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I. INTRODUCTION

The single-frequency oscillation in an externally pumped
phase-conjugate resonator �also called semilinear photore-
fractive oscillator with two pumps� �1,2� becomes unstable
above a certain critical value of the coupling strength �3�.
With the removed degeneracy in frequency the initially static
index grating starts to move and this results in an additional
nonlinear phase shift of the phase conjugate wave inside the
cavity. After two consecutive round trips the nonlinear phase
of the oscillation wave does not vanish; moreover it is accu-
mulated with the successive number of round trips in the
cavity. To ensure oscillation, this phase shift should either be
compensated by any possible means or it should become
equal to 2� to restore the in-phase addition of the partial
components of the oscillation wave after each double round
trip of the cavity �4�. One way to compensate for an unde-
sirable phase shift is to use a frequency shifted feedback �5�.
Another way consists of a slight misalignment �of the order
of a fraction of milliradian� of the two pump waves �6�.

The enhancement of the phase conjugate reflectivity by
frequency shift in the case of a perfectly aligned oscillator is
independent on the sign of the shift. By the same way, the
enhancement of the phase conjugate reflectivity by pump
misalignment in the case of a nonfrequency shifted oscillator
is independent on the sign of this tilt. Nevertheless if the
both effects are considered simultaneously, this symmetry is
broken. For misaligned pump waves the calculated beat fre-
quency in the oscillation spectrum for a negative detuning is
identical to that for a positive detuning of the same ampli-
tude �6�; the oscillation wave in a cavity with the feedback

frequency shifted by arbitrary �M always contains two com-
ponents, �I=+�M /2 and �II=−�M /2, which are indepen-
dent of the sign of the feedback frequency detuning. A sen-
sitivity to the sign of the angular misalignment and to the
sign of the feedback frequency shift nevertheless exists and
manifests itself in a breaking of the above symmetry when
both the pump misalignment and the frequency shifted feed-
back are imposed simultaneously �7�.

In this paper we analyze the combined action of fre-
quency shifted feedback and pump-wave misalignment on
the performance of a semilinear photorefractive oscillator,
and we compare the experimental results �Sec. II� with the
numerical simulations �Sec. III�. In Sec. IV a qualitative
analysis is presented, which reveals the physical origin of the
bifurcations in the oscillation spectra and allows for a pre-
diction of the critical values of the feedback frequency for
which a bifurcation may occur for any given set of param-
eters �pump misalignment angle, pump intensity ratio, cou-
pling strength, etc.�. Finally, in Sec. V we discuss the limits
of applicability of the considered model and describe the
experimental results that are still not explained.

II. EXPERIMENT

A. Experimental procedure

The experiment was performed with a semilinear photo-
refractive oscillator that involves a coupling of counterpropa-
gating waves and the appearance of reflection index gratings
�8�. Figure 1 shows schematically the geometry of the oscil-
lator.

A photorefractive crystal �PRC� is pumped with two
nearly counterpropagating waves, labeled 1 and 2 �with in-
tensities �A1�2 and �A2�2, respectively�. It serves as a nonlinear
mirror that can reflect, with amplification, any incident wave
4 �with intensity �A4�2� which is coherent with pump wave 1.
The reflected wave 3 �with intensity �A3�2� may be nonparal-
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lel to the incident wave 4, especially in the case of slightly
misaligned pump waves. �For the sake of simplicity we call
it, nevertheless, a phase conjugate wave throughout this pa-
per because the misalignment is really rather small, usually
below 1 mrad.�

The misalignment is introduced by tilting a mirror M,
which is placed in the input focal plane of the symmetric
telescope. The lenses L1 and L2 with the focal length
F=8 cm are separated by 2F; the tilting mirror and the
sample are in the input and output focal planes of the tele-
scope, respectively. In such a way the misalignment angle �
can be adjusted while keeping the overlap of the two pump
waves inside the sample practically unchanged. This is espe-
cially important because the two pump waves are loosely
focused in the sample with 1 m focal length lenses �not
shown in Fig. 1� which are placed at a distance of 90 cm
from the crystal.

The oscillator cavity is closed by a conventional mirror
Mc mounted on a piezoceramic holder. A saw-tooth voltage
is applied to this holder thus ensuring the possibility to con-
trol the frequency shift of wave 4 with respect to the fre-
quency of the incident wave 3. A beam splitter �BS� �which
is a thin uncoated glass plate� is placed inside the cavity and
the reflected beams are collected with detectors D1 and D2.
With the semitransparent mirrors the reference waves RW1
and RW2 with a temporal frequency of the pump waves are
sent to the detectors.

Thus the beat frequencies seen by each detector allow for
the reconstruction of the spectra of waves 3 and 4. The in-
tensity of wave 4 transmitted through the sample is measured
with one more detector which is not shown in Fig. 1. The
appearance of the intensity modulation in the signal mea-
sured with this detector indicates a bifurcation in the oscilla-
tion wave spectrum.

Two photorefractive crystals, Co-doped BaTiO3
�3.7�4�6.1 mm3 along the x, y, and z axes, respectively�
or KNbO3 double doped with Fe and Ag �9�
�4�8�7 mm3 along the x, y, and z axes, respectively� are
used as gain media in the oscillator. Both materials have an
enhanced response at high spatial frequencies, i.e., can be
used efficiently in a reflection grating geometry of the coher-
ent oscillator �9�. The advantage of KNbO3 is in its faster

response, in the millisecond range for weakly focused
beams. The two pump waves are mutually incoherent; they
are formed by splitting the Ar+-laser beam ��=514.5 nm�,
which allows control of the pump ratio in a wide range.

B. Experimental results

In the experiment we measure the oscillation intensity, its
beat frequency, and the frequency content of waves 3 and 4
versus, the frequency shift introduced by a piezomirror. We
measure these quantities varying the feedback frequency
shift �M while holding the other parameters fixed �coupling
strength ��, pump intensity ratio r= �A2 /A1�2, conventional
mirror reflectivity Rc�. The �M dependences are measured
for different values of the pump misalignment angle �. This
approach is chosen because the feedback frequency can be
adjusted, controlled, and reproduced with high precision,
while the measurement of the pump misalignment angle with
submilliradian accuracy presents obvious difficulties �be-
cause the misalignment in question can be comparable and
even much smaller than the divergence of each of the two
loosely focused pump beams�.

Figure 2 shows the dependences of the oscillation inten-
sity �measured with no reference wave sent to detector D1�
and the beat frequency on the feedback frequency detuning
for nearly perfect alignment �central column� and for posi-
tive or negative misalignment of the two pump waves �right
and left columns, respectively.� For nearly perfect alignment
of the pump waves the oscillation is beat free �no intensity
modulation, i.e., zero beat frequency� and the �M depen-
dence of its intensity is nearly bell shaped but with a pro-
nounced dip at zero-frequency detuning.

For misaligned pump waves the single oscillation mode
splits into two, with different frequencies, and the output
oscillation intensity becomes modulated. Depending on the
sign of the misalignment, the beat frequency increases either
with the increasing or with the decreasing feedback fre-
quency shift. The point of bifurcation in the frequency spec-

0
z�

2

PRC

41
Mc3

D1

D2

RW1

RW2

θp

ΩM

L1
L2

M

ψ

θosc
BS

FIG. 1. �Color online� Schematic of the semilinear oscillator
with the oscillation waves 3 and 4, waves 1 and 2 that are pumping
the photorefractive crystal �PRC�, and a conventional cavity mirror
Mc mounted on a piezoceramic. D1 and D2 are the detectors, RW1

and RW2 are the reference waves for heterodyne detection.

FIG. 2. Experimental dependences of the oscillation intensity
�upper row �a�–�c�� and beat frequency �lower row �d�–�f�� on feed-
back frequency detuning for the oscillator with the KNbO3 crystal.
The pump misalignment angle is −0.35, 0, and 0.25 mrad for the
��a� and �d�� left column, ��b� and �e�� central column, and ��c� and
�f�� the right column, respectively. The pump ratio is r=24.
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trum also marks a singularity in the �M dependence of the
oscillation intensity �discontinuity of the derivative
d�A3�2 /d�M�.

Several typical dependences of the oscillation frequencies
on the feedback frequency detuning are shown in Fig. 3, with

characteristic features that allow them to be distinguished
from each other. They can all be obtained with BaTiO3 as
well as with KNbO3 crystals. The simplest shape is a linear
dependence of the oscillation frequency on the frequency
feedback detuning �Fig. 3�a��. The frequency of wave 3 is
Doppler shifted with respect to the frequency of wave 4 by
vibrating the conventional mirror

�3 = �4 + �M , �1�

this is why the dependence shown in Fig. 3�a� looks like a
symmetric cross.

Crosslike dependences �osc=f��M� are typical for low-
loss cavities with large Rc and small threshold values of ��
in the case of well-aligned pump waves for any pump ratio r.
They are also observed for larger �� and misaligned pumps
provided that the pump intensities are strongly different, i.e.,
for r�100.

Another representative example of the �osc=f��M� de-
pendence is a “fork” shown in Fig. 3�b�. Here a single fre-
quency in each oscillation wave, 3 and 4, bifurcates at certain
critical values of �M.

Depending on crystal coupling strength and pump mis-
alignment angle, the bifurcation may occur at any �M. The
domain of nondegenerate oscillation can include, for ex-
ample, a region with �M =0. For certain parameter domains
a “double-fork” �osc=f��M� dependence may appear as
shown in Fig. 3�c�. The separation between the two critical
values of �M

cr�right�−�M
cr�left� can vary considerably and

may become negative, i.e., with no beat-free region between
two domains of nondegenerate oscillation.

Quite often, with the increase in the feedback frequency,
the two-frequency oscillation returns to an oscillation with a
single-frequency spectrum, i.e., two symmetric lines in the
spectrum exist only within a certain limited range of feed-
back frequencies. There may be two such �M domains �as
shown in Fig. 3�c�� or only one. In the latter case, the
�osc=f��M� dependence may resemble scissors �Fig. 3�d��.

The bifurcation in the frequency spectrum most often oc-
curs discontinuously, i.e., the two components in the spec-
trum appear or disappear always with a finite frequency
separation between them. Figure 4 shows a typical example
for the oscillator with KNbO3 gain medium. The frequency
separation at the critical point can be larger or smaller, but
we did not observe any case in which it would go smoothly
to zero.

The feedback frequency range and the domain of the os-
cillation frequency detuning depend on the photorefractive
sample used; they are much wider for KNbO3 �see Figs. 3�b�
and 3�d�� as compared to BaTiO3 �Figs. 3�a� and 3�c�� pro-
vided that the total intensity of the pump waves is the same.
The frequency detuning of the oscillation wave and the fre-
quency splitting �if it exists� are intensity dependent. They
increase roughly linearly with intensity as one can expect for
a space-charge decay driven by the dielectric �Maxwell� re-
laxation time �10�.

III. THEORY

A. Equations and procedure

We consider a quasi-phase-matched four-wave-mixing
with the wave-vector diagram shown in Fig. 5. For the case

FIG. 3. Experimental dependences of the oscillation frequency
versus frequency feedback detuning for different deliberately intro-
duced pump misalignment angles. Data are shown for the oscillator
with ��a� and �c�� BaTiO3:Co or ��b� and �d�� KNbO3:Fe,Ag.
Black and gray dots mark the frequencies in waves 4 and 3, respec-
tively. Solid lines are shown to guide the eyes. The power of the
Ar+ laser �300 mW� is the same for all the frames in this figure.
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of reflection gratings the set of equations for the complex
amplitudes of the four interacting waves is formulated in a
similar way as was done for the transmission gratings
�11,12�,
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where z is the coordinate along the propagation axis, Ai are
the complex amplitudes of waves i=1,2 ,3 ,4, Ai

� are their
complex conjugates, 	=k1z+k2z−k3z−k4z is a longitudinal
component of the wave-vector mismatch, � is the coupling
constant of the photorefractive crystal, � is the grating am-

plitude, I0 is the total intensity I0= �A1�2+ �A2�2+ �A3�2+ �A4�2,
and 
�1 / I0 is the response time of the photorefractive me-
dium that is inversely proportional to the intensity via pho-
toconductivity.

The modified boundary condition for the considered semi-
linear oscillator takes into account the frequency shift intro-
duced by a piezomirror �5�,

A4�z = l,t� = �RA3�z = l,t�exp�i�Mt� , �7�

where R is the intensity reflectivity of the conventional mir-
ror �real� and �R exp�i�Mt� is an amplitude reflectivity
which is complex because of the mirror vibrations.

The numerical simulations of the above equations are per-
formed using the technique described in �13�. A new element
consists in the reconstruction of the individual spectra of the
oscillation waves 3 and 4. To calculate the frequencies of a
particular wave, a reference wave is added with the same
frequency as that of the pump waves, and the result is Fou-
rier transformed to get a spectrum.

The results with parameters that are typical for the experi-
mental conditions are presented in the next subsection. We
then analyze the threshold conditions and establish the do-
mains of parameters where the splitting in the oscillation
spectrum may occur.

B. Results of the simulations

Numerous simulations have been conducted for different
coupling strengths ��, pump ratios r, and dimensionless
pump misalignment parameter 	� �which is defined as the
product of the sample thickness � and the longitudinal com-
ponent of the wave-vector mismatch 	�. To make the analy-
sis easier, the contour plots of the oscillation intensity are
constructed in the coordinates 	� and �M. Then, for some
fixed values of the pump misalignment the dependences of
the oscillation spectra on the feedback frequency detuning
are calculated in order to compare them with the experimen-
tal data �such as those shown in Fig. 3�.

Figure 6 shows some representative examples of contour
plots for increasing coupling strength �� for a pump ratio
r=5 and conventional mirror reflectivity Rc=0.3. These val-
ues are close to those used in the experiment: first, the se-
lected crystals ensure a high coupling strength that is, how-
ever, always smaller than 2�; second, because of cavity
losses �Fresnel reflection from uncoated crystal faces, sample
absorption, etc.�, the effective reflectivity of the conventional
cavity mirror is smaller than 100%.

For moderate cavity losses, Rc�0.3, and modest coupling
strength, ��=2–3, the oscillation is possible only for certain
nonzero 	� and �M and is beat free, i.e., each oscillation
wave only has one component in the spectrum �Fig. 6�a��.
With increasing coupling strength the areas of existence of
the oscillation increase and for ��=4 they merge so that an
oscillation becomes possible at 	�=0 and �M =0. The larg-
est oscillation intensity is reached, however, still at nonzero
values of 	� and �M. The additional areas appear with an
oscillation that has two components in its spectrum �roughly
horizontal stripes in Fig. 6�b� filled with gray shading�. The
beat frequency here increases with ��M� within the shown
range of feedback frequency detunings.

FIG. 4. Zoomed-in feedback frequency dependence of the oscil-
lation spectrum of wave 4 in the vicinity of the critical values of the
feedback frequency detuning. The angular detuning is 0.6 mrad.

FIG. 5. Phase matching diagram for the considered oscillator
with misaligned pump waves.
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With the coupling strength increasing even more, the do-
main of existence of the oscillation spreads further and two
more stripes with two-frequency spectrum appear �Fig. 6�c��.
At the same time the structure of the central part, with a

beat-free oscillation, remains qualitatively the same; the larg-
est intensity is still reached at nonzero 	� and �M, nearly in
the same places where the oscillation appears at small values
of the coupling strength.

It should be noted that the window of parameters 	� and
�M chosen for Fig. 6 does not cover all the areas of exis-
tence of the oscillation, except for Fig. 6�a�. The horizontal
stripes in Figs. 6�b� and 6�c� extend, e.g., to infinitely large
values of ��M�. Extra “islands” of beat-free oscillation appear
for increasing 	� at large coupling strengths �Fig. 6�c��.

The question may arise as to how the oscillation is pos-
sible with a feedback frequency detuning that largely ex-
ceeds the reciprocal relaxation time of the photorefractive
crystal. One should expect that in the range of ��M��1 /
 a
photorefractive grating in the sample cannot follow such a
quick variation in the phase of the reflected wave 4. The
answer is simple; far beyond the bandwidth of the photore-
fractive gain spectrum, the simulation presented in Fig. 6
describes the so-called mirrorless oscillation that does not
need any conventional mirror to appear �1�. Being sent back
to the sample by the feedback mirror, it affects nevertheless
the oscillation via photoconductivity. It has been shown re-
cently that the threshold of the mirrorless oscillation drops
considerably with the misalignment of the pump waves �14�.
This is in agreement with the data of Figs. 6�b� and 6�c�
where the horizontal stripes are always displaced from
	�=0.

For relatively modest ��M��1 /
 the contribution of the
cavity is important and it strongly modifies the mirrorless
oscillation. In the frame of Fig. 6�b�, for example, only two
horizontal stripes of the two-frequency oscillation are present
while for much larger ��M� the simulations show four stripes
that are symmetric with respect to the zero misalignment line
	�=0. This is due to the fact that two contributions, one
from the mirrorless oscillation and the other from the cavity
oscillation, add constructively for the stripes visible in Fig.
6�b� and destructively for the two other missing stripes. The
asymmetry that has the same origin is also evident in the
intensity and in the beat frequency of the four horizontal
stripes shown in Fig. 6�c�. It should be underlined that this
asymmetry disappears for ��M��1 /
, where only one of the
two contributions �mirrorless oscillation� survives.

From the whole scope of simulations it is possible to find
nearly all typical patterns of �osc=f��M� dependences that
have been observed in the experiment. If in Fig. 6�b� we
consider the case of perfectly aligned pump waves, 	�=0,
the oscillation will be beat free everywhere it exists, the de-
pendence �osc=f��M� will be crosslike, and the dependence
of the oscillation intensity on the feedback frequency will
have a dip at �M =0. This describes qualitatively well the
experimental data shown in the central column of Figs. 2 and
3�a�.

When considering the normalized misalignment 	�=4 in
Fig. 6�b� we get a forklike �osc=f��M� dependence, similar
to the experimental findings shown in Fig. 3�b�. Finally, for a
larger coupling strength, e.g., in Fig. 6�c�, one can easily find
the range of 	� in which the behavior should be double-fork-
like �see Fig. 3�c��.

To reconstruct the dependence of the oscillation spectra
on the feedback frequency detuning, as it was already men-
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FIG. 6. �Color online� Contour plots of the oscillation intensity
as a function of the normalized feedback frequency shift �M
 in-
troduced by the vibrating mirror �abscissa� and of the normalized
phase mismatch 	� �ordinate�. The pump ratio is r=5. The cou-
pling strength �� is equal to 2, 4, and 4.5 for �a�, �b�, and �c�,
respectively. Areas filled with gray shading correspond to nonde-
generate oscillation with two-frequency components. The beat fre-
quency increases with increasing ��M�.

DYNAMICS OF FOUR-WAVE-MIXING OSCILLATORS WITH… PHYSICAL REVIEW A 80, 013803 �2009�

013803-5



tioned, the reference wave with the temporal frequency of
the pump wave was added to each oscillation wave �3 and 4�.
The results are shown in Figs. 7�a� and 7�b� for 	�=2.0 and
Rc=0.3, 	�=2.8 and Rc=0.1, respectively, with the coupling
strength and the pump ratio being the same, ��=4.5, r=5.
These two dependences resemble qualitatively the experi-
mental observations shown in Figs. 3�b� and 3�c�. We did not
find, within the frame of the described model, any solutions
that give a beat-free oscillation at large feedback frequencies
such as the ones shown in the scissorlike spectrum in
Fig. 3�d�.

A separate task of the simulations was to establish
whether the bifurcations in the spectra occur subcritically or
supercritically �15,16�. To do so, the same simulations have
been performed with more fine discrete steps in the feedback
frequency in the vicinity of the critical points in Fig. 7. The
results are given in Fig. 8 by open circles for the zoomed-in
region of the critical behavior in Fig. 7�a�. The discontinuity
in the frequency splitting is evident. The same behavior is
also detected in the vicinity of the bifurcations in Fig. 7�b�.

The data shown in Fig. 7 represent the oscillation frequen-
cies in the established regime. It should be noted that the
dynamics of the single-mode oscillation changes qualita-
tively when approaching a critical point of bifurcation. Being
completely smooth far away from the bifurcation, it features
damped transient oscillations when approaching the critical
value of �M
. The closer �M
 is to its critical value, the
more pronounced these transient oscillations become �Fig.
9�.

IV. ANALYSIS OF THE FIELD SELF-REPRODUCTION IN
THE OSCILLATOR CAVITY

In this section we show how the bifurcations in the oscil-
lation spectra can be predicted from the analysis of the os-
cillation wave self-reproduction in the cavity. To ensure a
stable coherent oscillation two conditions must be met: after
each complete round trip of the cavity �1� all losses must be
compensated for and �2� the phase of the oscillation wave
must return exactly to its initial value �modulo 2��. These
conditions are usually called amplitude and phase conditions
of oscillation.

For an oscillator with a phase conjugate mirror two round
trips are necessary to ensure that the optical field reproduces
its initial state �4�. The wave front, the phase, and the fre-
quency detuning of the oscillation wave should return to
their initial shape and values. In the nondegenerate case the
waves have two components with different frequencies �I
and �II and the oscillation condition reads,


��I,	��
���II,	��Rc = 1, �8�

where the reflectivity of the conventional mirror Rc does not
depend on small frequency detunings.

This equation follows from the above-described
requirement of reproduction of the oscillation field after each
double round trip of the cavity. It contains 
��s ,	��
=A4

��� ,�s� /A3�� ,�s� which is the amplitude reflectivity of a
passive phase conjugate mirror for a fixed 	� and a particu-
lar frequency of the incident signal wave �s.

Equation �8� can be derived rigorously from the stability
analysis of the full set of Eqs. �2�–�7�. It is obtained in the
undepleted pump approximation and corresponds to the os-
cillation threshold. It also applies for strong wave coupling,
provided that 
 is calculated taking into account the pump
depletion.

The complex equation �Eq. �8�� can be decomposed into
two equations,

FIG. 7. Calculated feedback frequency dependences of the os-
cillation frequencies for �a� ��=4.5, r=5; 	�=2.0, Rc=0.3 and �b�
	�=2.8, Rc=0.1. Data for waves 3 and 4 are shown in gray and
black colors, respectively. Vertical dotted lines relate to Fig. 11.

FIG. 8. Calculated feedback frequency dependence of the oscil-
lation spectrum of wave 4 for ��=4.5, r=5, and 	�=2.0 in the
vicinity of the critical values of feedback frequency shift in Fig.
7�a�. Open circles show the results of the simulations while crosses
represent the results of the field self-reproduction analysis described
in Sec. IV.
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�
��I,	��
���II,	���Rc = 1 �9�

and

arg�
��I,	��
���II,	��� = 2�N , �10�

which correspond to the amplitude and phase conditions of
oscillation, respectively.

For perfectly aligned pump waves �	�=0� and degenerate
oscillation ��I=�II=0� no additional phase shift appears be-
cause of phase conjugation such that Eq. �10� is met auto-
matically. The same is true for a nondegenerate single-
frequency oscillation, �I=�II in the case of misaligned
pump waves �	��0�. To satisfy the requirement of Eq. �10�
in the general case, the additional phase which is due to the
conjugation of the first spectral component should be the
same as that which is due to the conjugation of the second
spectral component �or they can differ by 2�N�.

The above arguments allow for the prediction of the type
of oscillation �single frequency, two frequency� expected and
determination of the oscillation frequencies from the calcu-
lated dependences of �
����2 and arg�
����. With the ana-
lytical expressions for 
 taken, e.g., from �14�, we will obtain
the frequencies at the oscillation threshold. This is sufficient
to establish the type of the oscillation frequency response to
the feedback frequency shift �cross, fork, double fork� and to
find the approximate location of the bifurcation points. To
get the exact values we need to know the strength of the
oscillation wave and calculate 
, taking the signal-to-pump
ratio I4 / I1 equal to 0.06.

Thus, to ensure the threshold conditions for the nondegen-
erate oscillation it is necessary to find a pair of frequencies,
�I and �II �if they exist�, for which the nonlinear phase that
arises when phase conjugation occurs is exactly the same or
differs to 2� �i.e., the requirement of Eq. �10� is met�. These
frequencies need to belong to a frequency detuning domain
with a sufficiently large gain to satisfy also the amplitude
condition of oscillation �Eq. �9��.

To prove the validity of this approach, we analyze the
frequency response of a passive four-wave-mixing phase
conjugator. The dependences of the phase conjugate reflec-
tivity Rpc= �
��s��2 and the phase of the conjugate beam
arg�A4

���� /A3���� on the detuning frequency of a signal wave
�s have been calculated from the solutions of Eqs. �1� and
�5� provided that the signal-to-pump ratio I4 / I1 is 0.06.

For perfectly aligned pump waves �	�=0� these depen-
dences are shown in Figs. 10�a� and 10�b� by gray dotted
curves; they are even and odd functions of �s, respectively.
No extrema are seen for the dependence of arg�A4

���� /A3����
within the frequency range where the reflectivity is greater
than unity. Therefore it is impossible to find �I and �II for
which Eq. �10� can be satisfied; the beat-free oscillation
should be observed for arbitrary reflectivity of the conven-
tional mirror and the dependence of the frequencies of waves
3 and 4 on the feedback frequency should be crosslike.

With an increasing misalignment, the above spectra be-
come asymmetric and the range of the arg�A4

���� /A3����
variation increases. The simulations show a pronounced
minimum in the spectrum of the nonlinear phase already for
	�=1 so that one necessary condition of the spectrum bifur-
cation is fulfilled. The phase conjugate reflectivity in the vi-
cinity of this minimum is, however, not large enough to meet
the other threshold condition given by Eq. �9�.

For a larger misalignment, 	�=2, the minimum in
arg�A4

���� /A3���� moves to smaller � values and �
�2 in-
creases in this frequency domain �black lines in Figs. 10�a�
and 10�b��. As a result, the two threshold conditions �Eqs. �9�
and �10�� are met in the vicinity of the minimum of

FIG. 9. Calculated temporal variations in the oscillation inten-
sity for ��=4.5, r=5, and 	�=2.0. The feedback frequency shift is
�M
=2.7, 2.75, 2.755, and 2.76 for frames �a�, �b�, �c�, and �d�,
respectively.
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arg�A4
���� /A3���� and the bifurcation of the oscillation fre-

quency should appear.
In Fig. 10�a�, a horizontal line marks the level of Rpc

for which the amplitude condition of oscillation is fulfilled
provided that the oscillation is single frequency, i.e.,
Rpc= �1 /Rc�=0.333. Such an oscillation occurs within the
range −0.58��osc
�1.42. This corresponds, for the
oscillator, to the feedback frequency detuning
−1.16��M
�2.84 which is in agreement with the results of
simulations presented in Figs. 7�a� and 8.

To define the range of a nondegenerate oscillation one
should find two oscillation frequencies �I and �II for which
condition �Rpc��I�Rpc��II�=1 /Rc can be met. These fre-
quencies indicate the largest possible interval between two
spectral components in the oscillation wave, �II−�I, and
largest feedback frequency detuning �M

max=�I+�II at which
the oscillation still exists. The other limit of appearance of
nondegenerate oscillation �M

min corresponds to the minimum
of arg�A4

���� /A3���� �see Fig. 10�b��. From these require-
ments the range of the nondegenerate oscillation should be
2.66��M
��. Once again, these data are in agreement
with those presented in Figs. 7�a� and 8 that follow from the
simulation of the oscillation dynamics.

Thus the data in Fig. 10 can be used to reconstruct the
dependence of the oscillation frequencies on the feedback
frequency shift. The technique consists of the following
steps: first we define in Fig. 10�b� different pairs of frequen-

cies, �I and �II, for which the nonlinear phase of the phase
conjugate wave is the same; then for each frequency pair we
attribute the feedback frequency shift which transforms one
frequency into the other, �M =�I+�II. The data shown in
Fig. 8 �crosses� are generated in this way. They practically
coincide with the results of the direct simulation above the
bifurcation point. They also give a solution below the bifur-
cation point that does not exist in the simulations.

In fact, within a certain interval of �M
 the oscillation
conditions are satisfied both for single-frequency and two-
frequency oscillations �Fig. 8�. In general, the particular os-
cillation that has a smaller threshold dominates. In nearly all
the considered range of �M
 the dominant one is the single-
frequency oscillation. At the critical value of �M, where the
threshold of the two-frequency oscillation becomes smaller,
the separation of two oscillation frequencies is already well
distinguishable, i.e., the subcritical bifurcation occurs. It is
curious that for �M, where two oscillation solutions are al-
lowed, the dynamics show damped oscillations �see Fig. 9�.
It seems that the oscillator hesitates at first as to which solu-
tion it needs to take but finally decides in favor of the single-
frequency mode.

Until now we analyzed the cavity oscillation with such set
of parameters that its threshold coupling strength is less than
that of the mirrorless oscillation �1,14�. With the misalign-
ment increasing to 	�=2.8 the oscillation appears even with
no external mirror. It is clear that with the cavity mirror
present, the cavity oscillation will be affected by the mirror-
less oscillation. For such set of parameters for which the
mirrorless oscillation exists, we perform similar simulations
of Eqs. �1�–�5� aiming to obtain the signal frequency depen-
dence of arg�A4

���� /A3���� and conclude about new possibili-
ties of oscillation frequency bifurcations.

Figure 11 represents the calculated dependence of the
nonlinear phase in the phase conjugate wave on the fre-
quency detuning of the signal wave for 	�=2.8 and
I4 / I1=0.01. Two extrema appear in Fig. 11 instead of only
the one minimum in Fig. 10�b�. The second particularity is a
much wider range of the nonlinear phase variation in Fig. 11,
which exceeds considerably 2�. This leads to consider the

FIG. 10. Calculated dependences of �a� the phase conjugate re-
flectivity and �b� the nonlinear phase of the phase conjugate wave
on frequency detuning of the signal wave for ��=4.5, r=5, and
I4 / I1=0.06. 	�=0 and 2 for gray and black curves, respectively.

FIG. 11. Calculated dependences of the nonlinear phase in the
reflected wave on frequency detuning of the signal wave for
��=4.5, r=5, 	�=2.8, and I4 / I1=0.01. The two branches are
shifted in phase by 2�. The horizontal dotted lines are related to the
vertical dotted lines in Fig. 7�b�.
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phase condition of oscillation �Eq. �10�� with N=1, i.e., tak-
ing into account two branches of the solution for arg�
����
that differ by 2�.

With this approach we are able to predict the two critical
�M
 values at which a single-frequency oscillation splits
into two frequencies and interpret other particular oscillation
spectra such as �1� the nondegenerate oscillation where one
frequency is shifted and the other is unshifted with respect to
the pump frequency or �2� the nondegenerate oscillation con-
taining identical spectral components in the two oscillation
waves 3 and 4. A comparison shows quite good agreement
with the data of direct simulations of the oscillation frequen-
cies presented in Fig. 7.

Let us start from a zero feedback frequency shift
��M =0�; the data for this particular case are shown in Figs.
7�b� and 11 by �i�. By definition, the nondegenerate oscilla-
tion should have in this case a symmetric spectrum, with +�
and −� components in each of the oscillation waves 3 and 4.
This is in agreement with the data of Fig. 7�b� that show
identical frequency components for the two oscillation waves
�the gray and the black dots coincide�. We find in Fig. 11 that
the requirement of equal phases for frequency components
with the same modulus but different signs is fulfilled for
��s�=0.55, which is in good agreement with the data of Fig.
7�b�.

Another particular case corresponds to a nondegenerate
oscillation with one component which is not shifted in fre-
quency, �I=0. This situation is depicted as �ii� in Figs. 7�b�
and 11. The requirement of equal phases for the two-
frequency components, �I=0, �II=0.5, is fulfilled as one
can see in Fig. 11. This is in agreement with the data of Fig.
7�b�.

A slight displacement of the horizontal line �ii� upward
brings us to the maximum of the nonlinear phase as a func-
tion of the signal frequency. Beyond this critical point the
two-frequency oscillation does not exist, i.e., this particular
situation corresponds to the point of bifurcation.

In a similar way, the second bifurcation point can be
found from the requirement that the horizontal line �iii� in
Fig. 11 touches the minimum of the signal frequency depen-
dence of the nonlinear phase. The frequencies �I=0.72 and
�II=1.2 evaluated at this bifurcation point are also in good
agreement with those obtained from simulations �Fig. 7�b��
at �M =�I+�II=1.9.

It is easy to show that for other values of the frequency
detuning �M the results of the direct simulations give values
of oscillation frequencies that are very close to those ex-
tracted from the threshold analysis. In the vicinity of the
minimum we find, in Fig. 11, �I=0.7 and �II=1.8, which fit
quite well the values extracted from the simulations for
�M =�I+�II=2.5 �case �iv� in the figures�. In the vicinity of
the maximum in Fig. 11 we find �I=−1.1 and �II=0.6,
which also fit well the values extracted from the simulations
for �M =�I+�II=−1.5 �case �v� in the figures�. Thus we
conclude that the described analysis can also be applied in
the parameter domain where the mirrorless oscillation is al-
lowed.

V. DISCUSSION

In the presented calculations a crucial point for the obser-
vation of frequency bifurcation with moderate-gain-factor

crystals requires a nonzero phase mismatch 	 �see definition
after Eq. �6��. The phase mismatch results in a higher two-
beam coupling gain; it decreases both the oscillation thresh-
old and the threshold of the two-frequency oscillation. In our
experiment such a mismatch is introduced deliberately by
misaligning the two counterpropagating pump waves. In the
calculations of Sec. III it is postulated that all four interacting
waves are changing their initial propagation directions as
compared to the case of 	�=0 �see Eqs. �2�–�5��.

The main scope of the experimental observations fits rea-
sonably well our simulations, so we can conclude that this
approximation is quite acceptable. At the same time the
question always remains whether this approximation is
unique and whether it could be possible to get a phase mis-
match without misaligning the two pump waves �by pur-
posely introducing it or simply allowing it to occur natu-
rally�.

To answer this question we built the oscillator schemati-
cally shown in Fig. 12. This oscillator uses the KNbO3
sample as a gain medium while pump wave 2 is generated by
Feinberg’s cat phase conjugator �17� that uses a BaTiO3 crys-
tal. In this scheme, pump wave 1 is the phase conjugate
replica of pump wave 2 so that the two pump beams are
perfectly counterpropagating.

The phase conjugate reflectivity of the cat phase conjuga-
tor is measured to be about 30%, but taking into account the
Fresnel losses in the KNbO3 crystal we get a pump intensity
ratio r�10. The estimated effective reflectivity of the cavity
mirror is still Rc�0.3. Keeping the same orientation of the
cavity axis and KNbO3 tilt angle we ensure the same cou-
pling strength as in the previous experiments.

Thus the setup depicted in Fig. 12 ensures the best pos-
sible alignment of the two pump waves and does not depend
on human factors �on the precision of the manual cavity ad-
justments as in the case of Fig. 1�. Also, to give the oscilla-
tion waves more freedom in choosing their propagation di-
rections, we do not control the Fresnel number of the cavity
�the aperture is removed�.

The measured feedback frequency dependence of the os-
cillation frequencies is shown in Fig. 13. It clearly shows the
bifurcation of the oscillation frequency. So, even with per-
fectly aligned pump waves it is not excluded that the phase
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FIG. 12. �Color online� Schematic of the semilinear oscillator
with the pump wave 2 generated from the pump wave 1 transmitted
through the KNbO3 crystal by a phase conjugation process with the
BaTiO3 crystal.
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mismatch might appear spontaneously via self-misalignment
of different frequency components in the oscillation wave.

VI. CONCLUSIONS

We show in this paper that the oscillation dynamics of the
nearly degenerate four-wave-mixing oscillator is very sensi-

tive to even small deviations from the perfect phase match-
ing via misalignments of the two pump waves. An angular
detuning of the order of a fraction of milliradian results in a
considerable transformation of the oscillation spectrum. The
bifurcations in the oscillation spectrum become allowed,
whereas a single-frequency oscillation is expected at per-
fectly aligned pump waves. This conclusion extends to the
case of an oscillator with a frequency shifted feedback.

The results of simulations are in reasonable agreement
with the main scope of the experimental observations. The
simulations show several types of dependence of the oscilla-
tion frequencies on the feedback frequency �cross, fork, and
double fork� and predict, in agreement with the experimental
data, a subcritical type of bifurcation.

It is shown that the type of response of the oscillation
spectra to the quasi-phase-matching can also be predicted
from the analysis of the frequency dependences of the com-
plex phase conjugate reflectivity. This analysis reveals the
domains of multiple solutions for oscillation frequencies,
which qualitatively explains the subcritical bifurcation.
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