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We have used an echo-type atom interferometer that manipulates laser-cooled atoms in a single ground state
to investigate the effect of light scattering from pulsed and continuous-wave light. The interferometer uses two
off-resonant standing-wave pulses applied at times t=0 and t=T to diffract and recombine momentum states
separated by 2�k at t=2T. Matter wave interference is associated with the formation of a density grating with
period � /2 in the vicinity of this echo time. The grating contrast is measured by recording the intensity of
coherently backscattered light. The interferometer is perturbed by an additional pulse applied at t=2T−�T or
by continuous-wave background light. If the additional pulse is a standing wave, the momentum states inter-
fering at t=2T are displaced and the grating contrast can be completely recovered due to constructive inter-
ference. In this case, the contrast shows a periodic modulation at the atomic recoil frequency as a function of
�T. In a recent work, it was shown that the atomic recoil frequency can be measured easily and precisely when
using coherence functions to model the signal shape. This paper provides an alternative description of the
signal shape through an analytical calculation of echo formation in the presence of an additional standing-wave
pulse. Using this treatment, it is possible to model the effects of spontaneous emission and spatial profile of the
laser beam on the signal shape. Additionally, the theory predicts scaling laws as a function of the pulse area and
the number of additional standing-wave pulses. These scaling laws are investigated experimentally and can be
exploited to improve precision measurements of the atomic recoil frequency. We also show that coherence
functions can be used to make a direct measurement of the populations of momentum states associated with the
ground state under conditions where the Doppler-broadened velocity distribution of the sample is much larger
than the recoil velocity. These measurements are consistent with Monte Carlo wave-function simulations. If the
additional pulse is a traveling wave, we find that the grating contrast measured as a function of �T can be
modeled by a quasiperiodic coherence function as in previous experiments that utilized atomic beams. In this
work, we investigate the dependence of the photon scattering rate on the intensity and detuning of the traveling
wave. We also study the effects of perturbing the interferometer with continuous-wave light and find that the
dependence of the photon scattering rate on the intensity and detuning of the perturbing field is consistent with
expectations.
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I. INTRODUCTION

There has been considerable interest in using atom inter-
ferometers �AIs� that utilize laser-cooled samples to obtain
high-precision measurements of the atomic fine structure
constant, � �1–4�. Whereas the work in Refs. �1,2� relied on
Raman transitions between hyperfine ground states in ce-
sium, several experiments have used single state AIs in
which Rb atoms are manipulated in a single ground state
�5–11�. The first demonstration of a single state AI �5� used
echo techniques to observe the effects of atomic recoil. This
AI uses two off-resonant standing-wave pulses applied at t
=0 and t=T to diffract and recombine momentum states as-
sociated with the same internal atomic state. Atoms absorb
momenta in units 2n�k due to absorption and stimulated
emission of photons from the traveling-wave components of
the standing wave. Here, k is the wave vector of the traveling
wave and n is an integer associated with the number of two-
photon transitions. These momentum states represent differ-
ent center-of-mass wave packets that accumulate a phase of
n2�rt, where �r=��k2 /2m is the atomic recoil frequency.
Here, m is the atomic mass and �k=2�k is the momentum
transferred to atoms by the standing-wave pulse. The Dop-
pler phases of these wave packets evolve as n�kv0t, where

v0 is the initial atomic velocity. For a sufficiently cold
sample, the temporal phase modulation of the atomic wave
function at �r can be detected if the characteristic Doppler
dephasing time �D�1 /ku�Tr �6�. Here Tr=	 /�r�32 
s
is the recoil period and u is the most probable speed of the
atomic sample. For a laser-cooled sample at a temperature of
50 
K, as in this work, �D�1 
s�Tr. In this case, the
effects of atomic recoil can be observed using the echo tech-
nique. Therefore, an echo-type AI offers a general technique
to cancel the effect of the velocity distribution and observe
recoil oscillations even if the velocity distribution of the
sample is much larger than the recoil velocity, vr=�k /m.
Such an AI avoids the necessity of velocity selection.

The momentum states associated with each atom can be
recombined by the second standing wave on a time scale that
should be limited only by the transit time, �T, of cold atoms
through the region of interaction defined by the laser beams.
Typically, �T�100 ms so that the separation between wave
packets representing momentum states shown in Fig. 1�a�
can be much larger than the de Broglie wavelength. Interfer-
ence of momentum states after interaction with the two
standing-wave pulses occurs in the vicinity of echo times t
=2T ,3T, etc. The interference is associated with the forma-
tion of density gratings with spatial modulations at subhar-
monics of � /2 �5,12�. Here, � is the wavelength of light. In
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this work, we focus exclusively on the grating with period
� /2 that forms in the vicinity of t=2T. The contrast of this
grating can be detected by coherently backscattering a
traveling-wave readout pulse. The backscattered signal is
known as an echo and has a characteristic envelope that is
shown in Fig. 1�a�. The signal envelope represents the effect
of averaging over the velocity distribution of the sample. The
echo amplitude exhibits a modulation as a function of T that
is periodic at �r. The modulation period, Tr, shown in Fig.
1�b�, is the characteristic time in which a momentum kick of
2�k causes a displacement of wave packets through a
distance � /2.

The Talbot time TTalbot=2Tr defines the time scale on
which recoil effects become significant �13�. The Talbot ef-
fect refers to the repeated self-imaging of a diffraction grat-
ing from a collimated source first observed in classical optics
�14�. A number of experiments in atom optics have used
Talbot-Lau interferometers �15� in which there are strong
overlap between diffracted atomic waves. In particular, ef-
fects of multiple phase gratings �16� and atomic diffraction
in the Bragg regime �17–19� have been studied using atomic
beams. The single-state AI used in this work is also a Talbot-
Lau interferometer in which an “uncollimated” atomic cloud
with a velocity spread much greater than vr is diffracted by a
standing wave pulse. A second standing wave is used to can-
cel the Doppler phases of wave packets so that grating for-
mation occurs at echo times. Interesting applications of this
interferometer include techniques for imaging nanostructures
�20�.

Previous work using this echo-type AI and dilute samples
of laser-cooled atoms �5,7,9,10�, have demonstrated that a
precise measurement of � can be related to a measurement of
� /m obtained by measuring Tr over a long time scale. The
work in Refs. �5,7� describes preliminary measurements in
the time domain and frequency domain, respectively. Refer-
ence �8� discusses the effects of magnetic field gradients and
gravitational acceleration on time domain measurements. A
more complete analysis of the challenges of extracting Tr
due to changes in the signal shape caused by the effect of
spontaneous emission and spatial intensity profile of the ex-
citation beams is presented in Ref. �10�. The techniques de-
scribed in Ref. �10� were used in Ref. �9� to measure �r to a

precision of �2.6 parts per million �ppm�. This result was
obtained by averaging the results of 80 data sets and showed
that the AI has reduced sensitivity to systematic effects such
as the ac Stark shifts and magnetic fields. Other advantages
of using dilute cold-atom samples for these measurements
are that systematic effects due to interatomic interactions and
the refractive index of the cloud observed in Bose-Einstein
condensates �BECs� �6,21� can be avoided or reduced
significantly.

In this paper, we describe several aspects of a recently
developed technique that allows �r to be measured easily
and precisely �11�. The technique relies on the influence of
an additional pulse applied at t=2T−�T during the AI pulse
sequence as shown in Fig. 1�c�. If the additional pulse is a
standing wave, it interacts with all interfering pairs of mo-
mentum states and creates displaced trajectories that will in-
terfere at t=2T with a phase shift with respect to the original
trajectories as shown in Fig. 1�c�. The grating contrast, mea-
sured as a function of �T, shows periodic revivals if �T is an
integer multiple of Tr. The revival of the contrast can be used
to measure �r with high precision by carrying out the experi-
ment over a suitably long time scale. The signal shape was
modeled using coherence functions associated with standing-
wave excitation. The use of these functions allows the grat-
ing contrast to be accurately described without a detailed
knowledge of effects such as spontaneous emission and spa-
tial profile �10�. Therefore the fits used to extract �r are
extremely simple and robust.

Coherence functions for traveling-wave excitation were
previously used to describe the results of atomic beam ex-
periments �22–25�. These functions, which were calculated
in Ref. �26�, are the Fourier transforms of the atomic mo-
mentum distributions associated with the excitation pulse. In
atomic beam experiments, the interaction time of the atoms
in the excitation zones is determined by the longitudinal ve-
locity distribution. In comparison, the work in Ref. �11� and
in this paper describes the effect of temporally separated
pulses that interact with all atoms in a cold sample for the
same duration. The main advantage of a time domain experi-
ment is that the pulse timing can be controlled easily and
accurately.

An important result of this paper is an analytical calcula-
tion of the modulated grating contrast observed in Ref. �11�.

z �
D

T
r

z

z

(b)(a) (c)

FIG. 1. �Color online� �a� Billiard ball representation of momentum state interference in the echo experiment. The figure shows only the
0 and �2�k momentum states. The characteristic echo envelope near t=2T has a duration �D due to Doppler dephasing. �b� Echo amplitude
versus T obtained by integrating the echo envelope shown in �a�. The signal has a period Tr. �c� Effect of an additional pulse �SW3� on the
AI. Two interfering momentum states �solid black lines� are perturbed by an additional standing-wave pulse applied at t=2T−�T. This pulse
can affect both arms of the interferometer resulting in interference between displaced trajectories �dashed lines� that is phase shifted with
respect to the original interference pattern. Constructive interference is observed if �T is an integer multiple of Tr.
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This calculation is based on the theory of echo formation
described in Ref. �12�. There are two major advantages of
using the theory of echo formation. First, the formalism pre-
dicts the contributions to the signal shape due to spontaneous
emission and spatial profile effects based on the treatment in
�10�. Second, the theory predicts scaling laws for the contrast
as a function of the number and area of the additional
standing-wave pulses. In this paper, we also present an ex-
perimental investigation of these scaling laws.

Another significant result of this paper is a direct mea-
surement of momentum state populations in the presence of
spontaneous emission and spatial profile effects. The popu-
lations were varied by adjusting the pulse area of the addi-
tional pulse. We confirm the accuracy of the measurements
using Monte Carlo wave-function simulations.

We also present an experimental investigation of the ef-
fect of an additional traveling-wave pulse applied at t=2T
−�T. In this case, the grating contrast also exhibits revivals
that are modulated at ��r. However, there is a loss in con-
trast due to decoherence associated with spontaneous emis-
sion. The signal shape can be modeled by a quasiperiodic
coherence function. This aspect of our work shows the strong
connection to previous studies in atomic beams �22–25�. As
in beam experiments, it is possible to extract the probabilities
of single and multiple photon scattering events from the data.
In addition, we present a measurement of the photon scatter-
ing rate as a function of detuning and pulse intensity.

Finally, we investigate the behavior of the grating contrast
in the presence of continuous-wave �cw� light and measure
scaling laws for the photon scattering rate. A related aspect
involving a measurement of the photon cross section is
presented in �11�.

These experiments assume significance in the context of
several recent studies in ultracold samples. The work pre-
sented in Ref. �27� initiated studies of quantum chaos using a
�-kicked rotor. Reference �28� described predictions for the
preservation of contrast following a large number of excita-
tion pulses. Observations of higher-order quantum reso-
nances at fractional multiples of Tr in BEC and numerical
simulations are presented in recent work �29,30�. The work
in Ref. �31� used microwave echo spectroscopy for investi-
gations of contrast in both quantum and classical regimes,
whereas the work described in �32,33� used the echo-type
interferometer described in this paper to investigate the pres-
ervation of contrast following excitation by a large number
of standing-wave pulses separated by Tr. These authors have
also proposed a precision measurement of �r. Other experi-
ments that have investigated quantum resonances include
Refs. �34,35�. In these papers, the authors demonstrate the
ability to transfer a large number of recoil momenta to cold
atoms using multiple standing-wave pulses that satisfy the
criteria for a quantum resonance.

This paper is outlined as follows: in Sec. II, we present a
brief summary of the theory of coherence functions. Subse-
quently, we present the theory of echo formation to describe
the effect of an additional standing-wave pulse and discuss
scaling laws. Section III presents an overview of the experi-
ment, and Sec. IV discusses the results that involve the dis-
tinctive effects of standing-wave, traveling-wave, and cw
light on the echo-type AI.

II. THEORY

A. Coherence function theory

Although photon scattering can destroy the coherence be-
tween momentum states of the AI, the coherence can be pre-
served if which-path information is not obtained from the
scattered photons. This aspect has been extensively exam-
ined using the conceptual framework of the Heisenberg mi-
croscope �36� in both classical optics and atom optics
�23,25�. In the rest frame of monoenergetic atoms, the effect
of spatially separated laser fields is equivalent to the effect of
temporally separated pulses acting on a localized sample of
cold atoms. Therefore, the results used to describe atomic
beam experiments can easily be applied to the time domain
experiments described in this work.

We now provide a brief discussion of the theory of coher-
ence functions. These functions can be used to model the
effects of an additional pulse, which can be either a traveling
wave or a standing wave. In the presence of a third pulse, the
coherence function can be expressed as the correlation be-
tween interfering states separated by displacement, z, as
shown in Fig. 1�c�. This can be written as

g�z� =� 
�z� − z�
��z��dz� = Fz�I�k�� , �1�

where 
�z� is the atomic wave function and Fz represents a
Fourier transform of the momentum distribution of the atoms
caused by the third pulse, I�k�.

The momentum distribution depends on pulse parameters
such as polarization, duration, intensity, and detuning. For
the case of a circularly polarized traveling-wave pulse propa-
gating along the z axis, it can be shown that the momentum
distribution �along ẑ� associated with a single spontaneous
emission event is given by

I�k� =
3

8kp
	1 +

k2

kp
2
 . �2�

This distribution ranges from −kp�k�kp, where kp is the ẑ
component of the wave vector of photons in the third pulse.
The signal shape is associated with the radiation pattern of a
dipole oscillating in the x-y plane. Due to the momentum
kick from the initial absorption, the atomic momentum dis-
tribution after a photon is scattered is given by I�k−kp�. This
is shown in Fig. 2�a�. The corresponding coherence function
is given by

g1�z� =
3eikpz�zkp cos�zkp� + ��kpz�2 − 1�sin�kpz��

2�kpz�3 , �3�

where the spatial variable z is in units of the optical wave-
length, �, and the subscript 1 denotes that this coherence
function describes a single photon scattering event. The
modulus of this function is shown in Fig. 2�b�. It is the
Fourier transform of Eq. �2� and resembles the diffraction
pattern of a single slit. The overall loss in contrast in the
interferometer is due to decoherence from spontaneous emis-
sion events. In the presence of multiple-photon scattering
events, the convolution theorem can be used to show that the
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coherence functions for n photon scattering events is g1
n�z�.

The final coherence function can be written as

g�z� = �
n=0

�

cng1
n�z� , �4�

where cn are weighting coefficients that give the probabilities
of populating the 2n� momentum state.

For the case of a standing-wave third pulse, the shape of
the coherence function is notably different and resembles a
multislit interference pattern. Since the traveling-wave com-
ponents of the pulse are far-detuned two-photon processes
will dominate and spontaneous emission can be neglected.
Therefore, atoms will receive momentum kicks in integer
multiples of 2�kp and the momentum distribution associated
with the third pulse will resemble a series of � functions
separated by 2kp as shown in Fig. 3�a�. The relative ampli-
tudes of the peaks represent probabilities of momentum
states and the range can be limited by the pulse bandwidth.

The associated coherence function is shown in Fig. 3�b�
and is given by

g�z� = �
n=0

�

cne�i2nkpz. �5�

This function shows that the contrast can be completely re-
gained when kpz=	. This feature was exploited in Ref. �11�
to make a measurement of �r precise to 1.6 ppm. Since the
AI used in this work operates in the time domain with a
cloud of trapped atoms, we will describe the results in terms
of the coherence function g��T�. In this case, �T= mz

��k , where
z is the spatial separation between arms of the interferometer

and �T is the time delay between the additional pulse and the
echo time.

B. Calculation of echo formation for multiple pulses

The theory of echo formation provides an alternative the-
oretical framework for understanding the effect of additional
standing-wave pulses applied during the AI pulse sequence.
We consider the following pulse sequence:

first AI echo pulse t = 0

second AI echo pulse t = T

first perturbation pulse t = 2T − �T − �N − 1�Tr

second perturbation pulse t = 2T − �T − �N − 2�Tr

] ]

Nth perturbation pulse t = 2T − �T . �6�

Here, all standing-wave pulses produce similar potentials
and therefore interact with atoms in a similar manner. The
first two standing-wave pulses produce momentum state in-
terference at the echo time, t=2T, at which the signal is
detected. For all experiments, we keep T fixed and observe
the effect of additional pulses on the contrast at t=2T. There-
fore, for clarity and in order to facilitate the comparison with
experimental results, we will refer to the first two pulses as
AI echo pulses and any additional standing-wave pulses as
“perturbation” pulses.

For the specific case in which the standing-wave potential
is strictly periodic �5,10�, the expression for the �k compo-

FIG. 2. �a� Momentum distribution, I�k /kp−1�, after absorption
and spontaneous emission of a single photon from traveling-wave
excitation. kp is the ẑ component of the photon k vector. �b� Coher-
ence function �in units of the optical wavelength, �� that represents
the grating contrast corresponding to I�k /kp−1� shown in �a�.

FIG. 3. �a� Momentum distribution, I�k /kp�, modeled for
standing-wave excitation where �=40 MHz, �p=86 ns, and inten-
sity �5Isat. �b� Coherence function that represents the grating con-
trast corresponding to I�k /kp� shown in �a�.
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nent of the atomic density distribution following interaction
with multiple pulses can be derived on the basis of Eqs.
�11�–�14� of Ref. �12�. After some lengthy but straightfor-
ward algebra, it can be shown that the �k component after all
excitation pulses is given by

��x�,t� = �
mL=−�

�

�mL
�t�eimL�k�·x� , �7�

where L=N+2 is the total number of standing-wave pulses
and mL is an index running over all the Fourier harmonics
that result from the interference of partial waves that differ in
momenta by mL��k. Here, �k�=k1�−k2� is the difference be-
tween wave vectors of the traveling-wave components of the
standing wave. Each harmonic has an associated atomic den-
sity given by �mL

�t�.
The readout pulse at t=2T is sensitive to the fundamental

harmonics �mL= �1� that represents the grating contrast
measured in the experiment. The atomic density at t= techo

+ t� is given by

�mL
�t�� = �

m1¯m�L−1�=−�

�

�e−��kv0t�/2�2



� �
j=1

L

Jmj−m�j−1�
�2
 j sin�� j�techo + t���� , �8�

where �¯ 
 represents the average over the initial velocity
distribution, t� is the time with respect to 2T, Jmj−m�j−1�

is a
Bessel function of the first kind and order mj −m�j−1�, and � j
are phases that will be defined for specific cases. As shown in
Fig. 1�a� the echo signal is observed for a time t���D due to
Doppler dephasing. The pulse areas 
 j are defined as


 j =
�2

8�
�1 − i

�

�
�� j � �
 j�ei�, �9�

where � is the single photon Rabi frequency, � is the detun-
ing, � is the effective decay rate of the excited state, � j is the
pulse duration, and �=tan−1�−� /�� is a parameter that quan-
tifies spontaneous emission during the excitation. In Eqs. �8�
and �9� we first assume ��� and neglect the effect of spon-
taneous emission, i.e., �=0. The echo times are given by

techo = �2 −
m1 + m2

mL
�T + �m2 − mL

mL
��T

+
1

mL
	�N − 1�m2 − �

j=3

L−1

mj
Tr. �10�

Therefore, in order to have an echo at t=2T we require

m1 + m2 = 0, �11�

m2 − mL = 0, �12�

and

Nm2 − �
j=3

L

mj = 0. �13�

With these conditions imposed, the phases � j in Eq. �8� for
j=3, . . . ,L are simplified and at t= techo+ t� are given by

�1 = �rmLt�,

�2 = �r�mLt� − m1T� ,

� j = �r	mL�t� + �T� + Tr�
k=j

L−1

mk
 j = 3, . . . ,L . �14�

To achieve more accurate fits to the data, the effects of
spontaneous emission must be included as in Ref. �10�. The
resulting expression for the �k component of the atomic den-
sity is

�1�t� = �
m1. . .m�L−1�=−�

�

�e−��kv0t�/2�2



� �
j=1

L

Jmj−m�j−1�
��̄ j�� sin�� j − ��

sin�� j + ���
mj−m�j−1�

, �15�

where

�̄ j = 2�
 j��sin�� j − ��sin�� j + �� . �16�

Equations �15� and �16� describe the echo signal with N ad-
ditional pulses. We now consider some special cases where a
simple expression for the signal shape can be obtained.

C. Single perturbation pulse

To obtain the echo signal in the presence of a single
standing-wave perturbation pulse, we use N=1 in Eq. �13�.
Since mL=m3=1, we use Eqs. �11�–�13� to obtain

m2 = 1 and m1 = − 1. �17�

As a result, the �k component of the atomic density is given
by

�1 � J1�2
1 sin��rt���J2�2
2 sin��r�t� + T���

� J0�2
 sin��r�t� + �T��� , �18�

where 
1 ,
2 are the pulse areas of the first and second AI
pulses respectively, and 
 is the area of the perturbation
pulse. We note that the Boltzmann averaging factor is omit-
ted. If t���T, the �k component of the atomic density at the
time of the echo is a function of �T given by

�1 � J0�2
 sin��r�T�� . �19�

This is a symmetric function with period 	 /�r. This signal
shape resembles the periodic grating contrast predicted by
coherence functions and shown in Fig. 3�b�. The full width at
half maxima �FWHM� of the periodic revivals of this func-
tion depends on the pulse area as shown in Fig. 4. Expanding
about �T=0 we obtain
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FWHM �
�2

�r

. �20�

In Ref. �11�, the grating contrast with a single standing-wave
perturbation pulse was recorded over the time scale of the
experiment to obtain a precision measurement of �r. The
precision is improved by decreasing the fringe width. This
can be achieved by increasing the area of the perturbation
pulse 
 as predicted by Eq. �20�.

Fringe narrowing has previously been observed in an in-
ternal state-labeled interferometer that used dark states �37�.
In this work, interference between multiple paths resulted in
a narrowing of the fringes. This is analogous to the narrow-
ing of interference fringes due to the interference of higher-
order momentum states discussed in this work.

If spontaneous emission is included in the theory, the de-
pendence on �T is more complicated. Using Eqs. �15� and
�16� we obtain

�1 � J0�2�
��sin��r�T + ��sin��r�T − ��� . �21�

To describe the signal shape with greater accuracy, the spa-
tial profile of the laser field must be taken into account since
the pulse area varies across the atomic sample. It can be
shown based on Ref. �9� that the effect of the spatial profile
is given by integrating the Bessel function in Eq. �21� over
the spatial coordinate x as given by

�1 � �
0

1

dxJ0�a0x�J1�a1x�J2�a2x� . �22�

Here, ai are the arguments of the Bessel functions in Eq. �18�
modified to include spontaneous emission. The integral in
Eq. �22� cannot be evaluated analytically. To fit to the data, a
numerical evaluation is performed. In this paper, we will
compare the signal shapes that follow from this theoretical
treatment with the shapes predicted by coherence functions.

D. N perturbation pulses

We now discuss the reduction in FWHM as a function of
the number of perturbation pulses. For the case of N addi-

tional standing-wave perturbation pulses, �1 involves mul-
tiple sums over a large number of indices, mj that are gener-
ally difficult to simplify. However, it is possible to simplify
the expression if we are interested in the behavior near the
maxima at �T� lTr, where l is an integer. Because �rt��1
and since sin��r�T��0 near the maxima, �1 is dominated by
the term corresponding to

m1 = − 1, m2 = m3 = ¯ = mL = 1. �23�

In this case,

�1�t� � J1�2
1 sin��rt���J2�2
2 sin��rT��

��J0�2
 sin��r�T���N, �24�

where we used sin��r��T+ lTr��= �−1�lsin��r�T� and the
symmetry of J0�x�. Figure 5 shows the reduction in FWHM
that can be obtained by increasing the number of perturba-
tion pulses. To investigate the scaling law that describes the
FWHM as a function of N, we expand the Bessel function
about zero and keep only the leading terms in N so that,

�J0�2
 sin��r�T���N � 1 − N
2�r
2�T2. �25�

Therefore, the decrease in FWHM with the number of pulses
is given by

FWHM �
1

�r
N1/2 . �26�

This result suggests that the precision associated with �r,
which is proportional to the fringe width, should increase as
N1/2. In the experiment, we use a burst of N identical pertur-
bation pulses separated by the calculated value of Tr and
measure the grating contrast by varying the start time of the
burst defined as t=2T−�T− �N−1�Tr in Eq. �6�. Thus the
time scale of the experiment is defined by the extent over
which �T can be varied.

Reference �32� considers the use of a large number of
perturbation pulses with 
�1 for a measurement of �r. In
the technique proposed in Ref. �32�, N is fixed and the pulse
frequency is varied to map out the recoil resonance. We note
that this method requires further explanation since some
subtleties are involved. Prior knowledge of the position of
the maxima in contrast ��T� lTr� is required to define the
reference time from which all pulses are delayed. This refer-
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FIG. 4. Plots of ��1� from Eq. �19� for various pulse areas; 

=1 for the black curve, 
=2 for the dark gray curve, and 
=3 for
the light gray curve. The FWHM of the revivals in ��1� decreases as

 is increased. The additional zeroes in the signal are not observed
experimentally since the effects of spontaneous emission and spatial
profile cause a smoothing of the signal.
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FIG. 5. Plots of ��1� using Eq. �24� for various numbers of
perturbation pulses; N=1 for the black curve, N=2 for the dark gray
curve, and N=5 for the light gray curve. The FWHM of the revivals
in �1 decrease as N is increased. For all curves, 
=1.

BEATTIE et al. PHYSICAL REVIEW A 80, 013618 �2009�

013618-6



ence time can be determined by measuring the grating con-
trast as a function of �T at a fixed pulse frequency
���r /	�. Therefore, a precision measurement using multiple
perturbation pulses would require an iterative procedure in
which the reference time and the pulse frequency are sequen-
tially measured. For the technique described in Ref. �32� the
time scale increases linearly with the number of perturbation
pulses. Therefore, the prediction of Eq. �26� and the predic-
tion in Ref. �32� that the FWHM scales as N−3/2 are equiva-
lent since a factor of N−1 in Ref. �32� is related to the linear
increase in time scale with an increase in N.

In summary, the basic properties of the echo signal have
been derived in response to single and multiple standing-
wave perturbation pulses. Scaling laws for the improvement
in precision with the pulse area, 
, and the number of pulses,
N, have been discussed.

III. EXPERIMENT

The light used for atom trapping and atom interferometry
is derived from a Ti:sapphire ring laser and from a semicon-
ductor tapered amplifier seeded by light from the Ti:sapphire
laser. Approximately 108 85Rb atoms are loaded into a
magneto-optical trap �MOT� on a time scale of �100 ms
using fiber-coupled trapping laser beams with a beam diam-
eter of �3.5 cm. The trapping laser is tuned �2�N below
resonance during the loading phase where �N is the natural
linewidth of the 5S1/2 F=3→5P3/2 F=4 cycling transition.
After turning off the MOT gradient coils in �100 
s, the
laser is frequency shifted to �5�N below resonance for
�5 ms to further cool the atoms in a molasses. The tempera-
ture of the sample is inferred by photographing the ballistic
expansion of the cloud using a charge-coupled device �CCD�
camera and is typically �50 
K �38�. The repump laser,
which is resonant with the 5S1/2 F=2→5P3/2 F=3 transi-
tion, is derived from a grating-stabilized diode laser and is
coupled through the same fiber as the trapping laser.

The excitation pulses for the AI are derived from a chain
of acousto-optic modulators �AOMs� controlled by
transistor-transistor logic �TTL� switches that ensure an ex-
tinction ratio for the radio frequency �RF� power of �40 dB.
Pulsing a chain of AOMs ensures that excitation and readout
pulse have on/off contrast greater than 106:1, thereby mini-
mizing decoherence due to background light. The last AOM
in this chain operates at 250 MHz and is shown in Fig. 6�a�.
The diffracted beam from this AOM serves as the excitation
beam. The diameter of this beam is �1 cm which is larger
than the initial cloud diameter of �4 mm. The mirror shown
at the top of Fig. 6�a� is used to retroreflect the traveling-
wave pulses from the AOM and produce the two standing-
wave excitation pulses used for the AI and the standing-wave
perturbation pulses. A shutter with a closing time of
�600 
s is used to block the retroreflection at the time of
the readout pulse. With the shutter closed, it is also possible
to perturb the AI with traveling wave pulses.

The grating contrast is detected using a readout pulse that
has the same detuning as the excitation pulses. The backscat-
tered light from the sample due to the readout pulse is de-
tected using a gated photomultiplier tube �PMT�. The PMT

has a rise time of �10 ns and the gate can be fully opened
on a time scale of 100 ns. Due to jitter in the shutter closing
time of �200 
s, the smallest pulse separations, T, for
which the echo can be recorded using this technique is
�1 ms. The backscattered signal is typically averaged over
32 repetitions and the grating contrast is determined by inte-
grating the echo envelope over the signal duration of �2 
s.
The signal is normalized by dividing by the amplitude ob-
tained in the absence of a perturbation pulse.

The peak intensities of all AI pulses is I�5–10 Isat,
where Isat=7.56 mW /cm2 is the saturation intensity calcu-
lated assuming equally populated magnetic sublevels of the
85Rb ground state. The durations of the of the first and sec-
ond AI pulses are 500–800 ns and 40–200 ns, respectively.
For studies of light scattering with standing-wave and
traveling-wave perturbation pulses, the pulse durations are
�40–300 ns. The timing of all pulses is controlled by digi-
tal delay generators. The time base of these generators is
slaved to a Rb atomic clock with an Allan variance of 2
�10−12 at 100 s. The 250 MHz oscillator controlling the
AOM is also phase locked to the clock. In this arrangement,
the delays between pulses are precise to 500 ps.

For some experiments, two separate AOMs operating at
250 MHz were used to generate counterpropagating
traveling-wave pulses as shown in Fig. 6�b�. These pulses
were spatially overlapped to generate standing-wave pulses.
The beam diameters of the excitation beams were �6 mm in
this case. This arrangement allowed the shutter to be elimi-
nated so that the time separation between the standing-wave
excitation pulses, T, could be reduced to a few microseconds.

IV. RESULTS

A. Scaling laws for grating contrast

We will now discuss measurements of scaling laws asso-
ciated with the FWHM of the revivals in contrast as a func-
tion of pulse area 
. The theoretical predictions for the signal
shape in the presence of a single standing-wave perturbation
pulse are shown in Fig. 4. The inset in Fig. 7 shows the
grating contrast as a function of �T. The time between AI
echo pulses is fixed at T�1.6 ms. The AI pulses and the
perturbation pulse have the same intensity and detuning.
Each curve in the inset was obtained for a specific perturba-

a)

plate

mirror

plate

plate

b)

FIG. 6. �a� Experimental setup using a single retro-reflected
beam. �b� Experimental setup using two separate, counterpropagat-
ing beams.
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tion pulse duration, �p. The data shows that the contrast can
be completely regained if �T= lTr. The periodic revivals are
due to constructive interference between displaced trajecto-
ries shown in Fig. 1�c�. It is obvious that the data are quali-
tatively similar to the coherence function shown in Fig. 3�b�.
Therefore, the data can be fit using Eq. �5� where terms up to
n=5 are included in the fitting functions. The coefficients cn
are associated with the relative amplitudes of the peaks in
Fig. 3�a� and represent the probabilities of the atom acquir-
ing momenta in units of 2n�k during the perturbation pulse.
As �p is increased, thereby increasing 
, the FWHM of the
curves decreases monotonically and the fit parameters asso-
ciated with g��T� show that higher-order momentum states
contribute to the signal. The body of Fig. 7 shows the varia-
tion in the FWHM for the curves in the inset as a function of
�p. A fit to this data shows that the FWHM scales as 1 /�p
which is consistent with the predicted dependence on 

given by Eq. �20�.

We now present a study of the dependence of the FWHM
on the number of standing-wave perturbation pulses. This
effect was discussed in Sec. II D. Figure 8 shows the FWHM
as a function of the number of perturbation pulses, N. The
durations of all these pulses were fixed at �p=40 ns. Under

these conditions, the perturbation pulse area, 
, is of order
unity. The pulses were separated by Tr �calculated from the
definition�. The data shows that the FWHM decreases with
pulse number until it reaches a constant value for N�7. We
attribute the leveling off to the limited spectral bandwidth of
the perturbation pulses, which limits the range of momentum
states that these pulses can address. Equation �26� predicts
that the FWHM should scale as 1 /N1/2. However, the data
deviates from this predicted dependence at high values of N,
as shown in Fig. 8. Nevertheless, separate data with in-
creased perturbation pulse bandwidth exhibited a monotonic
decrease in the FWHM up to a larger value of N, which is
qualitatively consistent with expectations.

B. Fits to signal shape

We now discuss the functional form of the revivals in
grating contrast using the theory of echo formation presented
in Sec. II C and the theory of coherence functions presented
in Sec. II A. Figure 9 shows fits to a single revival in the
inset in Fig. 7 based on both theoretical treatments. The
dashed black line is a fit based on Eq. �19� that neglects the
effects of spontaneous emission and spatial profiles of the
trapped sample and the excitation laser beams. The solid
black line shows a fit that includes both these effects based
on Eqs. �21� and �22�. It is evident that the accuracy of the
fits improves tremendously when these effects are taken into
account.

The dashed gray line in Fig. 9 is a fit based on Eq. �5� that
was used in Ref. �11� for a precise measurement of �r. Al-
though both theoretical treatments produce accurate fits, the
technique based on coherence functions results in more ro-
bust fits. This is because the effects of spontaneous emission
and spatial profile result in a redistribution of Fourier coef-
ficients in Eq. �5� that represent the momentum state popu-
lations. This effect was confirmed using numerical simula-
tions. Since the weighting coefficients are free parameters in
the fits, coherence functions can be used to measure momen-
tum state populations associated with a perturbation pulse
directly and accurately.

C. Measurement of momentum state populations

In experiments using Bose-condensed gases, the momen-
tum state populations following interaction with a standing-

FIG. 7. Inset shows the grating contrast as a function of �T.
�p=50 ns �circles�, 70 ns �squares�, 90 ns �diamonds�, and 130 ns
�triangles�. Body of figure shows FWHM of the peaks in inset as a
function of perturbation pulse area �varied by changing �p�. The
data are fit to the form A
p

−p giving A=13.00�0.03 
s and p
=0.95�0.1, which is consistent with the predictions of Eq. �20�
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FIG. 8. FWHM of the revivals in grating contrast as a function
of the number of standing-wave perturbation pulses, N. The pertur-
bation pulses are identical and are separated by Tr, with �p

=40 ns and �=40 MHz. The solid line is fit to the data using the
function FWHM=a+b�N−1/2. The fit yields values a=3�0.4 and
b=11.6�0.7.

FIG. 9. Dashed curve shows a fit to the data using Eq. �19�,
neglecting the effects of spontaneous emission and the spatial pro-
file of the laser beam. The gray curve shows a fit based on Eqs. �21�
and �22� that includes the effects of spontaneous emission and spa-
tial profile. The black curve shows a fit based on Eq. �5� that in-
cludes six Fourier coefficients that represent the probabilities of
momentum states.
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wave pulse can be easily inferred from CCD images of the
diffracted wave packets �29,39� because the velocity distri-
bution of the sample is much smaller than vr. In contrast, the
echo experiment described here uses laser-cooled samples
with a velocity distribution that is much larger than vr, mak-
ing direct measurements more challenging.

Figure 10�a� shows the measured populations as a func-
tion of �p. For each value of �p, the populations are deter-
mined from the weighting terms, cn, of the Fourier coeffi-
cients of Eq. �5�. It is notable that the uncertainties of these
coefficients are at the level of a few percent. The data shows
the expected decrease in probability of the n=0 momentum
state and the increase in the probability of higher momentum
states as a function of �p. Figures 10�b� and 10�c� show the
results of numerical simulations that correspond to experi-
mental conditions.

The numerical simulations are based on a one-
dimensional Monte Carlo wave-function �MCWF� technique
�40� that evolves a time-dependent wave function of a two-
level atom using a non-Hermitian Hamiltonian. In this case,
the Hamiltonian is associated with a far-detuned standing
wave so that

H =
p2

2M
+ �� cos�kz��S+ + S−� − ��� + i�/2�S+S−,

�27�

where z and p are the position and momentum of the atom,
respectively, k is the wave vector of the light, � is the Rabi

frequency, and � is the spontaneous emission rate associated
with the excited state. S+��e
�g� and S−��g
�e� are raising
and lowering operators, respectively, for the two-level atom
with ground state �g
 and excited state �e
. The wave function
is written as a superposition of momentum states

���t�
 = �
n

�n�t��g,pg
�n�

= p0 + 2n�k
 + �n�t��e,pe
�n�

= p0 + �2n + 1��k
 , �28�

where p0 is the initial momentum of the atom and ��n�t��2
and ��n�t��2 are the time-dependent probabilities �popula-
tions� of each momentum state. Using the MCWF method of
Ref. �40�, the problem of evolving the wave function under
the influence of the Hamiltonian in Eq. �27� reduces to solv-
ing the tridiagonal system of differential equations:

�̇n = − i
�pg

�n��2

2�M
�n − i

�

2
��n−1 + �n� , �29a�

�̇n = − 	i
�pe

�n��2

2�M
+

�

2
− i�
�n − i

�

2
��n + �n+1� . �29b�

We plot the ground state probabilities ��n�2 as a function of
interaction time �perturbation pulse duration, �p� for values
of �n�=0, 1, 2, 3, and 4 with momenta 2n�k in Fig. 10�b�. For
typical experimental conditions, the probability of being in
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FIG. 10. �a� Probabilities of momentum states associated with the ground state versus �p; probabilities extracted from fits using Eq. �5�,
�=39.4 MHz and ��19.6 MHz. Here, the probability of �p�=2n�k is plotted as ��n�2+ ��−n�2 for n�0 and ��0�2 for n=0. The points are
joined using a fifth-order interpolation function to guide the eyes. �b� MCWF simulations neglecting the effects of spontaneous emission and
spatial profile showing probabilities versus �p; �=39.4 MHz and �=19.6 MHz. �c� MCWF simulations including the effects of spontane-
ous emission and spatial profile for the same conditions as in �b�.
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the excited state is small. Therefore, we neglect the prob-
abilities of momentum states associated with the excited
state and normalize the probabilities of momentum states
associated with the ground state such that �n=−4

n=4 ��n�2=1. Fig-
ure 10�c� shows results of a simulation including the effects
of spontaneous emission and the intensity profile of the laser
beam that shows good qualitative agreement with the data.
The spatial profile of the laser beam is taken into account by
averaging the results of simulations carried out using differ-
ent Rabi frequencies. By allowing � to vary along the radial
direction as given by ��r�=�0e−�r / w�2

, where w is the radius
of the beam, the results of simulations for different values of
r can be combined in a weighted sum. The weights are based
on the density profile of the trapped sample.

The application of coherence functions to model such
measurements and extract momentum state populations is
substantially different from previous methods. In Ref. �10�
the grating contrast was measured as a function of T as
shown in Fig. 1�b�. In this case, the momentum state popu-
lations could be inferred from the pulse area determined
from a fit to the signal amplitude. This is because the ampli-
tude can be expressed as J2�
2 sin��rT�� in the absence of
spontaneous emission and spatial profile effects making it
possible to obtain 
2 from a fit. The probability of a particu-
lar momentum state 2n�k after excitation by a standing-wave
pulse can be determined from a knowledge of 
2 since it is
given by Jn

2�
2�. The signal dependence on T is much more
complex in the presence of spontaneous emission and spatial
profile effects making it difficult to accurately determine 
2
from a fit. As shown in Fig. 14 in Ref. �10�, even a direct
knowledge of pulse parameters such as intensity and dura-
tion is not sufficient to predict the probability of momentum
state populations because atoms sample a range of pulse ar-
eas due to the variations in intensity across the sample.

D. Traveling-wave experiments

In Ref. �11� it was established that coherence functions
previously used in atomic beam experiments �22–25� could
also be applied to model the effects of a traveling-wave per-
turbation pulse on the grating contrast. In this section, we
present a determination of the average number of scattered
photons which is similar to the measurements in �23,24� and

additional analysis that allows measurements of scaling laws
for the photon scattering rate.

The inset in Fig. 11�a� shows the effect of an far-detuned
circularly polarized traveling-wave perturbation pulse on the
grating contrast as a function of �T. The time between the AI
echo pulses is fixed at T�1.6 ms. The contrast shows the
expected quasiperiodic modulation at ��r and decays to a
steady-state value. In comparison with perturbation by a
standing-wave pulse, the loss of contrast is associated with
decoherence due to spontaneous emission. Each curve in the
inset represents data obtained for a particular value of � and
fixed �p.

For all curves in the inset, the fit function is based on Eq.
�4� and is qualitatively similar to the signal shape shown in
Fig. 2�b�. Here, the coefficients cn give the probability of
scattering n photons. These coefficients depend on perturba-
tion pulse parameters such as intensity, detuning, and dura-
tion and can be measured to a few percent. The inset of Fig.
11�a� also shows that spontaneous emission reduces the
asymptotic value of the contrast if �T is increased. Since the
perturbation pulses were off-resonance, the average number
of scattered photons per atom, n̄, obtained from each data set
is generally small �n̄=1.5� and therefore the loss in contrast
does not approach 100%. Separate data sets also established
that the loss in contrast increases with �p.

The steady-state value of each curve in the inset is pro-
portional to c0 which represents the number of atoms that
have not scattered any photons from the perturbation pulse.
c0 can be modeled by the expression c0�e−�����p, where � is
the detuning-dependent photon scattering rate. The body of
Fig. 11�a� shows the negative natural logarithm of c0 as a
function of �. For each value of �, c0 is determined from the
ratio of the contrast with and without the perturbation pulse
for �T�Tr. A fit to the data shows a power-law dependence
of � on � that can be described by ���−p. The fit gives a
value of p=1.5�0.1 which is reasonable considering that
the pulse intensity was substantial �I�10Isat�. In comparison,
for the weak field off-resonant case simulations based on
�41� suggest that � is expected to show an inverse squared
dependence on � �p=2�. Figure 11�b� shows the dependence
of � on the perturbation pulse power. Again, � was deter-
mined from measurements of c0 with �T�Tr. The data con-
firms the expected linear dependence for the scattering rate.

(b)(a)

FIG. 11. �a� Inset shows contrast versus �T for a traveling-wave perturbation pulse. The body of �a� shows the photon scattering rate, �,
as a function of � for �p=300 ns. The data are fit to �=A��−p, giving A=130�20 and p=1.5�0.1. �b� � versus perturbation pulse power,
P, for �=50 MHz. The data are fit to �=A� P�, giving A=0.022�0.005 and �=1.07�0.06.
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E. cw scattering experiments

We have also explored the loss of contrast due to weak cw
traveling-wave background light. In the presence of cw light
during the experiment, the contrast is expected to decrease
monotonically due to random scattering events. This should
result in an exponential decrease in contrast as a function of
T. The time scale over which the momentum states decohere
is of the order of Tr since � �/2

�k/m represents the time in which
wave packets move a distance of the order of the grating
spacing due to photon scattering.

Figure 12�a� shows the echo amplitude as a function of T
for various intensities of circularly polarized cw light. In Ref.
�11�, the photon scattering cross section was obtained from
this data. The cross section was found to be consistent with
the expected value of 3�2 /2	 and independent of T. This is
consistent with the idea that photon scattering imparts a ve-
locity change in at least �k /m �1.2 cm/s� that decoheres the
signal on a time scale of �1 /�r.

In this paper, we model the signal decay in Fig. 12�a� as a
product of a Gaussian component �that represents the time of
flight of atoms from the region of interaction� and an expo-
nential component �that represents decoherence due to pho-
ton scattering�. The fit parameters associated with the Gauss-
ian component remain unchanged as the intensity of the cw
light is varied. Figures 12�b� and 12�c� show the exponential
decay constant, which is the photon scattering rate, plotted as
a function of detuning and intensity of cw light, respectively.
The scattering rate scales linearly with intensity and as the
inverse square of the detuning, trends that are consistent with
expectations.

V. CONCLUSIONS

In this work, we present an analytical calculation based on
the theory of echo formation that describes periodic revivals
in the grating contrast in the presence of standing-wave per-
turbation pulses. The predictions are in good agreement with
the signal shape obtained using the theory of coherence func-
tions. The theory of echo formation predicts scaling laws for
the FWHM of the revivals in contrast as a function of per-
turbation pulse area and the number of pulses. These scaling
laws have been investigated and it has been shown that they
can be exploited to achieve a significant improvement in the
precision of �r measured in Ref. �11�. We expect to utilize
the technique of perturbation pulses for precise determina-
tions of �r which will be carried out by extending the ex-
perimental time scale to the transit time limit and by com-
pleting a thorough study of systematic effects. A suitably
long time scale has recently been achieved by eliminating
magnetic field gradients and expanding the size of the exci-
tation beams to several centimeters. As noted in Ref. �11�,
the expected precision in such a measurement of �r is esti-
mated to be �20 ppb on a time scale of �100 ms. We also
show that coherence functions can be used for accurate mea-
surements of momentum states populations. Finally, the pa-
per discusses distinctive effects of traveling-wave and cw
decoherence that have been used to measure scaling laws for

the photon scattering rate. These trends are consistent with
expectations.
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FIG. 12. �a� Contrast as a function of T for variable cw detun-
ing. �b� The exponential decay constant, �, for the curves in �a� as
a function of � for fixed cw power of 750 nW; fit to b+m��−p

gives p=1.9�0.3. �c� � versus cw power, P, for �=46 MHz; fit to
A� P� gives A=340�10 s−1 /
W and �=1.08�0.09.
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