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We address the problem of efficient modeling of photon pairs generated in spontaneous parametric down-
conversion and coupled into single-mode fibers. It is shown that when the range of relevant transverse wave
vectors is restricted by the pump and fiber modes, the computational complexity can be reduced substantially
with the help of the paraxial approximation, while retaining the full spectral characteristics of the source. This
approach can serve as a basis for efficient numerical calculations or can be combined with analytically tractable
approximations of the phase-matching function. We introduce here a cosine-Gaussian approximation of the
phase-matching function that works for a broader range of parameters than the Gaussian model used previ-
ously. The developed modeling tools are used to evaluate characteristics of the photon pair sources such as the
pair production rate and the spectral purity quantifying frequency correlations. Strategies to generate spectrally
uncorrelated photons, necessary in multiphoton interference experiments, are analyzed with respect to trade-
offs between parameters of the source.
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I. INTRODUCTION

Spontaneous parametric down-conversion �SPDC� is a
nonlinear process in which a pump photon interacting with a
crystal decays into two daughter photons. The process has
been successfully employed to demonstrate fundamental as-
pects of quantum mechanics such as the violation of Bell’s
inequalities �1,2� and utilized in implementations of quantum
teleportation �3–5�, quantum cryptography �6�, linear optical
quantum information processing �7�, and other quantum-
enhanced technologies.

Typically, photon pairs emerging from nonlinear media
are described by a complicated spatiotemporal wave function
that exhibits correlations in multiple degrees of freedom. In
contrast, many applications of photon pairs require their
preparation in well-defined spatiotemporal modes. Individual
spatial modes can be selected by coupling photons into
single-mode fibers �SMFs� that in effect filter heavily the
SPDC light. Furthermore, many protocols rely on interfer-
ence between photons originating from independent sources
�8,9�. Although spatial modes are well defined by SMFs, the
interference visibility may be compromised by undesirable
spectral correlations within individual pairs. One way to tai-
lor the spectral degree of freedom is to use narrow-band
interference filters, which is easy to implement in an experi-
ment, but in consequence reduces the useful photon flux. An
alternative approach is to adjust the setup parameters to en-
force the source to produce spectrally uncorrelated pairs
�10–13�.

These issues bring the question of optimizing the useful
fraction of photon pairs produced by SPDC sources. A purely
experimental approach would be just to try various align-

ments of the source. In practice, this strategy would be rather
burdensome owing to the large number of controllable pa-
rameters of the setup, their time-consuming adjustments, and
long data acquisition times. A natural alternative is to resort
to numerical modeling. This however presents its own chal-
lenges, as including all relevant degrees of freedom is com-
putationally demanding.

In this paper we discuss approximate methods that allevi-
ate the numerical load necessary to model faithfully realistic
SPDC sources. Our approach is based on an observation that
optical fibers collecting photons define a relatively narrow
range of wave vectors that need to be included in calcula-
tions. This justifies applying the paraxial approximation,
which makes a substantial portion of the problem tractable
analytically. The paraxial approximation can be also com-
bined with a simplification of the two-photon wave function
to an analytically manageable form leading to closed formu-
las. We exploit these strategies to analyze the performance of
SPDC sources in quantum information applications.

Coupling of down-converted photons into SMFs has been
a subject of a number of works, especially in the case of cw
pumping. Kurtsiefer et al. �14� gave a simple argument
showing that careful matching of the SPDC output with the
fiber modes increases the collection efficiency. Mathematical
models for a cw-pumped source have been derived and com-
pared with experimental data in Refs. �15–17�. The collinear
case has been analyzed theoretically in Ref. �18�. Dragan
�10� used a Gaussian approximation �GA� to model fiber-
coupled sources. The counterintuitive scaling of the produc-
tion rates with the crystal length has been pointed out by Lee
et al. �19�, and a detailed analysis of quasiphase matched
structures has been presented by Ljunggren et al. �20,21�.
More recently, methods to estimate the absolute emission
rates for cw and narrowband pumping have been provided
�22�. In the present paper, we concentrate on pulse-pumped*kolenderski@fizyka.umk.pl
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SPDC sources and optimization of their performance param-
eters.

Our numerical calculations incorporate the exact form of
dispersion relations for the nonlinear medium and use a
second-order expansion of phase mismatch in the transverse
wave vectors of the SPDC photons. The modeling is based
on two strategies. The first approach resorts to numerical
means, but with minimized computational effort that will
nevertheless deliver highly accurate results in a broad range
of parameters. This method has been used in Refs. �23,24� to
compare experimentally measured characteristics of down-
conversion sources with theoretical predictions. The second
approach will provide expressions for the biphoton wave
function in a closed analytical form through a further ap-
proximation to the phase-matching function. This approach,
which we will call the cosine-Gaussian approximation
�CGA� is based on a more accurate analytically integrable
model of the phase-matching function than the Gaussian
model studied previously �10,11,25�. We compare both the
approaches with direct numerical calculations when no
paraxial approximation is applied and all integrals are evalu-
ated by numerical means. As an application of the developed
tools, we discuss the generation of spectrally uncorrelated
photons in a type-I �-barium borate �BBO� crystal. We con-
sider here two strategies to reduce spectral correlation: one
method is to adjust carefully the pump pulse and collection
modes, while the other one is to restrict the spectrum of the
generated photons with the help of interference filters. We
compare source brightness that can be achieved using both
methods in typical settings.

The paper is organized as follows. In Sec. II we present
the setup under consideration and derive the wave function
for fiber-coupled photon pairs. Section III introduces the
paraxial approximation and presents the simplified expres-
sion for the biphoton wave function. Next in Sec. IV we
discuss the cosine-Gaussian approximation and apply it to
derive an analytical formula for the wave function of a pho-
ton pair coupled into SMFs. The figures of merit are defined
in Sec. V, and the approximation of perfect phase matching is
used to gain some basic intuitions. Next in Sec. VI we com-
pare the computational effort and the applicability of devel-
oped methods. Finally, in Sec. VII we analyze strategies to
reduce spectral correlations within photon pairs, and Sec
VIII concludes the paper.

II. TWO-PHOTON WAVE FUNCTION

In the nondegenerate down-conversion process, the pump
field, described by the positive-frequency part of the electric
field Ep

�+��r , t�, interacts with quantized signal and idler
fields, whose creation-operator parts will be denoted as

Ês
�−��r , t� and Êi

�−��r , t�. The interaction Hamiltonian has the
form of an integral over the volume V of the crystal �26�,

ĤI�t� =
�0��2�

2
�

V

d3r Ep
�+��r,t�Ês

�−��r,t�Êi
�−��r,t� + H.c . ,

�2.1�

where �0 is the vacuum permittivity and ��2� denotes the
second-order nonlinear susceptibility coefficient, approxi-

mated by a constant. We will assume that the nonlinear in-
teraction is weak enough to neglect pump depletion and to
justify the first order perturbation theory. We will focus here
on type-I phase matching, when both the down-converted
photons have the same polarization direction, perpendicular
to that of the pump pulse. The case of type-II phase matching
can be analyzed analogously.

We will take the nonlinear crystal to be a thin slab of
thickness L oriented perpendicular to the z axis and extend-
ing from z=−L /2 to z=L /2, as illustrated in Fig. 1. The
pump pulse propagates along the z direction outside the crys-
tal. Following Rubin et al. �27� we parametrize the waves
using the frequencies � and the wave-vector components k�

perpendicular to z. These quantities are preserved at the
crystal-free space interface.

In order to calibrate the pump power, it will be convenient
to introduce a normalized pump pulse amplitude Ap�kp� ,�p�
satisfying �d2kp� d�p�Ap�kp� ,�p��2=1. We will assume the
pump pulse amplitude in a factorable form, with no spa-
tiotemporal correlations,

Ap�k�,�� = Ap
temp���Ap

sp�k�� , �2.2�

where Ap
temp��� refers to temporal and Ap

sp�k�� to spatial part.
Both parts will be taken in a Gaussian form,

Ap
temp��� =

��p

�4 �
exp	−

�p
2

2
�� − 2�0�2
 , �2.3�

Ap
sp�k�� =

wp

��
exp	−

wp
2

2
k�

2 
 , �2.4�

where �p stands for the pulse duration, wp stands for the
pump beam width, and 2�0 is the central frequency of the
pump pulse.

The positive-frequency part of the pump pulse electric
field Ep

�+��r , t� is the Fourier transform of the spectral ampli-
tude,

FIG. 1. �Color online� The geometry of a photon pair source. A
crystal exhibiting ��2� nonlinearity is pumped by a Gaussian pulse.
The generated light emerging at angles �s and �i is coupled into
single-mode optical fibers.
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Ep
�+��r,t� = Ep� d2kp�d�p Ap�kp�,�p�ei�kpr−�pt�, �2.5�

where Ep is the amplitude of the pump pulse and �Ep�2 gives
the pump pulse energy. Subsequently, we assume the follow-
ing modal expansion for the signal s and the idler i field
operators:

Ê�
�−��r,t� = E�� d2k��d�� e−ik�r+i��tâ†�k��,���, � = s,i .

�2.6�

We approximated here the scaling factors defining the zero-
point field fluctuations with frequency-independent constants
E�. The biphoton component of the wave function calculated
in the first-order perturbation theory takes the form �28�

�	� =
1

i

� dt ĤI�t��vac� =� d2ks�d2ki�d�sd�i

�	�ks�,�s;ki�,�i�â†�ks�,�s�â†�ki�,�i��vac� ,

�2.7�

where the probability amplitude reads

	�ks�,�s;ki�,�i� = N�
−L/2

L/2

dz Ap�ks� + ki�,�s + �i�

�exp�i�kz�ks�,�s;ki�,�i�z� �2.8�

and N=�0��2�EpEsEi / �2i
�. The phase mismatch
�kz�ks� ,�s ;ki� ,�i� is defined using the z components of the
wave vectors of the interacting fields,

�kz�ks�,�s;ki�,�i� = kpz�ks� + ki�,�s + �i� − ksz�ks�,�s�

− kiz�ki�,�i� . �2.9�

These components are determined by the frequencies �s ,�i
and the transverse wave vectors ks� ,ki� �27�. The integral
expression in Eq. �2.8� can be given meaningful physical
interpretation. Each slice of the crystal contributes to a bi-
photon amplitude 	�ks� ,�s ;ki� ,�i�. However, the phase of
this contribution changes from slice to slice; thus, only for
certain propagation directions the constructive interference
occurs.

The wave function given in Eq. �2.8� describes the entire
field emerging from the crystal into free space. However, in a
typical experiment the signal and the idler photons are
coupled into SMFs. For SMFs collecting light in the x-z
plane at angles �s and �i with respect to the z axis, the
collected spatial modes can be approximated by Gaussians
centered at transverse wave vectors ks0�= x̂�s sin �s /c and
ki0�=−x̂�i sin �i /c,

u��k��,��� =
w�

��
exp	−

w�
2

2
�k�� − k�0��2
, � = s,i .

�2.10�

Here the waists ws and wi define the spatial extent of the
collected modes, which are assumed to be constant within
the relevant spectral bandwidth.

The wave function 	��s ,�i� for both photons coupled
into SMFs is given by an overlap of the wave function in
free space 	�ks� ,�s ;ki� ,�i� with the spatial profiles
us�ks� ,�s� and ui�ki� ,�i� of the fiber modes,

	��s,�i� =� d2ks�d2ki�us
��ks�,�s�ui

��ki�,�i�

�	�ks�,�s;ki�,�i� . �2.11�

This object will be used to calculate coincidence count rates
and spectral properties of generated photons. For a pump
pulse amplitude in a factorable form as that in Eq. �2.2�, it
will be convenient to write

	��s,�i� = Ap
temp��s + �i�
��s,�i� . �2.12�

Here 
��s ,�i� can be viewed as the effective phase-
matching function for the collected modes that includes the
geometry of the setup and the physical properties of the non-
linear medium. It is explicitly given by


��s,�i� = N� d2ks�d2ki��
−L/2

L/2

dz Ap
sp�ks� + ki��

�us
��ks�,�s�ui

��ki�,�i�ei�kz�ks�,�s;ki�,�i�z.

�2.13�

One way to simplify the above equation is to evaluate ana-
lytically the integral over length of the crystal, which yields


�D���s,�i� =
NL

2
� d2ks�d2ki�us

��ks�,�s�ui
��ki�,�i�

�Ap
sp�ks� + ki��

�sinc	L

2
�kz�ks�,�s;ki�,�i�
 . �2.14�

However, the remaining integrals over ks� and ki� are in-
tractable analytically due to nontrivial form of phase mis-
match �kz and they must be performed by numerical means.
We will refer to this procedure as direct numerical integra-
tion and denote corresponding formulas with a superscript
�D�. The four-dimensional integration task is computation-
ally very demanding, and in the next two paragraphs we will
present approximate methods that reduce the computational
effort to obtain the effective phase-matching function

��s ,�i�.

III. PARAXIAL APPROXIMATION

The expression for the effective phase-matching function
given in Eq. �2.13� includes Gaussian fiber mode functions
us�ks� ,�s� and ui�ki� ,�i� that vanish very fast as the trans-
verse wave vectors ks� and ki� depart from the central ob-
servation directions ks0� and ki0�. This implies that little
error should be introduced when expanding the phase mis-
match �kz given in Eq. �2.9� up to the second order in de-
viations of the transverse wave vectors from ks0� and ki0�.
After such an expansion the entire integrand in Eq. �2.13�
takes a Gaussian form in ks� and ki�, provided that the
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spatial pump profile is Gaussian as well. Consequently, one
can perform all the integrals over transverse wave vectors
analytically. This is a great simplification of the computa-
tional complexity of the problem, as we are now left only
with a one-dimensional integral over z, which needs to be
performed numerically. We will call this method paraxial
approximation in analogy to the standard description of
paraxial wave propagation in classical optics.

It will be convenient to introduce the following notation
for the expansion of the wave-vector mismatch:

�kz�ks�,�s;ki�,�i� � D0��s,�i� + D1
T��s,�i��

+ �TD2��s,�i�� , �3.1�

where

� = �ks� − ks0�,ki� − ki0��T �3.2�

is a four-element vector of deviations from the central obser-
vation directions. The Taylor expansion coefficients can be
grouped into a scalar in the zeroth order,

D0��s,�i� = �kz�ks0�,�s;ki0�,�i� , �3.3�

a vector in the first order

D1��s,�i� = 	ds��s,�i�
di��s,�i�


 , �3.4�

and a matrix in the second order,

D2��s,�i� = 	dss��s,�i� , dsi��s,�i�
dsi��s,�i� , dii��s,�i�


 . �3.5�

We wrote the vector D1 and the matrix D2 in a block form
with entries given by

d���s,�i� = 
	 ��kz

�k�x
,
��kz

�k�y

T
ks�=ks0�

ki�=ki0�

�3.6�

and

d����s,�i� =
1

2��
�2�kz

�k�x � k�x
,

�2�kz

�k�x � k�y

�2�kz

�k�y � k�x
,

�2�kz

�k�y � k�y

��
ks�=ks0�

ki�=ki0�

,

�3.7�

where � ,�=s , i.
In order to write a compact formula for the effective

phase-matching function in the paraxial approximation, it
will be helpful to represent the product of the fiber mode
functions us

��ks� ,�s�ui
��ki� ,�i� and the pump beam profile

Ap
sp�ks�+ki�� as an exponent of a quadratic expression as

follows:

us
��ks�,�s�ui

��ki�,�i�Ap
sp�ks� + ki��

= exp�− B0 − B1
T� − �TB2�� . �3.8�

where � is a four-element vector of deviations from central
observation directions defined in Eq. �3.2�. The coefficients
of the quadratic expression are a scalar

B0 =
wp

2

2
�ks0� + ki0��2, �3.9�

a four-component vector,

B1 = wp
2	ks0� + ki0�

ks0� + ki0�


 , �3.10�

and a 4�4 matrix

B2 =
1

2
	�wp

2 + ws
2�I wp

2I

wp
2I �wp

2 + wi
2�I


 , �3.11�

where I denotes a two-dimensional identity matrix. This no-
tation allows us to write the result of four-dimensional
Gaussian integration of Eq. �2.13� over the transverse wave
vectors as


�P���s,�i� = �
−L/2

L/2

dz
Nwswiwp

�� det M2�z�

�exp	− M0�z� −
1

4
M1

T�z�M2
−1�z�M1�z�
 , �3.12�

where the superscript �P� stands for the paraxial approxima-
tion, we introduced

M j�z� = B j − izD j, j = 0,1,2 �3.13�

and for notational simplicity we suppressed dependence on
frequencies �s and �i. The integral over the crystal length in
Eq. �3.12� needs to be calculated numerically, which is sub-
stantially faster than direct numerical integration of Eq.
�2.14�. It is worthwhile to note that in Eq. �3.12� the effects
of spectral dispersion are fully taken into account, as no ex-
pansion in the signal and the idler frequencies �s and �i has
been applied. As we will see in Sec. VI, this makes numeri-
cal results based on the paraxial approximation very precise.

IV. COSINE-GAUSSIAN APPROXIMATION

The numerical effort to calculate the effective phase-
matching function can be reduced further at the cost of the
accuracy. The basic idea is to replace the sinc term appearing
in Eq. �2.14� with an analytically tractable expression. Pre-
vious works �10,11� introduced the GA, which approximated
the sinc term by a Gaussian function, thus enabling analyti-
cal integration. We will consider here a more general expres-
sion of the form

sinc x � exp�− �x2�cos��x� = 1
2exp�− �x2 + i�x� + c.c.

�4.1�

As seen in Fig. 2, using the parameters �= 1
20 and �= 1

2 yields
a more accurate approximation to the sinc function than the
GA corresponding to the choice of parameters �= 1

5
and �=0.

The above observation leads us to the idea of CGA. Spe-
cifically, in Eq. �2.14� we replace the sinc function with Eq.
�4.1� and expand the phase mismatch �kz up to the linear
term in transverse wave vectors around central observation
directions,
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sinc	L

2
�kz�ks�,�s;ki�,�i�
 �

1

2
exp	−

1

4
��D0 + D1

T��2L2

+
i

2
��D0 + D1

T��L
 + c.c.

�4.2�

We used here parametrization introduced in Eqs. �3.2�–�3.4�.
After inserting the above expression into Eq. �2.14�, the in-
tegrals over transverse wave vectors can be evaluated ana-
lytically as long as the pump and fiber modes are Gaussian.
This yields an expression for the effective phase-matching
function of the form


�C���s,�i� = ���s,�i�e−f��s,�i�cos�g��s,�i�� . �4.3�

The three functions appearing in the above formula are given
by

���s,�i� =
�2N

�det K
, �4.4�

g��s,�i� =
1

2
�LD0 +

1

16
�LD1

TK−1	B1 +
L2

2
�D0D1
 ,

�4.5�

f��s,�i� = B0 +
1

4
�L2D0

2 +
1

16
NTK−1N , �4.6�

where we defined

K = B2 +
1

4
�L2D1D1

T, �4.7�

N = B1 +
L

2
��LD0 + ��D1. �4.8�

For the sake of brevity we have omitted the frequency de-
pendence. The expression for the effective phase-matching
function in the Gaussian approximation is easily obtained by
inserting �= 1

5 and �=0.

In order to analyze the applicability of CGA, it is conve-
nient to view the biphoton wave function given in Eq. �2.11�
as an integral over ks� and ki� of a product of two factors.
The first one is the phase-matching term
sinc��kz�ks� ,�s ;ki� ,�i�L /2�, while the second one, which
we will call here the beam term, is a triple product of the
pump pulse spatiotemporal profile Ap�ks�+ki� ,�s+�i� and
the fiber mode profiles us�ks� ,�s� and ui�ki� ,�i�. The beam
term defines the range of transverse wave vectors and fre-
quencies for which the cosine-Gaussian approximation of the
phase-matching term should be accurate. This condition is
satisfied when the sinc argument �kz�ks� ,�s ;ki� ,�i�L /2
does not exceed approximately 3� /2.

Let us analyze this condition more closely. For the pro-
files assumed throughout this paper, the beam term takes a
Gaussian form

Ap�ks� + ki�,�s + �i�us�ks�,�s�ui�ki�,�i�

� exp	−
wp

2�2

2c2 ��s − �i�2 −
�p

2

2
��s + �i�2 − �TB2�
 ,

�4.9�

where ��=��−�0 are detunings from the central frequency
and we assumed that the photons are collected at identical
angles �s=�i=�. In the exponent, we neglected the cross-
term correlating wave vectors with frequencies.

The characteristic width of the Gaussian function defines
the relevant range of parameters. Let us restrict the sum of
detunings by ��s+�i��5�p

−1, where the multiplicative factor
was chosen to simplify the final estimates. Similarly the
range of relevant transverse wave vectors can be crudely
characterized by the smallest eigenvalue of the matrix B2,
which is equal to ws

2 in case of symmetric coupling ws=wi.
This can be written as ����5ws

−1. In the case of perfect phase
matching for the central wave vectors ks0� ,ki0� at the fre-
quency �0 of the down-converted photons, we estimate the
argument of the sinc function by expanding the wave-vector
mismatch �kz up to the first order as follows:

�kz � D1��0,�0�� + ���s + �i� , �4.10�

where �=
�kpz

��p
��p=2�0

−
�ksz

�� ��=�0
. Thus we see that the CGA

will be valid if ��� and ��s+�i� within ranges defined by the
beam term yield the argument of the sinc function �3� /2.
This gives

�p � �L �4.11�

and

ws � L�D1� �4.12�

As the right-hand sides in the above formulas are estimates,
we rounded up the numerical factor 3� /10 to 1.

V. FIGURES OF MERIT

We will employ the computational methods presented in
the preceding sections to analyze two parameters character-
izing the usefulness of SPDC sources. The first one is the
brightness, proportional to the probability of producing a

Π 2 Π 3 Π
x

�0.2

0.5

1

sinc�x�

FIG. 2. �Color online� A comparison of the sinc x function
�solid blue line� with the cosine-Gaussian approximation
sinc x�exp�−x2 /20�cos�x /2� �circles� and the Gaussian approxi-
mation sinc x�exp�−x2 /5� �dashed line�.
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fiber-coupled photon pair by a single pump pulse,

Rc =� d�sd�i�	��s,�i��2. �5.1�

We will set the brightness unit by putting the multiplicative
factor appearing in Eq. �2.8� to be �N�=1.

The second important property of photon pairs is their
suitability for multiphoton interference experiments. When
interfering photons from independent sources, their spectral
amplitudes cannot carry any distinguishing information
about the origin of the photons. This means that the biphoton
wave function for each pair should be factorable. The degree
of factorability can be quantified with the help of the
Schmidt decomposition, which for the normalized wave
function 	��s ,�i� /�Rc takes the form �29�

1
�Rc

	��s,�i� = �
n=0

�

��n�n
s��s��n

i ��i� . �5.2�

In the above expression, �n
s��s� and �n

i ��i� are two ortho-
normal sets of mode functions for the signal and the idler
photons. The non-negative parameters �n characterize the
contribution of each pair of modes to the superposition. They
satisfy the normalization constraint �n=0

� �n=1 and it is con-
venient to put them in the decreasing order. Perfect fac-
torability thus corresponds to the condition �0=1.

The degree of factorability can be quantified by the vis-
ibility of two-photon interference. Suppose that two heralded
signal photons produced by identical sources are superposed
on a 50:50 beam splitter and the depth of the Hong-Ou-
Mandel dip �30� is measured. The depth is given by an ex-
pression

P = �
n=0

�

�n
2, �5.3�

which will be called the purity parameter of a photon pair. In
general P�1 and the equality sign holds only for a factor-
able biphoton wave function. The purity parameter is the
inverse of the cooperativity parameter introduced in Ref.
�31�.

Typically, photon pairs are spectrally filtered in order to
improve their characteristics and to lower the background
count rates. The effects of spectral filtering can be taken into
account by multiplying the two-photon wave function by
spectral amplitude transmissions ������ characterizing the
filters,

	��s,�i� → �s��s��i��i�	��s,�i� . �5.4�

Note that the above substitution correctly takes into account
the decrease in count rates resulting from spectral filtering.
We will model spectral filters using Gaussian profiles with
respective widths �s and �i, assuming perfect transmission at
the peak frequency �0,

����� = exp	−
�� − �0�2

2��
2 
, � = s,i . �5.5�

It is worthwhile to stress that the spatial filtering imposed by
SMFs and spectral filtering implemented with interference

filters are of different nature. In the case of SMFs, field com-
ponents corresponding to various wave vectors are combined
coherently into a single amplitude of the filtered mode, while
spectral filters transmit independently each frequency com-
ponent.

Before discussing characteristics of realistic sources, it is
insightful to consider the limit of perfect phase matching,
based on an assumption that �kz�ks� ,�s ;ki� ,�i�L /2�0
over the relevant range of frequencies and wave vectors. This
approximation means that we can put D0=D1=D2=0, which
makes the integrand in Eq. �3.12� independent of z and leads
to a very simple formula for the fiber-coupled biphoton wave
function,

	�0���s,�i� = 4N�4 �
Lw̄2��p

wiwpws

�exp	−
no

2��0�w̄2

2c2 ��s�s − �i�i�2

�exp	−

�p
2

2
��s + �i − 2�0�2
 , �5.6�

where by the superscript �0� we indicated the approximation
of perfect phase matching. We also took the refractive indi-
ces at the central frequency no��s��no��i��no��0� and de-
noted

w̄ = 	 1

ws
2 +

1

wi
2 +

1

wp
2
−1/2

. �5.7�

Let us note that the assumption �kzL /2�0 implies a specific
geometry of the setup. First, it means that the pump, the
signal, and the idler beams maintain good spatial overlap
through the entire length of the crystal. Second, the length L
of the crystal must be much shorter than the characteristic
Rayleigh range of the beams.

The wave function given in Eq. �5.6� is Gaussian, which
leads to closed analytical formulas for parameters of interest.
The brightness can be easily calculated to be equal to

Rc
�0� =

16�3/2cL2

n0��0���s + �i�
w̄3

ws
2wi

2wp
2 . �5.8�

It is instructive to analyze the scaling of the pair production
rate in the parameters involved. The quadratic dependence
on the crystal length L is a result of a coherent summation of
the probability amplitudes of generating a photon pair over
the entire range of −L /2�z�L /2. Assuming that the waists
of the pump, the signal, and the idler beams are on the same
order characterized by w, the pair production rate scales as
1 /w3. This scaling can be interpreted as a result of an inter-
play between two effects. The first one is the dependence of
the nonlinear process on the transverse spatial dimension of
the interacting modes. Suppose that the modes are confined
to a transverse area of the order of w2. Then their normaliza-
tion includes a factor 1 /w for each of the modes. As the
probability amplitude for pair generation involves an integral
of a product of three mode functions over an area of size w2,
this gives its scaling as 1 /w. Squaring this result means that
the probability of pair generation scales as 1 /w2. The second
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effect is the broadening of the spectrum of the produced
photons with decreasing waists seen in the first exponent in
Eq. �5.6�, which yields an additional factor of 1 /w.

The expression calculated in Eq. �5.8� enables us to opti-
mize the pair production rate with respect to some param-
eters of the setup. For example, suppose that the waists ws
and wi of the collection modes are fixed. An easy calculation
shows that the maximum production rate is achieved for the
pump beam waist wp given by

wp =
wswi

�2�ws
2 + wi

2�
, �5.9�

which reduces to wp=ws /2 for equal waists of collection
modes. We will use this coupling strategy through the rest of
the paper. Note that in the case of a monochromatic pump, in
the crude approximation of perfect phase matching the con-
dition for optimal brightness for short crystal lengths takes
the form wp=ws /�2 �22�.

As noted in Refs. �11,25�, in the approximation of perfect
phase matching the condition for spectral decorrelation
within a photon pair is achieved when

�p =
wp�s�i

c
. �5.10�

A more general analytical condition can be derived using the
Gaussian approximation �10�. Within this model the bipho-
ton wave function takes following form:

	�G���s,�i� =� �p

��
���s,�i�e−f��s,�i�−�p

2��s + �i − 2�0�2/2.

�5.11�

Taking ���s ,�i�����0 ,�0� and expanding f��s ,�i� up to
the second order in frequencies around �0 yields a Gaussian
expression in detunings. Spectral decorrelation corresponds
to the vanishing cross term ��s−�0���i−�0� in the exponent,
which gives

�p
2 = 
2

�2f��s,�i�
��s � �i



�s=�i=�0

. �5.12�

More accurate models of the effective phase-matching func-
tion in Eqs. �3.12� and �4.3� do not yield the decorrelation
condition in a closed analytical form.

VI. COMPARISON

Let us now compare computational methods introduced in
the preceding sections for typical experimental settings. In
Fig. 3 we depict the effective phase-matching function

��s ,�i� for two exemplary lengths of the nonlinear me-
dium calculated using direct numerical integration, the
paraxial approximation, the cosine-Gaussian approximation,
and the Gaussian approximation. Calculations were carried
out for a beta-barium borate crystal with its optical axis lying
in the plane of the collected modes and cut at �c=30° with
respect to the z axis. This corresponds to the symmetric cone
half-opening angle equal to �=2.2° for frequency-

degenerate photons at 780 nm. The beam waists were set to
rather low values ws=wi=2wp=70 �m to test the applica-
bility limits of the paraxial approximation.

As seen in Fig. 3, the main qualitative difference between
the computational methods is the reproduction of the side
lobes. The impact of the side lobes on observable quantities
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FIG. 3. The effective phase-matching function 
��s ,�i� calcu-
lated using ��a�,�b�� direct numerical integration, ��c�,�d�� paraxial
approximation, ��e�,�f�� cosine-Gaussian approximation, and
��g�,�h�� Gaussian approximation for the crystal length
��a�,�c�,�e�,�g�� L=100 �m and ��b�,�d�,�f�,�h�� L=1 mm. The
pump and collecting beam waists were set to ws=wi=2wp

=70 �m. The angular frequencies �s and �i are labeled with the
corresponding wavelengths.
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depends on the spectral width of the pump pulse. If the spec-
tral bandwidth is narrower than the width of the central peak,
then all the models can be expected to yield similar results.
Because the characteristic width of 
��s ,�i� along the axis
�s=�i decreases with a longer crystal length, this regime
corresponds to sufficiently narrow spectral bandwidths and
short crystals. When leaving this regime, CGA can be ex-
pected to yield more accurate results in the intermediate re-
gime compared to GA, as it reproduces correctly the lobes
closest to the central peak.

These predictions are confirmed by the calculation of the
brightness Rc as a function of the crystal length using differ-
ent models, with the results shown in Fig. 4. The full width
at half maximum of the Gaussian pump pulse was taken
equal to �p

FWHM=�p
�ln 2=100 fs. The brightness has been

calculated through two-dimensional numerical integration of
�	��s ,�i��2 over the signal and the idler frequencies on a
32�32 square grid centered at �0 for the relevant frequency
range where the wave function is nonzero. We have found
that the further increase in grid density to 64�64 did not
change the results noticeably. In the paraxial approximation,
the effective phase-matching function 
�P� was evaluated at
each point of the grid using Gauss-Kronrod quadrature with
three-digit precision. Results based on numerical integration
of �	��s ,�i��2 involving CGA and GA expressions for the
effective phase-matching function have been labeled, respec-
tively, as numerical CGA and numerical GA. In addition, we
present results of applying a further simplification to CGA
and GA, labeled as analytical CGA and analytical GA. The
simplification consists in expanding the functions f��s ,�i�
and g��s ,�i� that appear in Eq. �4.3� around the central fre-
quency �0 up to the second order and replacing ���s ,�i�
with its value at �s=�i=�0. After this expansion the squared
absolute value of the biphoton wave function becomes a sum
of three Gaussian components and the integration over the
frequencies �s and �i can be carried out analytically.

Figure 4 shows that for short crystals all the models give
similar results. Furthermore, in this regime the brightness Rc
exhibits quadratic dependence on the crystal length, which
agrees with Eq. �5.8� derived under the assumption of perfect
phase matching. As expected, with an increasing crystal

length the GA model departs earlier from the numerical re-
sults than the CGA model.

A more thorough way to compare the paraxial approxima-
tion with direct numerical integration is to evaluate two
quantities: the scalar product between the normalized bipho-
ton wave functions ��P� and ��D� obtained using both meth-
ods and the ratio of the corresponding pair production rates
Rc

�P� /Rc
�D�. We carried out these calculations in an unfavorable

regime of a long crystal L=2 mm, ultrashort pump pulses
�p

FWHM=20 fs, and strong focusing ws=wi=2wp=40 �m.
We found that both the quantities differed from one by less
than 10−3. It should be noted that the computational effort
required by the paraxial approximation was reduced in our
calculations by �104 compared to the direct numerical inte-
gration.

Finally, let us analyze the coincidence count rate Rc as a
function of the pump beam waist wp and the fiber mode
waists in a symmetric setup, when ws=wi. In Fig. 5 we de-
pict results obtained using the paraxial approximation for
two exemplary lengths of the crystal. It is seen that for a
fixed waist of the fiber modes the brightness has a well-
pronounced maximum in wp. This maximum is located to a
good approximation at wp=ws /2, which is in an agreement
with the result derived within the elementary model of per-
fect phase matching in Eq. �5.9�. This motivated the choice
of ws=wi=2wp in the presented examples.

VII. SPECTRALLY UNCORRELATED PAIRS

A necessary condition for high-visibility multiphoton in-
terference is the lack of distinguishing information about the
origin of the photons, which means that each photon should
be prepared in an identical pure wave packet. The most ob-
vious way to achieve this regime is to insert interference
filters whose bandwidth is smaller than the characteristic
scale of spectral correlations within photon pairs. An intrigu-
ing alternative has been presented in Ref. �11�, which pro-
posed to remove spectral correlations by exploiting geomet-
ric effects in SPDC. The purity of the produced photons
needs to be analyzed in conjunction with other characteris-
tics of the source, such as the pair production rate. In this
section we will employ our computation tools to compare

�

�

�

�

�
� � �� � �

�

�

�

�

�
� � � � � �

�

�

�

�

�
� � � � � �

�

�

�

�

�

�

�
�

�
� �

�

�

�

�

�
� � � � � �

�

�

�

�

�

�

�
�

�
� �

�
�

�

�

�

�

1 2 3 4 5
L�mm�

100

200

300

400

Rc

� Perfect phase matching
� Analytical�GA
� Analytical�CGA
� Numerical�GA
� Numerical�CGA
� Paraxial
� Direct numerical integration

FIG. 4. �Color online� The source brightness Rc calculated using
different numerical methods, specified in the inset, as a function of
the crystal length L, for the waists ws=wi=2wp=70 �m and the
pump pulse duration �p

FWHM=100 fs.
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FIG. 5. �Color online� The natural logarithm of the brightness
ln Rc as a function of pump beam waist wp and fiber mode waists
ws=wi for the crystal lengths �a� L=1 mm and �b� L=100 �m.
The dashed �red online� lines depict the condition wp=ws /2 speci-
fied in Eq. �5.9�.
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properties of spectrally decorrelated pairs generated by dif-
ferent methods.

Let us first analyze the geometric approach of Ref. �11�.
The underlying physics can be understood intuitively by
looking at the biphoton wave function in the perfect phase-
matching approximation given by Eq. �5.6�. The spectral
pump amplitude introduces anticorrelations between fre-
quencies of the down-converted photons, while the pump
beam waist and emission angles define the degree of positive
correlations. By balancing these two effects, one can obtain a
factorable biphoton wave function. More generally, without
the approximation of perfect phase matching, one needs to
analyze correlations introduced by the function 
��s ,�i� de-
fined in Eq. �2.12� combined with the spectral pump ampli-
tude. As the nonlinear medium we considered a BBO crystal
in the same configuration as discussed in Sec. VI. As the
basic tool, we chose the paraxial method developed in Sec.
III due to its high precision and computational effectiveness.
In order to evaluate the purity parameter P measuring the
degree of spectral correlations, the approach presented by

Law et al. �29� was used. The method is based on the singu-
lar value decomposition of the matrix representation of the
biphoton wave function 	��s ,�i� on a sufficiently fine dis-
crete grid. The normalized singular values are approxima-
tions of Schmidt coefficients �n and as such are used to
evaluate purity parameter P. We found it sufficient to take
the grid 32�32. Further increase in the grid density did not
make any noticeable difference.

In Figs. 6�a� and 6�b� we present the purity parameter for
two typical lengths of the crystal as a function of the pulse
duration �p

FWHM and the collecting mode waists are assumed
to be equal, ws=wi. The pump beam waist was taken to be
wp=ws /2, which is motivated by the results presented in Fig.
5. The contour plots exhibit a clear relation between �p

FWHM

and ws that leads to minimized spectral correlations between
photons. For a comparison, Figs. 6�a� and 6�b� depict also
the purity condition derived in Eq. �5.12� using the GA
model, as well as the predictions of the perfect phase-
matching approximation given in Eq. �5.10�. It is seen that
for the shorter crystal length L=100 �m the simple analyti-

FIG. 6. Contour plots of ��a�,�b�� the purity parameter P and ��c�,�d�� the brightness Rc as functions of the pump pulse duration �p
FWHM

and the collected mode waists ws=wi. The crystal thicknesses are ��a�,�c�� L=1 mm and ��b�,�d�� L=0.1 mm. The solid and dashed lines in
�a� and �b� correspond to factorability conditions given, respectively, in Eqs. �5.12� and �5.10�. The gray areas in �c� and �d� mark the regions
where the purity parameter is P�0.99.
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cal formula of Eq. �5.10� gives accurate results. This is be-
cause the spectral anticorrelations are predominantly defined
by the pump bandwidth rather than the phase matching of the
crystal. This is no longer valid for the length L=1 mm,
where the effective bandwidth of the down-conversion pro-
cess becomes strongly affected by the phase matching. These
observations are consistent with the results presented in Fig.
4: for L=100 �m the pair production rate is accurately
given by the perfect phase-matching approximation, while
for L=1 mm effects of finite phase-matching bandwidth are
clearly seen.

The relation between the collecting mode waist ws=wi
and the pump pulse duration �p

FWHM that leads to minimized
spectral correlations gives us some flexibility to optimize the
source with respect to other parameters. In Figs. 6�c� and
6�d� we present the source brightness Rc as a function of ws
and �p. Note that in our calculations we constrain the pump
beam waist by imposing ws=wi=2wp. It is seen that Rc can
be increased by reducing the fiber mode waist ws. As Figs.
6�c� and 6�d� depict the pair production rate in the same
units, we can compare the brightness for the two crystal
lengths. Assuming that we have no restrictions on the pump
pulse duration, a shorter crystal can produce more uncorre-
lated photon pairs. This is because for L=1 mm stronger
spectral anticorrelations overwhelm the benefit of a longer
nonlinear medium. However, in a realistic situation there is
usually a technical minimum on the pump pulse duration.
For concreteness, let us assume it to be �p

FWHM=100 fs. An
inspection of Fig. 6 shows that under the condition of nearly
ideal decorrelation defined by the value of the purity param-
eter P�0.99 higher brightness, approximately equal to Rc
�0.046, is obtained when the fiber mode waist is ws
�1 mm and the crystal length is L=1 mm. We found that
for even thicker crystals decorrelation can be reached only
using longer less focused pump pulses, which lower the
source brightness.

These limitations raise the question of whether a more
efficient strategy may rely on collecting tightly focused
modes and removing spectral correlations with interference
filters. Let us consider the same pump pulse duration
�p

FWHM=100 fs and crystal length L=1 mm as before, but
tighten the fiber mode waists to ws=100 �m. The result is
significantly increased brightness, but at the cost of introduc-
ing spectral correlations. The effects of inserting interference
filters into such a setup are shown in Fig. 7, where we depict
the brightness Rc and the purity parameter P as functions of
the spectral filter bandwidth. It is seen that for the bandwidth
��2.6 nm the purity parameter reaches the value P�0.99,
while the brightness is Rc�3.8, which is significantly higher
than before. Thus the benefit of increased brightness is re-
tained despite spectral filtering.

In order to gain more insight into the trade-off between
the source brightness and the spectral correlations, we calcu-
lated the maximum filter bandwidth that gives the purity P
�0.99 for a range of collected mode waists ws, while keep-
ing other parameters of the setup identical as in previous
examples. The results are shown in Fig. 8. It is seen that the
filter bandwidth across the analyzed range does not deviate
significantly from the value ��2.7 nm, while the brightness
increases substantially with tighter focusing. This can be ex-

plained by the fact that the spectral filter bandwidth is de-
fined by the requirement to remove frequency anticorrela-
tions, which depend primarily on the crystal length and the
pump pulse duration rather than the beam waist.

VIII. CONCLUSIONS

In this paper we introduced and utilized approximate
methods that alleviate the numerical load necessary to model
SPDC sources while retaining the accuracy of the results in
physically relevant regimes. Our approach was based on an
observation that optical fibers collecting photons effectively
define a relatively narrow range of wave vectors that needs to
be included in calculations. This justified applying the
paraxial approximation, which made a substantial portion of
the problem tractable analytically and significantly reduced
the remaining numerical effort. The paraxial approximation
can be also combined with a simplification of the two-photon
wave function to an analytically manageable form that led to
closed formulas. We exploited these strategies to analyze

PP

FIG. 7. �Color online� The brightness Rc �solid red line, left
vertical scale� and the purity parameter P �dashed blue line, right
vertical scale� as functions of the spectral filter bandwidth �=�s

=�i for a crystal length L=1 mm, beam waists ws=wi=2wp

=100 �m, and the pump pulse duration �p
FWHM=100 fs.

FIG. 8. �Color online� The brightness Rc �solid red line, left
vertical scale� as a function of the collected mode waist ws obtained
for the maximum filter bandwidth �dashed blue line, right vertical
scale� which yields the purity parameter above P�0.99. Other
setup parameters are identical as in Fig. 7.
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performance parameters that characterize the usefulness of
SPDC sources for quantum information applications, such as
the pair production rate and the spectral purity parameter,
which are critical in multiphoton interference experiments
involving multiple sources.

The choice of a computation method depends on the
range of the setup parameters. The most difficult regime to
deal with is that of very broadband tightly focused pump
pulses and long crystals. It is then necessary to include with
high precision the phase-matching function over a wide
range of frequencies and transverse wave vectors. The most
universal method is then direct numerical integration, which
however requires tremendous computational effort. In prac-
tical situations, the paraxial approximation delivers highly
accurate results with significantly reduced numerical load for
typical setup parameters. The validity of the paraxial ap-
proximation can be checked with a relatively low effort by
comparing it with direct numerical integration only at the
edges of the region of interest that correspond to most unfa-
vorable cases. A successful validation allows one to apply
the paraxial approximation throughout the entire region of
interest reducing the overall computational cost. For the ex-
amples studied in Sec. VII, the paraxial approximation has
been verified to yield results that did not differ by more than
few percent from direct numerical integration. In more re-
stricted scenarios, one may consider using the cosine-
Gaussian approximation, which extends the validity of the
previously used Gaussian approximation. Results obtained
with these methods can be used as a starting point for de-
signing source characteristics with more elaborate and pre-
cise tools. We also discussed a crude approximation of per-
fect phase matching, which gives simple qualitative insights
into the roles played by various source parameters.

The numerical methods presented in this work can be
used to analyze various aspects of down-conversion sources

that are relevant to experimental implementations of quan-
tum information processing protocols. We discussed here
spectral decorrelation, which is a necessary condition to
achieve high-visibility multiphoton interference between in-
dependent sources, in connection with the pair production
rate. For exemplary settings chosen for the analysis, we
found that spectral filtering combined with tight focusing of
the pump beam can deliver higher brightness than balancing
the spectral correlations using the geometry of the setup. The
paraxial approximation can be also extended to analyze
properties of an individual photon generated in the down-
conversion process, with traced out degrees of freedom of
the conjugate photon. This approach has been successfully
applied to model the results of a measurement of the single-
photon density matrix in the spectral domain reported in Ref.
�24�. Theoretical details of this work were presented else-
where �32�. Furthermore, the single-photon count rates allow
us to calculate the heralding efficiency, defined as the ratio of
the pair production rate to the count rate on the trigger de-
tector. This is another important parameter characterizing the
usefulness of down-conversion sources �13� that can be effi-
ciently submitted to numerical optimization using paraxial
approximation. We aim to make this problem a subject of a
separate publication. The numerical results presented in this
paper have been obtained using a MATHEMATICA code, which
can be downloaded from the address given in Ref. �33�.
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