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We model single-photon nonlinearities resulting from the dipole-dipole interactions of cold polar molecules.
We propose utilizing “dark state polaritons” to effectively couple photon and molecular states; through this
framework, coherent control of the nonlinearity can be expressed and potentially used in an optical quantum
computation architecture. Due to the dipole-dipole interaction the photons pick up a measurable nonlinear
phase even in the single-photon regime. A manifold of protected symmetric eigenstates is used as basis.
Depending on the implementation, major sources of decoherence result from nonsymmetric interactions and
phonon dispersion. We discuss the strength of the nonlinearity per photon and the feasibility of this system.
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I. INTRODUCTION

Coherent control of optical nonlinearities at the single-
photon level is a burgeoning topic in quantum optics re-
search. Utilizing state-preserving techniques, it is suggested
that one can implement two-qubit quantum logic gates in a
feasibly robust optical quantum computational framework
�1,2�.

Cold polar molecules are excellent candidates as a medi-
ating medium due to their field-dependent intermolecular in-
teraction properties �3–7�. They have been suggested for
quantum computation architectures since they embody ad-
vantages of both neutral atoms and trapped ions, viz. long
coherence times and strong interactions, respectively.

Advances in preparation �cooling and trapping� of mo-
lecular ensembles in their electronic, vibrational, and rota-
tional ground states �8� would allow for single state manipu-
lation in a characteristically rich level structure. Notably,
recent work by Büchler et al. �9� predicts novel, controllable
superfluid, and crystalline phase transitions from dipolar
gases. The latter could suppress dephasing from short-range
collisions in high-density traps. The anisotropic and long-
range form of the dipole-dipole interaction is responsible for
the bulk of advances in controlling molecular samples �5�.

In this paper, we investigate cold polar molecular gases in
one- and two-dimensional arrays. We describe single-photon
nonlinearities resulting from the intermolecular dipole-dipole
interaction. We apply “slow” and “stored” light methodology
for coherent state transfer. Next we calculate the resultant
nonlinear phase in the context of collective excitations in an
optically thick media.

Here we are primarily concerned with exploring feasibil-
ity of coherent control over the resultant nonlinear phase
evolution of intermolecular dipole-dipole interactions. Fa-
miliar implementations for the system under discussion in-
clude stripline cavities, optical lattices, Wigner crystals, hol-
low fibers, or molecules on surfaces. Then, we investigate
the most significant decoherence effects for implementation
in a trap architecture or in a crystalline phase.

II. SINGLE-PHOTON NONLINEARITY

Photons do not interact. However, effective interaction
can be achieved by utilizing state-preserving light-matter
couplings to nonlinear media, wherein matter-matter interac-
tions effectuate photon-photon interactions without destroy-
ing the state information of the incident coherent fields.

The proposed mechanism is as follows: photons are effi-
ciently and coherently coupled into the molecular medium in
the form of “slow-light polaritons.” The molecule part of
these light-molecule coupled excitations is “switched” from
the zero-dipole rotational ground state into a high-dipole ro-
tational superposition state. The resulting dipole-dipole inter-
action therefore adds a nonlinear phase to the polaritons that
the photons retain on exiting the medium. We note that the
nonlinear phase is thus proportional to the interaction time
inside the medium and thus to the propagation time of the
polaritons. Therefore control over the phase is exercised by
manipulating the propagation velocity of the light in the me-
dium.

Electromagnetically induced transparency �EIT�-based
slow-light polaritons �10,11� are collective states of matter-
light superposition that can be achieved by using a �-type
system. Polaritons are the coupled exchanges of the signal
field �s and the superposed �g� and �e� ground states �see
Fig. 1�. �g� and �e� would typically be the �J ,MJ� rotational
states of the ground-state molecules, where MJ is the projec-
tion of J on the z axis. The coupling field �c controls the
slow group velocity of the polaritons.

The interacting states �g� and �e� in our system are neigh-
boring rotational levels of dipolar molecules. Since dipolar
interactions exchange virtual photons, interacting states must
have opposite parity. This can be accomplished via an ex-
panded �-type system with a strong Raman transition in-
volving a two-photon transition as �c, or alternatively the
use of mixed-parity states for the excited state �a�. For sim-
plicity we refer to the whole molecular system as an effective
two-level system, consisting of �e� and �g�, as is usually done
in the context of slow-light polaritons �10�. We adopt a natu-
ral shorthand, �gi� and �ei�, respectively, for the ground and
excited state of the ith molecule.
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It is convenient to introduce collective states denoted as
�j ,m�. These states are eigenstates of the collective operators

Ĵ2 and Ĵz, where Ĵ�= 1
2�i�̂i

�, �=x ,y ,z and �̂i
� are Pauli op-

erators acting on the ith molecule: �̂i
x= �gi��ei�+ �ei��gi�, �̂i

y

= i��gi��ei�− �ei��gi��, �̂i
z= �ei��ei�− �gi��gi�. �j ,m� states satisfy

the eigenvalue relations Ĵ2�j ,m�= j�j+1��j ,m� and Ĵz�j ,m�
=m�j ,m�, with j=N /2, . . . ,0 and −j�m� j.

Among these states we are particular interested in the
fully symmetric Dicke-like states which lie on the surface of
the Bloch sphere with maximal radius j=N /2 and are totally
symmetric, i.e., invariant with respect to particle permuta-
tions. We denote them as �n�= �N /2,−N /2+n� to emphasize
that they correspond to n-photon collective excitation. The
corresponding n=0,1 ,2 are explicitly given by

�0� = �g1, . . . ,gN� ,

�1� =
1

	N
�
i=1

N

�g1, . . . ,ei, . . . ,gN� ,

�2� =	 2

N�N − 1��i�j

�g1, . . . ,ei, . . . ,ej, . . . ,gN� . �1�

In our case, cold polar molecular gases e.g., SrO �3� or CaF
�12� constitute the nonlinear medium. The nonlinearity is
expressed through dipole-dipole interactions. Imagine first
the ideal case when such interactions between molecules
generate an effective Hamiltonian of the type

V̂dd = �Ĵz
2. �2�

Since the states �n� are eigenstates of V̂dd, the collective dy-
namics can be fully accounted for by their phase evolution
�n,

	�n�t� = �n�V̂ddt�n� = ��N/2 − n�2t . �3�

In general to characterize the medium nonlinearity we would
have to include photon coupling states with n
2, but in the
scheme of optical quantum computation it is sufficient to
implement two-qubit controlled phase operation—provided
appropriate single qubit gates. The latter can be realized if
the accumulated nonlinear phase ��t� acquired by the polari-

tons equals � at the time when they exit the medium. ��t� is
the difference between the phase picked up by two concur-
rent excitations and the sum of the phases that each indi-
vidual excitation would independently pick up in the absence
of the other. It is defined as

��t� = ��2�t� − �0�t�� − 2��1�t� − �0�t�� = �2 − 2�1 + �0.

�4�

In other words, ��t� quantifies the departure from a linear
regime, that is, one in which the interaction between the two
excitations is absent and therefore their individual phases
simply sum up. From Eq. �2� the latter condition is satisfied
if 2�t�=	�. Therefore in this ideal case establishing a deter-
ministic controlled phase operation only requires coherent
control of the propagation and/or storage time of the polar-
iton in the dipolar medium. This corresponds to manipulating
the control fields that establish the conditions for the “slow-
light” propagation.

However, dipolar interactions do not generate a Hamil-
tonian of the type described by Eq. �2� and instead the
dipole-dipole interaction is given by

V̂dd
�1D� =

1

8�0
�
i�j

�̂i · �̂i − 3��̂i · r j
0���̂ j · ri

0�
�ri

0 − r j
0�3

, �5�

with �i the dipole moment of the molecule at site ri
0. Here

we have assumed that the molecules are at fixed positions
determined for example by a superimposed external optical
lattice potential.

For the simplest situation when both �g� and �e� states are
pure rotational states and have zero dipole moment �gg
=�ee=0, the dipole-dipole interaction is governed by the
�g�↔ �e� transition dipole moment which can be formally
written as

�̂i = �ge�gi��ei� + �eg�ei��gi� 
 �ge�̂i
− + �eg�̂i

+, �6�

with �ab
�0�a�er�b�. Assuming the interacting dipoles are
aligned in parallel, which is possible in one-dimensional
�1D� and two-dimensional �2D� geometries, this leads to
��̂i ·r j

0�=0, and neglecting counter-rotating terms �̂i
+�̂i

+, �̂i
−�̂i

−

the interaction potential becomes

V̂dd =
��eg�2

8�0
�
i�j

�̂i
+�̂ j

− + �̂i
−�̂ j

+

�ri
0 − r j

0�3
. �7�

V̂dd is not SU�2� symmetric and consequently the collective
Dicke states are not eigenstates of it. Exceptions are �0� and

�1� states which do remain eigenstates of V̂dd. This implies
that the dynamical evolution of �n� for n�2 not only ac-
quires a time-dependent phase, but in addition transitions to
other states outside j=N /2 will take place. These transitions
will affect the implementation of the phase gate which relies
on remaining on the Dicke manifold.

Ignoring for the moment the “leakage” outside the Dicke

states and focusing only the projection P of V̂dd on the Dicke
manifold, which is given by �13�

PV̂dd = �effĴz
2 + const, �8�

FIG. 1. Level scheme for utilizing slow-light polaritons. �e� and
�a� can be coupled via a two-photon transition, or �e� can be a
mixed-parity state.
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�eff =
2�

N�N − 1��i�j

a3

�ri
0 − r j

0�3
,

where

� =
��eg�2

8�a30
, �9�

and a the lattice constant of the molecular array. Now one
can estimate the propagation time required for implementing
the phase gate as t�=	� / �2�eff�. The resulting expression
gives �eff�1 /N. It clearly shows that there is an optimization
to undertake regarding the number of molecules in the array:
on one hand, there must be enough molecules to create suf-
ficient optical depth to couple-in the polaritons �14�. On the
other hand, in order to maximize the nonlinearity in Eq. �10�,
less molecules are better.

In a one-dimensional molecular array, one can analyti-
cally evaluate the nonlinear phase factor � from Eq. �9�. It is
given by

��1D� �
4�t��3�
	�N − 1�

, �10�

where ��3�=limN→��i=1
i=N−1i−3�1.2.

Given aforementioned assumptions about dipole align-
ment, for the two-dimensional square lattice �17� only a
change in lattice vectors ri

0=yiey+ziez is required. In this case
and assuming periodic boundary conditions one obtains

��2D� � 2��1D�. �11�

III. DECOHERENCE

A. Decay out of symmetric manifolds

Decay out of symmetric manifolds and phononlike effects
in the Wigner crystal implementations can be significant. We
will discuss symmetric manifolds at present, leaving the
phononlike decoherence effects to a later section.

As mentioned in previous session, Dicke states are a good
basis only if the relevant Hamiltonian is spherically symmet-

ric �SU�2� symmetric�. This is not the case for V̂dd, and in
particular the state �2� will decay during the time evolution
inducing decoherence.

To estimate the decay probability from an initial Dicke
eigenstate during the dynamical evolution we calculate the
fidelity F�t�

F�t� =
����t��2��2

����0��2��2
, �12�

where ���t��=− i
	 V̂dd���t��, is the time evolving state under

V̂dd and ���0��=C2�0��2�+C1�0��1�+C0�0��0�. This quantity
is plotted for two different 1D sample sizes in Fig. 2. In the
same figure we also show the nonlinear phase � accumu-
lated by the evolving state. We numerically evaluated it as

cos���t�/2� =
C0

��t�C2�t� + �C0
��t�C1�t��2

2
, �13�

where Cn�t�= ����t� �n�� / ���0� �n� are the projections of the
evolving state into the corresponding Dicke states. The rel-
evance of decoherence effects and the departure of the pure
phase accumulation can be clearly observed in Fig. 2. The
plot shows not only a distorted evolution of the nonlinear
phase but also a different time dynamics since the nonlinear
phase approaches � at a time very different from the ex-
pected t� �see Eq. �10��.

One could effectively remove the mixture of j manifolds
and improve the fidelity of the phase gate by the addition of
an external electric field. This procedure, which we will de-
scribe in the following section, generally establishes a many-
body protected manifold �MPM� �13� which helps to elimi-
nate or mitigate decoherence effects.

B. Phononlike effects

In the presence of an external dc field, which induce re-
pulsive dipole-dipole interactions in the ground and excited
states, ��gg ,�ee�0�, molecules can assemble themselves in
a Wigner crystal. Attractive interactions along the remaining
directions can be suppressed by a strong transverse confine-
ment �9�. In a Wigner crystal implementation, there exists
another notable decoherence effect, which can be analyzed
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FIG. 2. �Color online� �a� Nonlinear phase as a function of time
for a 1D array with N=36 molecules �solid line� and N=81 �dashed
line�. Here t��N=36�=	� / �2�eff� is the expected phase gate time
for the N=36 system calculated by projecting the dipole Hamil-
tonian �Eq. �5�� onto the Dicke manifold. It is obvious from this
graph that the projected �=� phase time �t= t�, solid black line for
N=36, broken for N=81� deviates strongly from the exact one �t
�3.5t��. The main reason for this deviation is the importance of
transition processes out of the Dicke manifold as confirmed in panel
�b� where we plot the fidelity to stay in the state �2�.
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using a phonon formalism, cf. �15�. In a realistic crystalline
phase, the molecules are not fixed frozen. Phononlike effects
will add to the decay described in the previous section as
their energy provides a coupling between the symmetric and
nonsymmetric states. Details of decoherence due to phonons
will also be treated in subsequent sections.

C. Finite pulse effects

In the previous analysis we have assumed that Dicke
states are the result of the coherent light-molecule interac-
tions. However finite pulse effects can introduce inhomoge-
neity and can lead to nonzero initial population of states
out-side the Dicke manifold. The latter will cause additional
decoherence and will degrade the phase gate. The corrections
can be quantitatively understood by noticing that while slow-
light polaritons have linear dispersion in a linear medium,
the nonlinear interaction adds a dispersion relation,

E�k� = 	�k = ��
j

4

�r0
0 − r j

0�3
sin2�1

2
k · r j

0 . �14�

For 1D, Eq. �14� can be rewritten as

	�k→0
1D → ���− 3 + 2 ln ka��ka�2 + O�k�3� . �15�

The nonlinear terms in k present in the 1D dispersion relation
will degrade the phase gate. They however can be mitigated
by using long pulses or a �ring� cavity, where k=0.

In 2D on the contrary the low energy excitations scale as

	�k→0
2D → 3.27��ka� �16�

showing that in the 2D case, at least in the long-wave limit,
the spectrum remains linear and thus decoherence due to
finite pulse effects becomes less important.

IV. MANYBODY PROTECTED MANIFOLD

As the next step, we include a tunable dc electric field
which thereby induces a dipole moment in the ground and
excited states of the molecule ��gg ,�ee�0�. This effect then
augments the dipole-dipole interaction among our collective
Dicke-like states in a way that enables perturbative treatment
of the nonspherically symmetric part of the interaction, thus
reinstating �j ,m� as good eigenstates for the system,

V̂ = HH + HI = =
�

2 �
i�j

a3

�ri
0 − r j

0�3
�̂i · �̂ j −

�

2�
i�j

a3

�ri
0 − r j

0�3
�̂i

z�̂ j
z,

where

� =
��eg�2 − 1

2 ��ee − �gg�2

8�a30
. �17�

Here HH is the spherically symmetric �Heisenberg� part of
the Hamiltonian V, and HI is the nonsymmetric �Ising� part.

If at t=0 an initial state is prepared within the j=N /2
manifold, a perturbative analysis predicts that for times t

such that �t /	�� /�, ĤH confines the dynamics to the Dicke
manifold and transitions outside it can be neglected. In other
words the Dicke manifold becomes protected by the many-

body interactions and only the projection of ĤI on it, which

corresponds to PĤI=−�̃effĴz
2+const, with

�̃eff=
�
��eff becomes effective. As a consequence HI acts as

the desired ideal “phase gate” Hamiltonian.

The relative strength of the HH and HI parts of V̂ can be
manipulated to find values of � /� such that MPM protection
is maximized. For example, SrO has a 1� ground state with
a magnetic moment of 8.89D. Upon selecting ground and
excited rotational states with opposing parity, the appropriate
values of � and � are then obtained by diagonalizing the
Stark Hamiltonian for variable electric fields �15�. In Fig. 3,
we show the ratio of � /� for varying dc field strength be-
tween two rotational levels of SrO. For induced dipole tran-
sitions, the biasing electric dc field E depends on both the
rotational constant B and the ground-state dipole moment �0.

The application of an electric field changes the original
bare states to dressed states �g� and �e� which are linear su-
perpositions of the bare states. It has to be noted that the
addition of a dc field, leading to MPM protection, causes the
nonlinearity to be reduced by a factor of ��� /��.

Decay out of manybody protected manifold into other
manifolds

In this section we study what occurs if at time t=0 we
prepare the system in the j=N /2 subspace and let the system
evolve in time in the presence of MPM. This can be written
as

��n�t�� = e−1/2�n�t�te−i�n�t��N/2,− N/2 + n� . �18�

Here we estimate the decay magnitude �n. Our objectives are
to keep �n large while minimizing �n. As the states with 0
and 1 excitations are eigenstates of the symmetric manifold
there is no decay out of the manifolds and therefore �0=0
and �1=0.

Using first-order perturbation theory we can write

e−�2�t�t � 1 −
1

	
�

k,k�
0

��
0

t

d�Mk,k�e
i���k+�k���2

. �19�

The quantities Mk,k�= �N /2,−N /2+2�HI��k,k�
0� are the
transition matrix elements to states with j=N /2−2 which are

FIG. 3. �Color online� � /� for varying E�B /�0� in SrO. �a�
�gi�= �JSrO,MJ,SrO�= �0,0�i and �ei�= �1,0�i. �b� �gi�= �1,0�i and �ei�
= �2,0�i. B is the rotational constant of the molecule, and �0 is the
maximum ground-state dipole moment, in our case assumed to be
�0= ��eg�.
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the only ones which couple to �2� according to the Wigner-
Eckart theorem. To a good approximation they are given by

��k,k��= 1
	N�N−1��i�je

i�k·rj
0+k�·ri

0�� j
−�i

−�0� and their correspond-
ing excitation energies by 	��k+�k��, with �k given by Eq.
�14�. 	k, 	k� are discrete quasimomenta, which for a 2D
square lattice with lattice spacing a can be written as k
= 2�

a	N
�i , j�, i , j=0, . . . ,N−1. Note that the sum over k ,k� in

Mk,k� excludes the state k=k�=0 since �0,0 is just �2�.
After some algebra, one can show that Mk,k�

= 4�
N Fk�k,−k� where Fk is the Fourier series of �ri

0−r j
0�−3, i.e.,

Fk=a3� j�r0
0−r j

0�−3cos�k ·r j
0�. Replacing the latter equation in

Eq. �19� yields the following expression for the decay rate:

e−�2�t�t � 1 −
16�2

N2 �
k
0

�Fk�2
sin2��kt�
	2�k

2 . �20�

To get a general idea on the decay rate behavior we first use
Fermi’s golden rule to estimate the decay rate in the thermo-
dynamic limit, N→� and then we compare these predictions
with numerical studies for finite-size systems. According to
Fermi’s golden rule, at long times the decay probability
evolves linear with time as �2�t�=�2,

�2 �
4��2

	N
� �adk�D�Fk�2

�2��D��k�k�
��ak� . �21�

The latter relation yields that �2t� diverges in 1D as

�2t� �
�

�
� d�ka�

��ka�
�ka log ka�

→ � ,

implying the break down of Fermi’s golden rule approxima-
tion and emphasizing the issue that in 1D nonsymmetric de-
coherence effects are crucial in the large N limit.

In 2D, the situation is better due to the linear dependence
of the long-wave excitations with k and the extra factor of k
in the density of states. This yields that

�2t� �
�

�
� d�ka�ka��ka� → 0

and

F2D�t�� → 1, �22�

Consequently as long as ��� �which is required for the
validity of our perturbative treatment� and neglecting other
decoherence effects during the time evolution �which grows
linearly with N� Fermi’s golden rule predicts a robust phase
gate in 2D.

To validate these predictions we solve the exact many-
body dynamics numerically by evolving a system initially
prepared in the Dicke state with n=2 under the effective

Hamiltonian V̂, and compute the fidelity, F of remaining in a
Dicke state,

F�t� = ��N/2,− N/2 + 2���t���2 = e−�2�t�t. �23�

In Fig. 4 we show the 1D dynamics using the parameters
� /�=0.05 and N=36 and 81 and plot both � and F�t�. Note
in the presence of the MPM, the time when the phase gate is
implemented is close to the expected time t�. Figure 4 con-

firms the prediction that in 1D the fidelity decreases with
increasing N. We find that for moderate N the 1D decay
probability increases as �0.01 �

2

�2 N1.62, which is obtained via
a fit. This relation implies that in order to implement a robust
gate

�2

�2 �
100

N1.62 . �24�

However, by choosing � /� small we pay the price of having
slower dynamics and therefore we make the system more
vulnerable to other type of losses.

Figure 5 emphasizes the gain in fidelity obtained by going
from 1D to 2D. With the same number of molecules and
even a much larger � /�=1 the fidelity is much better than in
1D. By numerically evaluating the maximum decay prob-
ability we find it behaves as � �

2

�2 N−0.86. The decrease in F
with increasing N is in agreement with Fermi’s golden rule
approximation.

V. WIGNER CRYSTAL AND PHONONS

In dense low-temperature systems with sufficiently strong
fixed dc electric fields �9�, one can realize a self-ensemble
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FIG. 4. �Color online� �a� Nonlinear phase as a function of time
for a 1D array with N=36 molecules �solid line� and N=81 �dashed
line� in the presence of an external dc field, � /�=0.05. The latter is
used to implement the MPM. Here t��N=36�=	� / �2�̃eff� is the
expected phase gate time from our perturbative analysis for the N
=36 system �indicated by a solid grid line�. The corresponding time
for the N=81 system is indicated by the dashed vertical line. For the
two cases the actual time at which the phase gate is accomplished,
�cos�� /2��=0 is close to the calculated t� indicating the validity of
the perturbative analysis specially for N=36. The deviations can be
accounted for by higher order corrections in perturbation theory.
The fidelity of remaining in the �2� state is shown in panel b. The
latter decreases as either the ratio � /� or N increases, consistently
with Fermi’s golden rule predictions.
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molecular crystal or Wigner crystal. In this crystalline phase
��gg�
0 and the molecules are localized at their classical
equilibrium positions, ri

0. The latter form a linear chain in 1D
or a triangular lattice in 2D, with lattice spacing a. The for-
mation of a Wigner crystal is fundamentally determined by
the dimensionless parameter

� =
�potential energy�
�kinetic energy�



Udd

	2/�ma2�
, �25�

for molecules of mass m for a given density �=1 / �a�D. For
� 1 the dipolar repulsion wins over kinetic energy stabiliz-
ing the crystalline phase. In contrast to the case where the
localization of the molecules is enforced by an external po-
tential such as an optical lattice, in the self-assembled crys-
talline phase, molecules are not frozen and they can exhibit
collective oscillations �phonons� about their equilibrium po-
sitions. These oscillations can be described by rewriting the
position operators as ri=ri

0+xi and expanding V in powers of
xi. This procedure yields three terms: the fixed position di-
polar Hamiltonian �Eq. �18�� described in the prior sections,
the phonon Hamiltonian which is gapless �see Appendix A�
and a phonon-polariton interaction Hamiltonian Vphon−po
given by

Vphon−po = − 2��
i�j

Gij�� i · �� j − 2��
i�j

Gij�i
z� j

z

+ 8B0�
i�j

Gij��i
z + � j

z� , �26�

where

Gij = − 3a3 �xi − xj� · �ri
0 − rj

0�
4�ri

0 − rj
0�5

.

and B0= ��ee
2 −�gg

2 � / �8�a30�. Vphon−po is not spherically
symmetric, Dicke states are not eigenstates of it and conse-
quently Vphon−po will induce transition outside the Dicke
manifold even for the one-photon excitation state, �1�. These
transitions can degrade the phase gate significantly since
they are not suppressed by the MPM due to the gapless na-
ture of the phonon spectrum. If at time t=0 we prepare our
state in the J=N /2 manifold, the projection of the evolving
state on the n-Dicke state can be written as

��n�t�� = e−�n,ph�t�/2te−i�n�t��N/2,− N/2 + n� , �27�

and the decoherence rates �1ph and �2ph approximately cal-
culated using perturbation theory �15�. This procedure yields
an expression for �1ph given by

�1ph �
��� + 4B0�2

		� �
!
� dD�ak�

�2��D g!�k���N„�!�k�…

+ 1��„�!�k� − �k… + N„�!�k�…�„�!�k� + �k…� .

�28�

Here N(�!�k�)=1 / �e	�!�k�/�kBT�−1� is the thermal occupation
number for phonons with the phonon spectrum �!�k� �see
Figs. 8 and 9�. See Eq. �37� for the definition of g!�k�. For
two photon excitations it can be shown in a similar way that

�2ph � 2�1ph. �29�

Detailed derivations are included in the Appendix B.
In Ref. �15� analytical expressions for the decay rates in

the thermodynamic limit were derived using Fermi’s golden
rule. In this limit the decoherence induced by phonons was
shown only to be relevant in 1D and proportional to the
temperature. For our finite number of molecules Fermi’s
golden rule results are only crude approximations and for a
quantitative treatment we instead perform numerical calcula-
tions which are summarized in Figs. 6 and 7. There we plot
the time evolution of the decay probability for two systems
with different N. We find a general tendency of the maximum
decay probability to grow with increasing N specially for 1D.
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FIG. 5. �Color online� �a� Nonlinear phase as a function of time
for a 2D array with N=36 molecules �solid line� and N=81 �dashed
line�. The solid and dashed vertical lines indicated the expected
phase gate time according to our perturbative analysis. The ratio of
� /�=1 is outside the perturbative regime however the dynamics

exhibits almost the behavior expected from an ideal Ĵz
2 evolution.

The fidelity to remain in the �2� state is shown in panel b. Note that
in 2D the fidelity improves as N is increased.
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FIG. 6. �Color online�1−F1�t�, where 1−F1�t� / ��+4B0�2 /	� is
the probability of decay of a single excitation for a 1D system with
N=36 �solid�, N=81 �dashed� and �, B0 and � are system dependant
parameters. The solid and dashed vertical lines are at the time
where the perturbative treatment predicts the implementation of the
phase gate for the N=36 and 81 systems, respectively.
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Also for fixed N, �, and � we observe a linear dependence
on the temperature in agreement with Fermi’s golden rule
predictions.

VI. CONCLUSION

In this paper, we explore the feasibility of utilizing cold
polar molecules in 1D and 2D optical lattices for coherently
controlled nonlinear optics. We report a controlled � phase
gate time that increases proportionally to the number of in-
teracting molecules, but also note better fidelity in 2D sys-
tems for reasonable system parameters and external field
strengths. We address the role of nonsymmetric interactions,
one of the major decoherence effects, and demonstrate the
enhancement of phase gate fidelity when an MPM is created
by applying external electric fields. For self-assembled crys-
talline samples, we also have explored phonon-induced de-
coherence. Since we find that at low temperature the most
relevant decoherence effects in the Wigner crystal arrays are
caused by long-wave phonon excitations, spin-echo tech-
niques could help to reduce them.
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APPENDIX A: SELF-ASSEMBLED MOLECULAR
CRYSTALS

In a self-assembled ensemble molecular crystal, mol-
ecules are not longer completely frozen at the classical equi-
librium positions, ri

0, which form a linear chain in 1D or a
triangular lattice in 2D, with lattice spacing a. Instead they
exhibit collective oscillations �phonons� in the crystal. If we
expand the total Hamiltonian, Eq. �7� around the equilibrium
positions: ri=ri

0+xi and keep terms up to quadratic order xi
one obtains the following expression:

H = Hphon + V + Vphon−po, �A1�

Hphon = �
i

pi
2

2m
+

3�gg
2

16�0a3�
i�j

5��xi − xj� · nij
0 �2 − ��xi − xj��2

�ri
0 − rj

0�5
,

�A2�

=�
q,!
	�!�q�âq,!

† âq,!, �A3�

where âq,! is the annihilation operator for phonons with qua-
simomentum q and frequency �!�q� and nij

0 is a unit vector
along ri

0−rj
0. In 2D the index ! labels the two different pho-

non branches. In general

�!�q� =
Udd

	�
f!�q� . �A4�

The phonon modes in the dipolar crystal are acoustic
phonons, f!�q���c!q�. The phonon spectrum for 1D and 2D
crystals is plotted in Figs. 8 and 9.

APPENDIX B: DECAY OF DIPOLAR EXCITATIONS

1. Decay of a single excitation

We start by deriving the decoherence rate �1ph for single
excitations. To first order in perturbation theory we can write

e−�1ph�t� � 1 −
2

	2�
0

t

dt��
0

t�
d� �

q,!,k
0
�Lk,q,!�2

"��N„�!�q�… + 1�cos��q,k
+ ��

+ N„�!�q�…cos��q,k
− ��� , �B1�

where N(�!�q�)=1 / �e	�!�q�/�kBT�−1� is the thermal occupa-
tion number for phonons with the phonon spectrum �!�q�
�see Figs. 8 and 9� and �q,k

# =�!�q�#�k. �k is the dispersion
relation given in Eq. �14�. Here we have used the property
that

xi =
1

	N
�

q
�
!=1

D 	 a2

2	�f!�q�
e!�â!,qei�q·ri

0−�!�q��t

+ â!,q
† e−i�q·ri

0−�!�q��t� , �B2�

where in the 2D case the vectors e! are the two orthonormal
polarization vectors of the two phonon branches. Lk,q,!
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FIG. 7. �Color online� 1−F1�t�, where 1−F1�t� / ��+4B0�2 /	� is
the probability of decay of a single excitation for a 2D system with
N=202 �solid�, N=812 �dashed� and �, B0, and � are system depen-
dant parameters. In this case we had to go to larger system sizes to
show the decrease in fidelity with increasing N. The top �bottom�
axis scales are for N=812�202�.

FIG. 8. �Color online� Phonon excitation spectrum in 1D. a is
the separation between the molecules. The units of ��q� are
Udd /	�.
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= ���0�Vphon−po��k��, and can be explicitly written as

Lk,q,! = − 3	 1

2N	�f!�q�
�
i,j

a4�e! · �ri
0 − r j

0��
4�ri

0 − rj
0�5

· �eiq·ri
0
��0�

− ��i
z� j

z + 4B0��i
z + � j

z���k�� �B3�

With the substitution of

g!�q� 

9

f!�q���
i�0

�sin�q · ri
0�

�a4e! · ri
0�

�ri
0�5 �2

. �B4�

Equation �36� can be simplified to

Lk,q,! = i	 1

2N	�
�� + 4B0��q,−k

	g!�q� . �B5�

In the regime where Fermi’s golden rule is expected to be
valid the decay rate is constant; ��t�=� and following a simi-
lar procedure described in Ref. �16� one can show it is given
by

�1ph �
��� + 4B0�2

		� �
!
� dD�ak�

�2��D g!�k���N„�!�k�…

+ 1��„�!�k� − �k… + N„�!�k�…�„�!�k� + �k…� .

�B6�

The resonance condition is defined as ��!�q0
#�#�q0

#�=0 and
assuming that q0

#=0 is the only possible solution, the decay
rate is determined by the k→0 limit of the integrant in Eq.
�39� which is given in 1D by

�1ph
1D �

�� + 4B0�2

4
	3��3�	�kBT . �B7�

Due to the finite value of �1ph
1D , and the linear dependence on

N of t� the probability of remaining on the symmetric mani-
fold decreases exponentially with N and decoherence due to
phonons is certainly a limiting factor.

On the other hand in 2D, the decay rate vanishes as

�1ph
2D � lim

q→0
�� + 4B0�2kBTq → 0. �B8�

This conclusion however is only a rough estimation and our
numerical simulations shows that phonons can induce impor-
tant decoherence effects in 2D even in finite crystals.

2. Decay of two dipolar excitations

In the main body of our paper we have stated that �2ph
�2�1ph. A detailed derivation is given below.

To first order in perturbation theory we can write

e−�2ph�t�/	 � 1 −
2

	2�
0

t

dt��
0

t�
d� �

q,!,k,k�
0

�Sk,k�,q,!�2��N„�!�q�…

+ 1�cos��q,k,k�
+ �� + N„�!�q�…cos��q,k,k�

− ��� , �B9�

where �q,k,k�
# =�!�q�# ��k+�k�� and Sk,k�,q,! is rewritten in

the same form as

Sk,k�,q,! = − 3	 1

2N	�f!�q�
�
ij
�eiq·ri

0
��0� − ��i

z� j
z + 4B0��i

z

+ � j
z���k,k��

a4�e! · �ri
0 − r j

0��
4�ri

0 − rj
0�5 �

= 3i	 1

2N	�f!�q�
��� + 4B0���q,−k�k�,0 + �q,−k��k,0�

−
4�

N
�−q,k+k���

i�0
�sin�q · ri

0�
�a4e! · ri

0�
�ri

0�5 � . �B10�

In the above expression the term proportional to � /N is much
smaller than the one proportional to �+4B0 and can be ne-
glected. Under this assumption, �2ph�t�→�2ph,

�2ph � 2�1ph. �B11�

FIG. 9. �Color online� Phonon excitation spectrum in 2D for the
two different branches of the phonon spectrum. qx and qy label the
2D quasimomenta. The units of �1,2�qx ,qy� are Udd /	�.
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