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We study the light dispersion relation in a periodic ensemble of atoms at fixed positions in the Fano-Hopfield
model �the atomic dipole being modeled with harmonic oscillators�. Compared to earlier works, we do not
restrict to cubic lattices, and we do not regularize the theory by hand but we renormalize it in a systematic way
using a Gaussian cutoff in momentum space. Whereas no omnidirectional spectral gap is known for light in a
Bravais atomic lattice, we find that, for a wide range of parameters, an omnidirectional gap occurs in a
diamond atomic lattice, which may be realized in an experiment with ultracold atoms. The long-wavelength
limit of the theory also provides a Lorentz-Lorenz �or Clausius-Mossotti� relation for an arbitrary lattice.
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I. INTRODUCTION

The determination of the spectrum of light in a periodic
ensemble of atoms is a fundamental problem that still raises
intriguing questions. After the seminal work of Hopfield �1�
�see also Agranovich �2��, based on the Fano oscillator
model for the atomic dipole �3�, many theoretical works have
been performed �4�. Most of them, inspired by the typical
context of condensed-matter physics considered in �1�, focus
on the long-wavelength limit where Lorentz-Lorenz �or
Clausius-Mossotti� type relations may be derived �5,6�. Re-
cently, this problem was extended to the whole Brillouin
zone in the case of cubic lattices �7,8�, which allows to ad-
dress the presence or the absence of an omnidirectional spec-
tral gap for light.

This problem of light spectrum in atomic lattices is no
longer a purely theoretical issue. Recent experiments with
ultracold atoms, having led to the observation of a Mott
phase with one atom per lattice site �9�, have indeed opened
up the possibility to investigate the propagation of light in an
atomic lattice, taking advantage of the large variety of optical
lattices that may be realized to trap the atoms �10�, all this in
the regime where the lattice spacing is of the order of the
optical wavelength, so that a probing of the whole Brillouin
zone can be envisaged.

In the photonic crystals in solid-state systems, made of
dielectric spatially extended objects �rather than pointlike at-
oms�, after the pioneering work of �11� for diamond lattices
of dielectric spheres, many configurations are now known to
lead to a spectral gap, with a variety of applications to light
trapping and guiding �12,13�. On the contrary, for atomic
lattices, no omnidirectional spectral gap was found, either in
cubic atomic lattices �8� or in several less symmetric Bravais
lattices �14�.

Two factors determine the presence of an omnidirectional
gap: crystal geometry and details of the light-matter scatter-
ing process; both can separately close a gap. Indeed, in pho-
tonic crystals materials, characterized by a macroscopic
modulation of the refractive index, the same lattice geometry
can lead or not to an omnidirectional gap depending on the
modulation of the refractive index, as is the case for the
simple cubic �sc� or body-centered cubic �bcc� lattices �15�.
Differently from photonic crystals materials, in the physics

of ultracold atoms, one can realize periodic structures with a
single atom per site �9� rather than a macroscopic number,
realizing an ideal crystalline structure with a variety of pos-
sible geometries �10�. Atoms are scatterers characterized by a
strong resonant and pointlike interaction with light so that
the features of the light propagation in an atomic lattice can-
not be straightforwardly extrapolated from known results in
solid-state photonic crystals. Also in the atomic case, it is not
possible, only by geometric considerations, to predict the
presence of an omnidirectional photonic band gap; the de-
tails of the light-matter scattering process do matter �8�.

Here we develop, within the Fano-Hopfield model, a self-
consistent theory for the elementary excitation spectrum of
the light-atom field in atomic periodic systems, which is
valid not only for cubic symmetry atomic lattices �8� but also
for any Bravais lattice, and, even more, also for periodic
non-Bravais lattices �i.e., for crystals with several atoms per
primitive unit cell�. Our theory includes the light polariza-
tions degrees of freedom, and is based on the introduction of
a Gaussian momentum cutoff which allows eliminating all
divergences �even in a periodic infinite system of atoms� by
a systematic renormalization procedure. We then use our
theory to address the existence of an omnidirectional spectral
gap for light in atomic lattices. In particular, we show that
the diamond atomic lattice, which is a non-Bravais lattice
composed of two identical face-centered cubic �fcc� atomic
lattices deduced one from the other by a translation along the
main diagonal of the cube, may support an omnidirectional
gap for light. This is the first example of the occurrence of
such a gap in a periodic structure of pointlike atomic scatter-
ers.

The paper is organized as follows. We present the model
Hamiltonian in Sec. II. We renormalize the model and obtain
an implicit equation for the light spectrum, first for Bravais
lattices in Sec. III �with a comparison to existing predictions
for a fcc lattice�, and then for a general lattice in Sec. IV. We
derive Lorentz-Lorenz relations in the long-wavelength limit
for an arbitrary lattice in Sec. V. In Sec. VI we calculate the
spectrum in a diamond atomic lattice, we discuss the exis-
tence of a gap and experimental issues such as the practical
realization of a diamond atomic lattice. We conclude in Sec.
VII.
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II. MODEL

We consider N atoms with a dipolar coupling to the elec-
tromagnetic field, each atom being modeled by harmonic os-
cillators in the spirit of the Fano-Hopfield model �1,3�. The
atoms have fixed positions on a Bravais lattice �in Sec. IV we
will consider the even more general case of non-Bravais lat-
tices�. The ith atom is in lattice site Ri. The Hamiltonian may
be written as

H = �
i=1

N

�
�

x,y,z

��Bb̂i,�
† b̂i,� + �

k�D
�
��k

�ckâk�
† âk� − �

i=1

N

D̂i · Ê��Ri� .

�1�

The first two terms in Eq. �1� correspond to the uncoupled
atomic and radiation contributions, respectively, while the

last term is the dipolar coupling operator. The operators b̂i,�

and b̂i,�
† , respectively, destroy and create an atomic excitation

for the atomic dipole i along spatial direction �. They obey

the bosonic commutation relations �b̂i,� , b̂j,�
† �=�ij��� and

�b̂i,� , b̂j,��=0. In Eq. �1�, �B is the bare atomic resonance
frequency, the sum �� over the three directions of space x, y,
and z accounts for the three spatial components of the di-
poles.

The photon annihilation and creation operators also obey
usual bosonic commutation relations such as �âk� , âk���

† �
=�����kk� and �âk� , âk����=0, where � and k are the photon
polarization and wave vector. c is the velocity of light in
vacuum. We assume a quantization volume V which includes
N=��M� atoms and corresponds to periodic boundary con-
ditions of the field, with a period M�e� along each direction
�� �1,2 ,3� of the Bravais lattice, with M��N and e� is one
of the three basis vectors of the Bravais lattice in direct
space. As the consequence, the allowed wave vectors k for
the electromagnetic field belong to the discrete set D= �k 	k
=���m� /M��ẽ� , ∀m��Z�, where the ẽ�’s are basis vectors
of the reciprocal lattice �RL�, such that ẽ� ·e��=2	����. The
atom-electromagnetic field coupling term involves the dipole

operator D̂i of the ith atom, whose component along direc-
tion �

D̂i,� = dB�b̂i,� + b̂i,�
† � �2�

is proportional to the bare atomic dipole moment dB, and to

the operator Ê��r�

Ê��r� =
 d3u Ê��r − u�
�u;b� , �3�

which is the convolution of the transverse electric field op-
erator

Ê��r� = �
k�D

�
��k

�Ek�âk�eik·r + h.c.� , �4�

with a normalized cutoff function 
�r ;b�, �d3r
�r ;b�=1,
where Ek= i��kc / �2�0V��1/2, and the length b is the cutoff
parameter. Here 
�r ;b� is a real and even function of r. This
convolution regularizes the theory by eliminating ultraviolet

divergences; it makes the model Hamiltonian H well defined.
From Eq. �3� and �4� one has that

Ê��r� = �
k�D

�
��k

�Ek�âk�eik·r + h.c.�
̃�k;b� , �5�

where the Fourier transform of 
�r ;b� with respect to r,


̃�k;b� =
 d3r e−ik·r
�r;b� , �6�

is a real and even function of k.

III. LIGHT DISPERSION RELATION
IN A BRAVAIS LATTICE

Starting from Hamiltonian �1� it is possible �as done in
Appendix� to derive the equations of motion for the matter
and light fields, and, after a linear transformation and the use
of the Bloch theorem, furthermore leaving out the so-called
free-field solutions �see below�, one obtains that the atom-
light elementary frequency spectrum �, in terms of bare
quantities, is given by the solutions of the equation

det M�b� = 0, �7�

where the 3�3 symmetric matrix M is given by

M���b� = ��B
2 − �2���� + �p,B

2 �
K�RL

���K�2 − K��K��

��/c�2 − K�2 
̃2�K�;b� ,

�8�

q is the Bloch wave vector in the first Brillouin zone, K is a
vector of the RL, K��K−q,

�p,B
2 =

2dB
2�B

��0VL
�9�

is the squared bare plasmon frequency, VL is the volume of
the primitive unit cell of the lattice L in real space. We have
taken the infinite quantization volume limit so that D→R3,
and the Bloch vector q may assume any value in the first
Brillouin zone.

Now, we specify the cutoff function 
̃�k ;b� and renormal-
ize the theory by expressing the equations in terms of physi-
cal realistic quantities �0 and d, instead of the bare ones �B
and dB. Inspired by �14�, we choose a Gaussian cutoff func-
tion �16,19�


̃2�k;b� = e−k2b2
, b  0, �10�

which leads to a rapidly convergent sum in Eq. �8�. If b
→0, which is the limit we are interested in, the sum in Eq.
�8� diverges. The key idea is then that Eq. �8� has been ex-
pressed in terms of bare quantities. In what follows, we
renormalize the matrix M�� by collecting the divergent terms
and the bare quantities in new physical quantities.

A. Renormalization of the theory

To this end, it is useful to introduce the quantity ����b�
defined as
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����b� = ���

VL��/c�3

6	
�  1 + 2��b/c�2

2	1/2��b/c�3 −
Erfi��b/c�

e��b/c�2 �
+ �

K�RL

���K�2 − K��K��

��/c�2 − K�2 e−K�2b2
, �11�

where K��K−q and Erfi�x�=2	−1/2�0
xdy exp�y2� is the

imaginary error function. It has been shown in �14� that
����b�, which does not depend on bare quantities, has a
finite limit ����0�, as b→0 �see Eq. �19��. It is then possible
to write the matrix M���b� in the limit of b→0 as

M���b� = ��B
2 − �2���� +

2dB
2�B

��0
����0�

VL
−

���

12	3/2b3

−
�����/c�2

6	3/2b � + O�b� , �12�

where we have used Erfi��b /c�=O�b�. The key point is that,
although the last two terms in the square bracket � . . . � of Eq.
�12� diverge as b→0, they diverge in a way not explicitly
depending on the Bloch wave vector q �19�. In simple words,
considering the fact that the first term in the right-hand side
of Eq. �12� is ��B

2 −�2����: The term inside the � . . . � diverg-
ing as 1 /b3 may be summed to �B

2���, resulting in a renor-
malization of �B; the term inside the � . . . � diverging as �2 /b
may be summed to −�2���, requiring also a renormalization
of the atomic dipole moment dB appearing in the overall
factor to the left of � . . . �. The fact that two parameters are
renormalized in the Hamiltonian H is reminiscent of the
renormalization procedure of QED, where both the electron
charge and mass are renormalized �20�.

In practice, to apply the renormalization procedure, we
pull out in Eq. �12� the coefficient of the −�2 term

M���b� = �1 +
dB

2�B

3	3/2��0c2b
�M�� + O�b� , �13�

where, by construction, the 3�3 symmetric matrix M has a
simple expression in terms of the renormalized resonance
frequency �0 and the renormalized dipole d,

M�� = ��0
2 − �2���� + �p

2����0� , �14�

with the renormalized plasmon frequency

�p
2 =

2d2�0

��0VL
, �15�

Identification of Eqs. �13� and �12� leads to the explicit ex-
pressions for the two renormalized quantities �21�

�0
2 = �B

21 −
dB

2

6	3/2��0�Bb3�1 +
dB

2�B

3	3/2��0c2b
�−1

,

�16�

d2 = �0
dB

2

�B
1 −

dB
2

6	3/2��0�Bb3�−1

. �17�

Finally, neglecting O�b� in Eq. �13�, we obtain that the atom-
light elementary excitations for a generic Bravais lattice are
the solution of the equation

det M = 0, �18�

where M is given by Eq. �14� and does not depend on the
cutoff b. In practical calculations of the matrix elements of
M, one uses the fact that ����0�� limb→0 ����b� is related to
����b� of Eq. �11� by the useful expression �14�

����0� = ����b�e��b/c�2
, �19�

valid for all values of b�amin, where amin is the minimum
distance between two atoms. In what follows, it will be con-
venient to use as a parameter, rather than the plasmon fre-
quency, the free space spontaneous emission rate of a single
atom,

� =
d2k0

3

3	�0�
, �20�

where k0=�0 /c is the resonant wave vector.

B. Free-field solutions

An important note is that, as already mentioned, the solu-
tions of Eq. �7� do not exhaust the spectrum. One should add
the so-called free-field solutions located on the free photon
dispersion relations and corresponding to a free electric field
of frequency � �a solution of Maxwell’s equations in the
absence of matter� that vanishes exactly in all the atomic
positions. This was discussed in �8� and also appears in the
calculations of Appendix. In view of the discussion of spec-
tral gaps to come, it is useful to keep in mind the following
lower bound on the frequency �free of all possible free-field
solutions �22�:

�free

c
� inf

K�RL�

K

2
. �21�

This inequality holds for an arbitrary �not necessarily Bra-
vais� lattice, and it is saturated for a Bravais lattice, as one
can show using the two-mode ansatz of �8�.

C. Spectrum for a fcc lattice

As a straightforward application of our approach, we cal-
culate the light dispersion relation in the fcc lattice. There are
two existing predictions, �7,8�, that reach opposite conclu-
sions concerning the existence of an omnidirectional gap. We
have calculated the dispersion relation for exactly the same
parameters as these two references; see Fig. 1 for �7� and
Fig. 2 for �8�, respectively, which allows a direct compari-
son. Our theory disagrees with the result of �7�; it quantita-
tively agrees with the one of �8� provided one replaces in the
final result of �8� �but of course not in the Lagrangian of �8��
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the bare values of the atomic and plasmon frequencies by
their renormalized values. We conclude, as in �8�, that there
is no spectral gap for light in a fcc atomic lattice.

IV. LIGHT DISPERSION RELATION IN ARBITRARY
ATOMIC CRYSTALS

Let us consider the generic case of a crystal which is not
a Bravais lattice, that is it has more than one atom per primi-
tive unit cell; it can be seen as the composition of P trans-
lated copies of the same Bravais lattice. The crystal is then

the periodic repetition of an elementary base of P atoms. In
this case it is possible to generalize the equations obtained
for a Bravais lattice, as done in the Appendix, and to obtain
the equation

det M = 0, �22�

where the 3P�3P hermitian matrix M is given by

M��,�� = ��0
2 − �2������� + �p

2���,���0� , �23�

with � ,�� �x ,y ,z�, � ,�� �1, . . . , P�, and �p
2 is given by Eq.

�15�. We have defined

���,���b� = ������

VL��/c�3

6	

�  1 + 2��b/c�2

2	1/2��b/c�3 −
Erfi��b/c�

e��b/c�2 �
+ �

K�RL
e−iK�·�r�−r�����K�2 − K��K��

��/c�2 − K�2 e−K�2b2
,

�24�

where K��K−q and the sum is over the reciprocal lattice of
the underlying Bravais lattice. The index � or � labels the P
atoms inside the primitive unit cell and r� and r� are the
positions of the corresponding atoms in that cell. By a slight

X U L Γ X W K
0

0.5

1

1.5

ω
/ω

0

(b)

(b)

(a)

X U L Γ X W K

0.96

0.98

1

1.02

1.04

ω
/ω

0

(c)

(c)

FIG. 1. Dispersion relation for light in a fcc atomic lattice, with
k0a�5, � /�0�0.0167, where a is the lattice constant and � the
spontaneous emission rate defined in Eq. �20�. In �a� the prediction
found in Fig. 1 of �7�, in �b� the results of calculations obtained
using Eq. �18� of this paper, and �c� is a zoom of �b� around the
atomic resonance frequency. �b� and �c� show the absence of an
omnidirectional photonic gap, in contradiction with �a�.

(a)

(b)
X U L Γ X W K

0

1

2

ω
/ω

0
FIG. 2. �Color online� Dispersion relation for light in a fcc

atomic lattice, with k0a�3.14, � /�0�1.189, where a is the lattice
constant. �a� is the prediction found in Fig. 2 of �8� �circles corre-
spond to the free modes, i.e., modes of the free field that vanish at
all atomic positions�, �b� is the result of calculations using Eq. �18�
of this paper �the red-dashed lines correspond to the free modes�.
�a� and �b� appear to be identical.
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generalization of the technique developed in �14�, it is pos-
sible to show that

���,���0� = ���,���b�e��b/c�2
, b � amin, �25�

where amin is the minimal distance between two atoms in the
crystal. In particular, this implies that, for ���, the sum
over K in Eq. �24� has a finite limit when b→0.

Here again, we note that free-field solutions, that is eigen-
modes of the free field with an electric field that vanishes in
all atomic locations, may have been left out from Eq. �22�
and should be investigated separately. The lower bound �Eq.
�21�� on the possible free-field eigenfrequencies �free still
applies �22�, but, in the non-Bravais lattice case, this lower
bound is in general not reached since the vanishing of the
electric field on each atomic location r� inside the primitive
unit cell adds extra constraints with respect to the Bravais
case.

V. LONG-WAVELENGTH LIMIT: GENERALIZED
LORENTZ-LORENZ EQUATION

Let us consider the long-wavelength �LW� limit of the
energy spectrum, for a general �even non-Bravais� lattice. We
expand Eq. �23� in the limit qa�1 and �a /c�1, where a is
the minimal distance between two atoms in the underlying
Bravais lattice. The resulting equation is

det MLW = 0, �26�

where the matrix MLW is given by

M��,��
LW = ��0

2 − �2������� + �p
2 ���q2 − q�q�

��/c�2 − q2 + �p
2J��,��,

�27�

with

J��,�� = lim
b→0
������

VL

12	3/2b3

− �
K�RL�

e−iK·�r�−r�����K2 − K�K�

K2 e−K2b2� .

�28�

The matrix ���q2−q�q� in Eq. �27� is proportional to a pro-
jector: it has eigenvalues equals to zero or to q2, respectively
for the modes which have a longitudinal or transverse polar-
ization with respect to q. Equation �26� is a generalization of
the result obtained by Hopfield in Eq. �30� of �1�, where the
excitation spectrum in the long-wavelength limit was calcu-
lated for a cubic crystal. Since the cubic crystal is a Bravais
lattice, we can drop the indices � and �; using the symme-
tries of the cubic structure one finds that J�,�=2��� /3. With
this value one obtains that Eq. �26� gives both the
longitudinal-mode frequency ignored in �1�,

��
LW,cubic =��0

2 +
2

3
�p

2, �29�

and the transverse-mode frequencies, solution as in �1� of the
Lorentz-Lorenz �or Clausius-Mossotti� equation

q2

���
LW,cubic/c�2 = 1 +

n����
LW,cubic�

1 − 1
3n����

LW,cubic�
, �30�

where n=1 /VL is the atomic density of the cubic lattice and
the real function ���� is an atomic polarizability

n���� =
�p

2

�0
2 − �2 . �31�

Then Eq. �26� is a generalized Lorentz-Lorenz equation to
any periodic structure.

To illustrate these results, we have plotted in Fig. 3 the
dispersion relation for light obtained in long-wavelength ap-
proximation �26� and from the exact Eq. �22�, for a cubic

0 1 2 3 4 5 6 7 8
q/k

0

0.5

1

1.5

2

ω
/ω

0

0 1 2 3 4 5 6 7 8
q/k

0

0.7

0.8

0.9

1

1.1

1.2

1.3

ω
/ω

0

(b)

(a)

FIG. 3. �Color online� Dispersion relation for light, for the ap-
proximate long-wavelength expression of Eq. �26� �red�, and for the
complete expression Eq. �18� �black�. The spectrum is calculated as
a function of q /k0 along direction �1, 1, 1� in reciprocal space. In �a�
the simple-cubic lattice with k0a=1 /5 and � /�0=5�10−4, where a
is the lattice constant. The long-wavelength approximation fails
when the horizontal �degenerate� branches of the exact spectrum
start approaching each other, eventually closing the gap at larger
values of q /k0. In �b� an orthorhombic lattice with basis vectors in
the direct space along x ,y ,z with norms respectively proportional to
2	, 	, and 23/2	; here k0a=1 /5 and � /�0=5�10−5, where a
=VL

1/3 and VL is the volume of the primitive unit cell. Five nonde-
generate branches are present, and the long-wavelength approxima-
tion fails when the three horizontal branches of the exact spectrum
start approaching each other, eventually closing the gap at larger
values of q /k0.
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lattice and for an orthorhombic lattice. As expected, the long-
wavelength approximation becomes inaccurate for 1�qa.

As a side remark, it is worth stressing that one can relate
the tensor J to the dipolar electrostatic energy of the lattice.
For a Bravais lattice L one obtains �23�

1

VL
J�� −

2

3
���� = �

R�L�

��� − 3R�R�/R2

4	R3 . �32�

The sum in the right-hand side of this equation is not abso-
lutely convergent so that its precise meaning needs to be
defined, as we did in �23�.

VI. DIAMOND CRYSTAL: OMNIDIRECTIONAL
PHOTONIC BAND GAP

As pointed out in the introduction, no atomic Bravais lat-
tice leading to an omnidirectional gap for light is known. A
natural idea to obtain such a gap is thus to consider lattices
with several atoms per primitive unit cell. If one replaces the
pointlike atoms with extended objects like dielectric spheres,
it is known that the diamond lattice leads to a photonic gap
provided that the spheres fill a large enough fraction of the
unit cell �11�.

We have therefore calculated the band structure for light
in an diamond atomic lattice, solving numerically Eq. �22� of
Sec. IV. The diamond lattice is formed by the superposition
of two copies of the same Bravais lattice: the fcc lattice of
lattice constant a, generated by the three basis vectors e1
= �0,a /2,a /2�, e2= �a /2,0 ,a /2�, and e3= �a /2,a /2,0�, and
a second fcc lattice obtained by translating the first lattice by
the vector �a /4,a /4,a /4�. For the reciprocal lattice of the
fcc lattice, we take the basis ẽ1= �−2	 /a ,2	 /a ,2	 /a�, ẽ2
= �2	 /a ,−2	 /a ,2	 /a�, and ẽ3= �2	 /a ,2	 /a ,−2	 /a�. In
view of application to atomic gases, we restrict to the pertur-
bative limit �p

2 /�0
2→0, around the atomic resonance fre-

quency �0, calculating �−�0 to first order in �p
2. In this

regime, it is convenient to take as a unit of frequency the
spontaneous emission rate � of a single atom, defined in Eq.
�20�, and one finds that �−�0 is any of the eigenvalues of
the matrix P��,���0�� limb→0 P��,���b�, with

P��,���b� =
�

2
������ 1 + 2�k0b�2

2	1/2�k0b�3 − Erfi�k0b�e−k0
2b2�

+
3	�

k0
3VL

�
K�RL

e−iK�·�r�−r�����K�2 − K��K��

k0
2 − K�2 e−K�2b2

,

�33�

where K��K−q, k0=�0 /c is the resonant wave vector, and
where the limit for b→0 is computed in practice from the

relation P��,���0�=P��,���b�ek0
2b2

for b�amin=a�3 /4 �b
=0.05a in the present calculations�. Clearly, in this perturba-
tive limit, ��−�0� /� only depends on the dimensionless
quantities qa and k0a.

We investigated first the arbitrarily chosen value k0a=2.
In Fig. 4�a�, we give �−�0 as a function of q along the
standard irreducible path in the first Brillouin zone of the fcc
lattice: a gap appears. To prove the existence of a truly om-

nidirectional gap, exploring the irreducible path is not suffi-
cient. We thus evaluated the full density of states ����,

���� = �
n=1

6 

FBZ

d3q

�2	�3��� − �q,n� , �34�

where the integral over q is taken in the first Brillouin zone,
the sum runs over the band index n, and �q,n is the light
dispersion relation in band n. Numerically, we have explored
the whole unit cell of the reciprocal lattice, parametrized as
q=��Q�ẽ�, Q� �−1 /2,1 /2�3, with a cubic mesh for Q with
106 points. The result in Fig. 5 unambiguously shows the
presence of an omnidirectional gap, ���� vanishing over an
interval ��inf ,�sup�. The values of �inf and �sup are reported
as horizontal dashed lines in Fig. 4�a�, showing that remark-
ably the partial gap on the irreducible path is very close to
the full omnidirectional gap.

In a second stage, we have varied the lattice spacing a.
The variation in the gap ���sup−�inf as a function of k0a is
given in Fig. 6�a�, revealing that there exists no gap for too
high values of k0a, 5.14�k0a. This may be understood by
looking again at the light dispersion relation along the irre-
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FIG. 4. �Color online� Dispersion relation for light in a diamond
atomic lattice as a function of the Bloch vector along the standard
irreducible path in the first Brillouin zone, in the perturbative re-
gime �p

2 /�0
2�1 �see text�. �a� k0a=2, with k0=�0 /c and a is the

diamond lattice constant �see text�. Symbols: numerical values of
the allowed frequencies �. Dashed horizontal lines: lower and up-
per borders of the gap obtained from the full density of states �not
restricting to the irreducible path�. �b� For several values of k0a
close to the vanishing of the gap: k0a=5 �black symbols�, k0a
=5.1 �red symbols�, and k0a=5.2 �green symbols�.
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ducible path of the first Brillouin zone, for values of k0a
around 5.1, see Fig. 4�b�: Around point L, defined by qL
= �	 /a ,	 /a ,	 /a�, a frequency branch is seen to rapidly
move toward low frequencies when a increases, leading to a
closure of the gap. The modulus of the Bloch vector is qL
=	�3 /a�5.44 /a, and when qL approaches the value k0
from above for increasing a, the denominator k0

2−qL
2 appear-

ing in Eq. �33� for K=0 becomes very small and negative,
leading to a mode frequency � close to the L point more and
more below the atomic resonance frequency �0. In the op-
posite limit of a small lattice spacing a, that is of an increas-
ing atomic density, one finds that the gap increases; from the
overall factor 1 / �k0a3� appearing in Eq. �33�, one naively
expects a gap scaling as 1 /a3 in this limit, which is indeed
roughly the case.

The previous discussion can be extended to the variation
in the gap boundaries �inf and �sup, plotted as functions of
k0a in Fig. 6�b�. The log-log scale reveals that �inf and �sup
approximately vary as power laws with a at low a, and the
corresponding slopes �−3.25 and �−2.8 �see the dotted
lines� indeed indicate exponents close to −3. At large a, the
rapid variation in �sup leading to the gap closure around
�inf−�0=�sup−�0�−� is also quite apparent.

To be complete, let us mention that the previous discus-
sion about the existence of a spectral gap is not affected by
the free-field solutions. From Eq. �21� we indeed find that
any free-field solution has a frequency �free
�c infK�RL� K /2=c	ẽ1+ ẽ2+ ẽ3	 /2=	�3c /a. We have seen
that having a spectral gap requires k0�qL=	�3 /a, which
thus implies �0��free �24�.

Experimental realizability of a diamond atomic lattice

To experimentally test the presence of a gap for light in a
diamond lattice with real atoms, the first step is to use an
atomic species with a transition between a ground state with
a spin Jg=0 and an excited state with a spin Je=1, so that the
harmonic-oscillator representation of the atomic dipole in the
Hamiltonian H is reasonable. A natural candidate is stron-
tium 88Sr, already used in experiments on light coherent
backscattering �25�, but there are of course other possibili-
ties, such as bosonic ytterbium 174Yb where a Bose-Einstein
condensate is available �26�. The second step is to realize a
diamond structure, by loading the atoms in an appropriate
optical lattice with a filling factor one �Mott phase�. Very
recently, such a Mott phase with 174Yb was realized in a
cubic lattice �27�.

Atomic lattices with two atoms per primitive unit cell
have already been realized experimentally �28�, however to
our knowledge not with a diamond structure. This missing
element, the diamond lattice, can be realized building on the
ideas of �10�, as was shown in �15� in the different context of
holographic lithography of dielectric materials �29�. We re-
call here briefly the idea: The optical lattice is produced by
the coherent superposition of four laser plane waves, result-
ing in the total laser field of positive frequency part

Elaser
�+� �r,t� = �

j=0

3

E je
i�kj·r−�lasert�, �35�

where the laser frequency �laser is very far from the atomic
resonance frequency �0 so that the optical lattice is a purely
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FIG. 5. Density of states ���� for light in a diamond atomic
lattice, in the perturbative regime �p

2 /�0
2�1, see Eq. �34�. The

whole unit cell of the reciprocal lattice is explored to obtain this
density of states, with a mesh of 106 points. The histogram �with
250 bins� clearly reveals the existence of an omnidirectional gap at
frequencies below the atomic resonance frequency. We have taken
k0a=2 as in Fig. 4�a�. ���� is in units of 1 / ��VL� where � is the
single atom spontaneous emission rate and VL=a3 /4 is the volume
of the unit cell of the fcc lattice.
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FIG. 6. �Color online� For the light spectrum in a diamond
atomic lattice, in the perturbative limit �p

2 ��0
2, and as a function of

k0a, �a� value of the omnidirectional spectral gap �=�sup−�inf, and
�b� positions of the lower frequency �inf and upper frequency �sup

of the gap with respect to the atomic resonance frequency. a is the
lattice constant �see text�, k0=�0 /c and � is the spontaneous emis-
sion rate defined in Eq. �20�. The inset in �a� is a magnification.
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conservative potential. The vectorial amplitudes of the laser
plane waves have to satisfy the transversality conditions

k j · E j = 0 ∀ j . �36�

The light shift experienced by the atoms in this laser field is
proportional to the laser intensity Ilaser�r�� 	Elaser

�+� 	2. Taking
for simplicity linearly polarized plane waves, the vectorial
amplitudes E j may be chosen real by a convenient choice of
the origin of coordinates �10� so that

	Elaser
�+� 	2 = ��

j=0

3

Ej
2� + �

0�j�j��3

2E j · E j� cos��k j − k j�� · r� .

�37�

The laser wave vectors k j are chosen so that the k j −k j�
generates the reciprocal lattice of the fcc lattice. As in �15�
one may choose k0= 	

a �0,−2,−1�, k1= 	
a �2,0 ,1�, k2

= 	
a �0,2 ,−1�, and k3= 	

a �−2,0 ,1�. These four vectors have
the same modulus, as it should be, which relates the value of
the laser frequency to the diamond lattice constant,

klaser =
�laser

c
=

�5	

a
. �38�

To have a significant spectral gap, see Fig. 6, one should
satisfy the condition k0a�5, that is �laser1.4�0, which cor-
responds to a blue detuned lattice, where the atoms are
trapped in the minima of the laser intensity.

The challenge is now to correctly choose the vectorial
amplitudes E j to ensure that the minima of Ilaser�r� form a
diamond lattice. An elegant solution was given in �15�: by
imposing the conditions

E3 · E2 = E3 · E0 = E2 · E1 = − E1 · E0  0, �39�

E3 · E1 = E2 · E0 = 0, �40�

one realizes an intensity pattern

Ilaser�r� = I0 + I1− cos��
�=1

3

ẽ� · r� + �
�=1

3

cos�ẽ� · r�� ,

�41�

where I00, I10, and the basis vectors ẽ� of the reciprocal
lattice are given in the beginning of this Sec. VI. The solu-
tions of Eqs. �36�, �39�, and �40� are not unique. If one fixes
the value of I1 �that is the value of E3 ·E2� to suppress a
global scaling invariance, we are left with ten equations for
the 12 unknown components of the E j’s, leading to an actu-
ally explicitly calculable continuum of solutions param-
etrized by two real parameters. One of these continuous pa-
rameters corresponds to the invariance of all the equations by
the scaling transform E j→E j /�, j� �1,3�, and E j→E j�, j
� �0,2�, with the scaling factor ��R�. The particular solu-
tion given in �15� obeys the two constraints E1

2=E2
2=E3

2 pre-
sumably added for experimental convenience.

The key point is then that the minima of intensity pattern
�41� are located in �3a /8,3a /8,3a /8� and in
�5a /8,5a /8,5a /8� modulo any vector of the fcc lattice �30�.
These minima correspond to the same laser intensity, and

lead to local harmonic microtraps that are isotropic. Since
the relative vectorial position of these two minima is
�a /4,a /4,a /4�, the set of all laser intensity minima indeed
form a diamond lattice.

VII. CONCLUSION

We have investigated the Fano-Hopfield model for propa-
gation of light in a periodic ensemble of atoms with fixed
positions for the most general �even non-Bravais� lattice ge-
ometry and without restricting to the long-wavelength re-
gime for light. We have shown that all divergences in the
large momentum cutoff limit may be eliminated in a system-
atic way by a renormalization of two parameters of the
Hamiltonian, the atomic resonance frequency and the atomic
dipole.

First, we have used our theory to quantitatively confirm
the predictions of �8� for the spectrum of light in a face-
centered cubic lattice and the absence of an omnidirectional
spectral gap in that case. Second, we have shown that a dia-
mond atomic lattice can lead to an omnidirectional gap.
Since a diamond atomic lattice may be realized in practice,
as we discussed, this opens up the possibility of observing
such a spectral gap for light in an ultracold atomic ensemble,
which would bridge the state of the art gap between atomic
gases and photonic band-gap solid-state materials.
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APPENDIX: DERIVATION OF THE EXCITATION
SPECTRUM IN TERMS OF BARE QUANTITIES

1. Equations of motion

Starting from H in Eq. �1�, and from the bosonic commu-
tation relations it is possible to derive the system of coupled
equations of motion in the Heisenberg picture for the matter

excitation operators b̂i,� �1� i�N and �� �x ,y ,z��, and for
the light excitation operators âk,� �k�D and ��k�,

i�
d

dt
b̂i,� = ��Bb̂i,� − dBÊ�,��Ri� , �A1�

i�
d

dt
b̂i,�

† = − ��Bb̂i,�
† + dBÊ�,��Ri� , �A2�

i�
d

dt
âk� = �ckâk� − Ck
̃�k;b��

i=1

N

�
�

x,y,z

�b̂i,� + b̂i,�
† ���

�e−ik·Ri,

�A3�
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i�
d

dt
âk�

† = − �ckâk�
† − Ck
̃�k;b��

i=1

N

�
�

x,y,z

�b̂i,� + b̂i,�
† ���eik·Ri,

�A4�

where Ck=−dBEk and Ek= i��kc / �2�0V��1/2. The standard Bo-
goliubov procedure to obtain the eigenmodes amounts to re-
placing the operators in the equations of motion with com-
plex numbers oscillating in time at the eigenfrequency �,

b̂i,� → Ui,�e−i�t, �A5�

b̂i,�
† → Vi,�e−i�t, �A6�

âk� → uk�e−i�t, �A7�

âk�
† → vk�e−i�t. �A8�

The set of Eqs. �A1�–�A4� then becomes

��Ui,� = ��BUi,� − dBE�,��Ri� , �A9�

��Vi,� = − ��BVi,� + dBE�,��Ri� , �A10�

��uk� = �ckuk� − Ck
̃�k;b��
i=1

N

�
�

x,y,z

�Ui,� + Vi,����
�e−ik·Ri,

�A11�

��vk� = − �ckvk� − Ck
̃�k;b��
i=1

N

�
�

x,y,z

�Ui,� + Vi,����eik·Ri,

�A12�

where

dBE�,��Ri� = − �
k�D

�
��k

Ck���uk�eik·Ri − ��
�vk�e−ik·Ri�
̃�k;b� .

�A13�

Equations �A9�–�A12� can be rewritten, after simple ma-
nipulations, in the useful form

Ui,� + Vi,� =
2�B

���B
2 − �2�

dBE�,��Ri� , �A14�

Ui,� − Vi,� =
�

�B
�Ui,� + Vi,�� , �A15�

uk� =
Ck
̃�k;b�
��ck − ���i=1

N

�
�

x,y,z

�Ui,� + Vi,����
�e−ik·Ri, �A16�

vk� = −
Ck
̃�k;b�
��ck + ���i=1

N

�
�

x,y,z

�Ui,� + Vi,����eik·Ri. �A17�

Equation �A14� is valid for �B
2 −�2�0, and Eq. �A16� is

valid for ck−��0. We note that a solution with �=ck is
possible if one finds a free-field solution �that is a solution of

Maxwell equations of frequency � in the absence of charge
and current� such that the electric field E� vanishes in all
atomic locations Ri, so that all Ui,�+Vi,� are zero. This type
of free-field solutions, already considered in �8�, is thus left
out by Eq. �A16� and have to be investigated by a specific
calculation.

2. Periodic system: Bravais lattice

We now consider N atoms in a generic Bravais lattice,
within the quantization volume V= �r 	r=��x�e� ,0�x�

�M��, �� �1,2 ,3�, M��N�, compatible with the lattice ge-
ometry. Thanks to the Bloch theorem one has

Ui,� = U0,�eiq·Ri, �A18�

Vi,� = V0,�eiq·Ri, �A19�

where q�D is the Bloch wave vector in the first Brillouin
zone in the reciprocal lattice �RL� and atom 0 is placed at the
origin of coordinates. By substituting Eqs. �A18� and �A19�
in the expressions for vk� and uk� of Eqs. �A16� and �A17�,
and using the fact that the sum �i=1

N e�i�k�q�·Ri =0 for all val-
ues of k�q that are not points of the reciprocal lattice, while
�i=1

N e�i�k�q�·Ri =V /VL for k�q=K�RL, where V is the
quantization volume occupied by the N atoms and VL is the
volume of the primitive unit cell in the direct lattice L, one
has that uk�=0 and vk�=0 except if k=q+K, K�RL, in
which case

uk� =
V

VL

Ck
̃�k;b�
��ck − �� �

�

x,y,z

�U0,� + V0,����
� , �A20�

or if k=−q+K, K�RL, in which case

vk� = −
V

VL

Ck
̃�k;b�
��ck + �� �

�

x,y,z

�U0,� + V0,����. �A21�

Inserting Eqs. �A20� and �A21� in the expression of E�,��Ri�
of Eq. �A13�, using the relation ���k����

� =���−k�k� /k2,
and Eq. �A14�, and using the fact that 
̃�k ;b� is an even
function of k, we obtain that the eigenfrequency � is given
by the solution of the equation det M�b�=0 where the matrix
elements M���b� are given in Eq. �8�.

3. Periodic system: non-Bravais lattice

Finally, we briefly consider the case of a generic non-
Bravais lattice of Sec. IV: in the elementary unit cell, there
are P atoms of positions r�, �� �1, . . . , P�, and this base is
repeated periodically according to an underlying Bravais lat-
tice. In the equations of section 1 of the Appendix one then
has to replace the Bravais lattice positions Ri by the atomic
positions ri in the crystal,

ri = r�i
+ Ri, �A22�
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where Ri belongs to the underlying Bravais lattice and r�i
is

a position within the elementary unit cell. Then Bloch theo-
rem gives

Ui,� = U0,�
��i�eiq·Ri, �A23�

Vi,� = V0,�
��i�eiq·Ri, �A24�

where the Bloch vector q�D may be chosen in the first
Brillouin zone of the reciprocal lattice RL. For k=q+K,
where K�RL,

uk� =
V

VL

Ck
̃�k;b�
��ck − �� �

�

x,y,z

�
�=1

P

�U0,�
��� + V0,�

��� �e−ik·r���
� ,

�A25�

otherwise uk� is equal to zero. Similarly, for k=−q+K,
where K�RL,

vk� = −
V

VL

Ck
̃�k;b�
��ck + �� �

�

x,y,z

�
�=1

P

�U0,�
��� + V0,�

��� �eik·r���,

�A26�

otherwise vk� is equal to zero. Then proceeding as for the
Bravais case one gets Eq. �22�.
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�24� A mathematical question is to know what is the exact minimal
free-field frequency in the diamond atomic lattice. Within the
two-mode ansatz of �8� one finds a minimal �free /c=2	�2 /a.
The general three-mode ansatz can give lower frequency solu-
tions that however form a discrete set. The corresponding
minimal value is �free /c=3	 / �a�2�; it is obtained by superim-
posing with the right amplitudes the three plane waves of wave
vectors k= �−3	 /2a ,3	 /2a ,0�, k− ẽ1 and k+ ẽ2, with a com-
mon polarization �= �1,1 ,0�. We have not explored the ansatz
with four waves or more.
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