea-
surements into a histogram normalized to its integral. For
ease of writing we represent the bin width by dv although the
variable v is our digitized output. The zero of the v scale of
the “measured” Pv is set to be equal to the mean value of the
distribution recorded in a separate experiment performed in
the absence of light. As the events of having different values
of detected photons �i.e., elementary charges generated by
the primary photodetection process� are mutually exclusive,
we can write

Pv = Pm=0Pv
�0� + Pm=1Pv

�1� + Pm=2Pv
�2� + ¯ = �

k=0

+�

Pm=kPv
�k�,

�2�

in which Pv
�k� is defined as the probability density of the

voltage values v�k� that are recorded in the events with k
detected photons. In Eq. �2�, Pv

�0� is the probability distribu-
tion measured in the absence of light, for which we remind
that 	−�

� vPv
�0�dv=0. We note that Pv obviously reproduces Pm

if the measuring apparatus has photon-counting capability
�4,5� whereas, when the Pv

�k�’s do not lead to separate peaks
in Pv, Eq. �2� seems to be useless to reconstruct Pm. The
latter is exactly the case examined in this paper.

We consider the central moments �r�v�= 
�v− 
v��r� cor-
responding to the experimental Pv and try to relate them to
the �r�m�= 
�m− 
m��r� central moments corresponding to
the unknown Pm probability density. By using properties of
the Pv

�k� distributions to express �r�v�, we will find relations
to �r�m� that provide a method to reconstruct Pm. As Pv

�1� can
be identified with the probability distribution p� of the con-
version factor �, we obviously have v�1�=�. Owing to the
hypothesis that the detector response is linear, detecting
k	1 elementary charges corresponds to the occurrence of
independent events, thus v�k�=�i=1

k �i, in which all �i are dis-
tributed according to p�, and Pv

�k�=Pv
�1�*Pv

�1�*¯ *Pv
�1� for k

times. Thus we can exploit the following property of the
cumulants �19�:



r

��
i=1

k
�i�

= �
i=1

k


r
��i�. �3�

By reminding that the lowest-order cumulants are 
1
�x�= 
x�,


2
�x�=�2�x�, 
3

�x�=�3�x�, 
4
�x�=�4�x�−3��2�x��2, and 
5

�x�

=�5�x�−10�2�x��3�x�, for the cumulants of the conversion/
amplification factor we find: 
1

��i�= �̄, 
2
��i�=�2, 
3

��i�= �̃3,

4

��i�= �̃4−3�4, and 
5
��i�= �̃5−10�2�̃3, with �̃r as the values

assumed for the central moments of p�.
We start by using Eq. �3� with r=1 and then Eq. �2� to

calculate the mean value of v,


v� = �̄�
k=0

+�

kPm=k = 
m��̄ . �4�

We now calculate the �r�v� moments by applying Eq. �2�,

FIG. 1. �Color online� Measuring apparatus.
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�r�v� = �
k=0

+�

Pm=k�
−�

+�

�v − 
v��rPv
�k�dv = �

k=0

+�

Pm=k�r�v�k�� ,

�5�

where we used �r�v�k��	−�
+��v− 
v��rPv

�k�dv.
For r=1 Eq. �5� obviously vanishes. For r�2 we make

use of the binomial expansion

�v − 
v��r = �
j=0

r �r

j
�v j�− 
v��r−j , �6�

which, once substituted into Eq. �5� and using Eq. �4�, gives

�r�v� = �
j=0

r �r

j
��− 
m��̄�r−j�

k=0

+�

Pm=k� j��v
�k�� . �7�

In Eq. �7� the “prime” distinguishes the moments from the
central moments. The recursion formula that relates the mo-
ments to the cumulants �20� in our case reads

� j��v
�k�� = 
 j

�v�k�� + �
s=1

j−1 � j − 1

s − 1
�
s

�v�k��� j−s� �v�k�� , �8�

from which it can be shown that the jth order moment

� j��v
�k�� is a polynomial of the first j cumulants, 
s

�v�k�� with
s=1,2 , . . . , j. Thus in Eq. �8�,

�1��v
�k�� = 
1

�v�k��,

�2��v
�k�� = 
2

�v�k�� + �
1
�v�k���2,

�3��v
�k�� = 
3

�v�k�� + 3
2
�v�k��
1

�v�k�� + �
1
�v�k���3,

�4��v
�k�� = 
4

�v�k�� + 4
3
�v�k��
1

�v�k�� + 3�
2
�v�k���2

+ 6
2
�v�k���
1

�v�k���2 + �
1
�v�k���4,

�5��v
�k�� = 
5

�v�k�� + 5
4
�v�k��
1

�v�k�� + 10
3
�v�k��
2

�v�k��

+ 10
3
�v�k���
1

�v�k���2 + 15�
2
�v�k���2
1

�v�k��

+ 10
2
�v�k���
1

�v�k���3 + �
1
�v�k���5,

�6��v
�k�� = . . . ,

where the coefficients of the different terms are those that
occur in the Faà di Bruno’s formula. By using Eq. �3� we can
rewrite these terms in the form

�1��v
�k�� = k
1

��i�,

�2��v
�k�� = k
2

��i� + k2�
1
��i��2,

�3��v
�k�� = k
3

��i� + 3k2
2
��i�
1

��i� + k3�
1
��i��3,

�4��v
�k�� = k
4

��i� + 4k2
3
��i�
1

��i� + 3k2�
2
��i��2

+ 6k3
2
��i��
1

��i��2 + k4�
1
��i��4,

�5��v
�k�� = k
5

��i� + 5k2
4
��i�
1

��i� + 10k2
3
��i�
2

��i�

+ 10k3
3
��i��
1

��i��2 + 15k3�
2
��i��2
1

��i�

+ 10k4
2
��i��
1

��i��3 + k5�
1
��i��5,

�6��v
�k�� = . . . ,

in which k is the number of detected photons, each one con-
verted with its own �i�i=1,2 , . . . ,k�, and the cumulants are
those of the probability distribution p�. We observe that each
term contains a product of cumulants in which the sum of the
indices is the order of the moment.

Let us assume a narrow p� distribution so that �2 / �̄2

→0. In terms of cumulants this rewrites 
2
��i�=o��
1

��i��2�.
Under this hypothesis also �̃3 / �̄3→0, that is, 
3

��i�

=o��
1
��i��3�, as we can write �̃3 / �̄3= ��̃3 /�3���3 / �̄3�, where

the first factor is the �finite� coefficient of skewness of the
distribution p�. Actually it can be easily shown that 
 j

��i�

=o��
1
��i�� j� relations hold for any j�2, if 
2

��i�=o��
1
��i��2�.

Taking into account that the number of detected photons k is
a finite number, all the monomials in the above expressions
of the moments are negligible with respect to the last one so
that we can approximate �s��v

�k���ks�
1
��i��s=ks�̄s. By substi-

tuting in Eq. �7� we get

�r�v� = �
j=0

r �r

j
��− 
m��̄�r−j�

k=0

+�

Pm=kk
j�̄ j

= �̄r�
k=0

+�

Pm=k�
j=0

r �r

j
�kj�− 
m��r−j

= �̄r�
k=0

+�

Pm=k�k − 
m��r = �̄r�r�m� . �9�

Note that, as �r�m� never vanishes, even in the case of light
in a single-mode Fock state because of the nonunit quantum
efficiency of the detectors, actually Eq. �9� holds for mea-
surements performed on optical fields with any statistics.

Dividing both members of Eq. �9� by 
v� yields

�r�v�

v�

= �̄r−1�r�m�

m�

, �10�

while the exact results for r=2 and r=3 would be

�2�v�

v�

= �̄��2�m�

m�

+
�2

�̄2� , �11�

�3�v�

v�

= �̄2��3�m�

m�

+ 3
�2�m�


m�
�2

�̄2 +
�̃3

�̄3� , �12�

respectively.
We thus assess that, when detector and processing elec-

tronics ensure a sufficiently small ratio � / �̄, the scaling law
in Eq. �10� holds and the simple knowledge of �̄ allows
reconstructing Pm. In fact binning the v data of a measure-
ment into bins of width �̄ produces a distribution Pv identical
to Pm. Alternatively we can say that Pm is recovered by di-
viding the v data by �̄ and then rebinning the new values into
unitary bins.
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How do we determine �̄ when ���̄ has been already
shown �5�. Here we demonstrate that, for a detector simply
endowed with linear response, we can both determine �̄ and
decide on the negligibility of � with respect to �̄.

At this point, for the first time in this work, we make use
of Eq. �1�. Such a link between the Pm and Pn distributions
gives 
m�=�
n� and 
m2�=�2
n2�+��1−��
n�. Thus we find
�5�

�2�m�

m�

= �Q + 1, �13�

where Q= ��2�n�− 
n�� / 
n� is the Mandel parameter of the
light entering the experimental apparatus in Fig. 1 and con-
taining 
n� photons in the TM time interval �19�. Substituting
Eq. �13� into Eq. �10� and taking into account Eq. �4� yield

�2�v�

v�

=
Q


n�

v� + �̄�1 +

�2

�̄2� , �14�

in which Q / 
n� is independent of �. On the other hand, 
v�
depends on �, which can be changed by acting on the light
delivery optics: � can be set at any value between the prod-
uct of �q times the coupling efficiency of the optical delivery
system and zero by adding filter into the system that delivers
the light to the detector. Thus by repeated measurements of
the same light at different �, we can verify the linear depen-
dence on 
v� in Eq. �14�. The experimental �2�v� / 
v� data
plotted as a function of 
v� should align along a straight line,
whose intercept reduces to �̄ if �2 / �̄2�1. Knowing �̄ allows
proceeding to the rebinning of the v data that leads to the
reconstruction of Pm. Experimental applications to some
nontrivial classical states are described in Refs. �5,21,22�.

III. DISCUSSION

The assessment that an experimental apparatus has a � / �̄
ratio that is sufficiently small for the validity of Eq. �10�
deserves some comments, owing to the difficulty of knowing
�̄ and � separately.

We first observe that for any photoemissive detector �
decreases at increasing the strength of the electric field ex-
perienced by the photoelectrons as soon as they leave the
cathode. For a PMT in which the internal gain is provided by
multidynode cascade amplification, increasing the voltage
difference between cathode and first dynode produces
smaller � values. For PMTs in which the electron amplifica-
tion is provided by other structures �e.g., microchannel plate,
metal channels, etc.�, the same effect is obtained by acting on
the voltage of the accelerating electrode. For a HPD, in
which the electrons released by the photocathode are multi-
plied by a reverse biased avalanche diode, � is lowered by
applying greater negative high voltages to the photocathode.

In the case of PMTs, modifying the voltage partition to
change � brings about a change in �̄ that cannot be easily
compensated by acting on the overall voltage applied be-
tween anode and cathode. In the case of HPDs this compen-
sation is feasible by adjusting the avalanche diode reverse
bias voltage. However in any electronic apparatus that pro-
cesses the detector output, there is a step that allows chang-

ing �̄ by a known factor �e.g., in Fig. 1: both amplifier gain
and analog-to-digital converter scale� while keeping � / �̄ vir-
tually constant.

The expression of the intercept in Eq. �14� is such that,
upon changing �̄ by a known factor but not � / �̄, a new
series of measurements at different � values would provide a
new evaluation of the intercept, whose value should scale by
the same factor. On the contrary, for constant �̄ and different
� / �̄ ratios, the intercept should change differently. Note that
a check of the constancy of �̄ is provided by Eq. �4� in which
� does not appear. If, by manipulating the voltages supplied
to PMT or HPD detectors as described to change �, we
achieve a situation of constant and minimum intercept, we
have proven that �2 / �̄2�1 in Eq. �14�. We can thus use this
limit value of the intercept as the correct �̄ to rebin the ex-
perimental Pv distribution and reconstruct Pm. If the 
m�
value provided by the reconstructed Pm fits Eq. �4�, it means
that the detector guarantees a �2 / �̄2 not only much smaller
than one but small enough for the validity of Eq. �10�.

We finally note that the above described verifications of
the validity of Eq. �10� are self-consistent in that they do not
require measuring p� to establish the relation between �2 and
�̄2. This is a definite advantage with respect to any potential
method for Pm reconstruction based on the determination of
the p� moments �17�.

IV. CONCLUSIONS

We have shown that for any linear detector we can both
measure �̄ and determine if � / �̄ is sufficiently small for
taking as reliable the Pm reconstruction achieved by binning
the experimental v values into bins of width �̄. For the
method to work it is necessary that the m range where Pm is
non-negligible falls within the linearity range of the appara-
tus, which must be broad enough for a satisfactory verifica-
tion of Eq. �14�. In forthcoming papers we will show that our
method works not only with HPDs �5,21� and the Burle 8850
PMT �4,5� but also with detectors such as Si multipixel pho-
ton detectors �23� and more PMTs endowed with single-
photon sensitivity. Useful detectors might also be solid-state
detectors such as avalanche photodiodes in the linear ampli-
fication regime �24�. By the way, some photon-number res-
olution is being demonstrated for these detectors, in particu-
lar if connected to charge-integration readout circuits with
sufficiently low noise �25�. At last, for a thermal detector
such as a TES, obtaining a � value sufficiently smaller than
�̄ would be a minimal performance as compared to the ex-
cellent photon-number resolving power demonstrated by Lita
et al. �3�, up to seven detected photons, and might allow
using a less sophisticated apparatus.

We think that the results described in this paper will
broaden the choice of detectors suitable for measuring pho-
ton statistics. The essential requirement for the detector, be-
side that of the linearity of the response, is the smallness of
the ratio �2 / �̄2, which can be ascertained �see above� with-
out measuring p�. The fact that the method applies to mea-
surements in the macroscopic realm may turn out to be
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relevant in all cases in which one cannot attenuate the light
to bring the photon-detection rate down to the regime where
photon counters operate. As examples we mention fields pro-
duced by events either rare or unstable and, more impor-
tantly, all nonclassical fields, where our method risks being
the only one applicable to macroscopic fields.
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