
Continuous measurement feedback control of a Bose-Einstein condensate
using phase-contrast imaging

S. S. Szigeti, M. R. Hush, and A. R. R. Carvalho
Department of Quantum Science, Research School of Physics and Engineering, The Australian National University,

Australian Capital Territory 0200, Australia

J. J. Hope
Department of Quantum Science, Australian Centre for Quantum–Atom Optics, Research School of Physics and Engineering,

The Australian National University, Australian Capital Territory 0200, Australia
�Received 22 May 2009; published 27 July 2009�

We consider the theory of feedback control of a Bose-Einstein condensate �BEC� confined in a harmonic trap
under a continuous measurement constructed via nondestructive imaging. A filtering theory approach is used to
derive a stochastic master equation �SME� for the system from a general Hamiltonian based upon system-bath
coupling. Numerical solutions for this SME in the limit of a single atom show that the final steady-state energy
is dependent upon the measurement strength, the ratio of photon kinetic energy to atomic kinetic energy, and
the feedback strength. Simulations indicate that for a weak measurement strength, feedback can be used to
overcome heating introduced by the scattering of light, thereby allowing the atom to be driven toward the
ground state.
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I. INTRODUCTION

The atom laser is the most coherent source for atom op-
tical experiments �1,2�. However, the applicability of the
atom laser as a tool for fundamental research is limited by
noise that broadens the linewidth. This noise is due, in part,
to instability in the spatial mode of the Bose-Einstein con-
densate �BEC� from which the atom laser beam is out-
coupled. Excitations of the BEC spatial mode exist under
general preparation conditions �3�, and are generated when
the atom laser is continuously pumped �4,5�. One promising
solution to this difficulty is to drive the BEC toward a stable
spatial mode via the use of measurement feedback control. A
control scheme based on a measurement of position has been
shown to successfully cool a single atom in a harmonic trap
close to the ground state from any initial state �6�. However,
although this control scheme can be engineered by placing
the atom in a cavity �7�, it is unclear whether it could be
generalized to a many-atom BEC. In this paper we consider
a feedback control scheme based upon dispersive imaging, a
technique that has already been implemented in multiple
BEC laboratories.

Feedback on an atom laser was first applied in a single
mode model to reduce phase noise caused by the interactions
�8,9�. Improving the modal stability of a BEC using feedback
control was first examined using a semiclassical model �4�,
where it was shown that the system could be stabilized with
feedback by modification of the trapping potential and the
condensate’s nonlinearity. This feedback scheme was then
applied to a more realistic model of an atom laser that in-
cluded pumping, damping, and outcoupling �5�. While the
semiclassical approximation allowed for an examination of
the multimode behavior of the atom laser, the effect of cou-
pling the system to a measuring device was ignored. The
measurement backaction was included in a model of a
trapped single particle considered by Doherty and Jacobs �7�,

who showed how a position measurement arises from plac-
ing an atom in a cavity, and solved the optimal control prob-
lem for an initial Gaussian state. It was later shown that the
filter equation could be solved, and the atom could be cooled
from any arbitrary state �6�. The position measurement relied
upon the assumption that the atom is trapped in a region
small compared to the wavelength of light within the cavity.
However this assumption is false for a modestly sized BEC
in an optical cavity. Moreover, even if this type of position
measurement could be engineered for a BEC in theory, either
by situating the BEC in a cavity or otherwise, this does not
imply that it would be easy to implement in practice. Indeed,
a weak position measurement of a condensate has not been
experimentally realized. There is thus a clear preference to-
ward developing a feedback scheme that uses a well-
established technique of measurement.

There are two commonly used techniques for measuring a
BEC of alkali-metal atoms. The first method, termed absorp-
tion imaging �10�, shines near-resonant laser light on the
condensate. Those photons which interact with atoms from
the condensate are absorbed, leaving a “shadow” which can
be detected using an array of charge-coupled device �CCD�
cameras. Thus absorption imaging gives a measurement of
the column density �the number density integrated along the
line-of-sight of the laser� of the BEC, which gives informa-
tion about the spatial distribution of atoms in the condensate.
The key advantage of absorption imaging is that any data
obtained are independent of the intensity of the light, the
time of exposure and many properties of the CCD array. A
downside, however, is that the absorption of photons heats
the atoms sufficiently to destroy the BEC.

Phase-contrast imaging �11,12� is an alternative method
of imaging that uses light highly detuned from resonance.
The interaction of the BEC with the light gives a phase pro-
file for the condensate, which can be used to reconstruct the
density profile. In principle, the detuning can be sufficiently

PHYSICAL REVIEW A 80, 013614 �2009�

1050-2947/2009/80�1�/013614�11� ©2009 The American Physical Society013614-1

http://dx.doi.org/10.1103/PhysRevA.80.013614


large such that a measurement of the density is minimally
destructive. The theoretical limits for the signal generated
from this dispersive measurement scheme are not in fact dif-
ferent from absorption imaging in the case of low optical
depth �13–15�. However, for a BEC, it is far easier to achieve
near optimal sensitivity for a given level of spontaneous
emission in a dispersive measurement. Experiments showing
successive repeated measurements with phase-contrast imag-
ing �11� suggest that it may be possible to use this measure-
ment technique nondestructively on the time scale needed to
perform the feedback control. In this paper we show that
measurements of a BEC via the technique of phase-contrast
imaging can be used to construct a feedback control scheme.

In Sec. II we present our model of the system and the
associated stochastic master equation �SME� for the quantum
filter. After adiabatically eliminating the excited state we re-
capture the SME considered by Dalvit et al. in the limit
where the size of the condensate is much larger than the
wavelength of light �16�. The form of feedback, which is
modeled by the inclusion of a control Hamiltonian, is also
outlined. In Sec. III the quantum filter is numerically solved
in the limit where the atomic sample contains only a single
atom. The dependence of the atom’s final steady-state energy
on the measurement strength, ratio of photon recoil energy to
typical atomic kinetic energy, and form of feedback is dis-
cussed. Attempts at a numerical solution for the quantum
filter under the semiclassical limit are also elucidated.

II. MODEL AND FILTER DERIVATION

The system under analysis is a BEC magnetically con-
fined in a harmonic trap and illuminated with an off-resonant
coherent field directed along the z direction �see Fig. 1�.
Light scattered from the condensate is detected by an array
of homodyne detectors. The total Hamiltonian for the com-
bined system is

Ĥtot = Ĥsys + ĤB + ĤI. �1�

For simplicity, it is assumed that the atoms have been con-
figured such that a transition between only two states is pos-
sible. These levels will be labeled the ground �g� and excited

�e� states. Under this assumption, the system Hamiltonian
can be written as

Ĥsys =� d3r�̂g
†�r�Ha�r��̂g�r�

+� d3r�̂e
†�r�„Ha�r� + ��0…�̂e�r� , �2�

where �0 is the resonant frequency of the atoms and �̂i�r� is
the field operator that annihilates a boson from the ith atomic
level at position r, obeying the commutation relation

��̂i�r� , �̂ j
†�r���=�ij�

3�r−r��. Ha�r� is the single particle
Hamiltonian

Ha�r� = −
�2

2m
�2 +

1

2
m�2r2 + Hcontrol�r� . �3�

For simplicity, we have taken the interaction energy between
atoms to be negligible. Hcontrol�r� is the single particle control
Hamiltonian, which we will specify shortly. The Hamiltonian
for the electromagnetic field is

HB =� d3p�c�p��âε
†�p�âε�p� + âε�

† �p�âε��p�� , �4�

where ε�p� and ε��p� are the two unit vectors required to
describe the polarization of the field, p= �kx ,ky ,kz�, and
�âi�p� , âj

†�p���=�ij�
3�p−p��. It can be assumed that the

wavelength of the driving laser is much greater than the Bohr
radius of an atom. Thus the interaction between the electric
field and an atom can be adequately modeled by approximat-
ing the atom as a dipole. In this case the most general inter-

action Hamiltonian ĤI for a field of two-level bosonic atoms
interacting with the electromagnetic field is �17�

ĤI = −� d3r�̂g
†�r��deg · Ê�r,t���̂e�r� −� d3r�̂e

†�r�

��dge · Ê�r,t���̂g�r� , �5�

where dij is the transition electric dipole vector between the
ith and jth levels of the atom, defined as

dij = �i�r�j� , �6�

where �i� denotes the state vector for the ith level. We choose
the phase of the internal states such that deg is real, which

implies that deg=dge. Ê is the quantized electric field opera-
tor, which can be expressed in terms of a basis of creation
and annihilation operators as �18�

Ê�r� = i� d3p	
�


 ���p�
2�2��3�0

�â��p�eip·r − H.c.���p� . �7�

Importantly, the coupling of the system to the bath allows
us to make a number of standard quantum optical and reser-
voir approximations, thereby leading to tractable equations.
We demonstrate in the Appendix that making such approxi-
mations yields the following Ito quantum stochastic differen-
tial equation �QSDE� for the unitary of the system and bath,

scattered

light

homodyne

detectors
trapped

BEC

off-resonant

coherent field

FIG. 1. �Color online� Diagram illustrating how one could per-
form a nondestructive density measurement on a BEC. The BEC is
illuminated with highly off-resonant laser light. The interaction be-
tween the field and the atoms is registered as a phase shift on any
light scattered from the condensate. Such a phase shift is measur-
able by homodyne detection in the phase quadrature.
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dÛ�t� = �−
i

�
Ĥ −

1

2
� dxM̂†�x�M̂�x��dt

+� dx„M̂�x�dÂ†�x,t� − M̂†�x�dÂ�x,t�…�Û�t� ,

�8�

where

Ĥ =� dx��̂g
†�x�Ha�x��̂g�x� + �̂e

†�x��Ha�x� + ����̂e�x��

+ i
 F0k0
2�

2�2��3�0
�dge · ��0��� dx��̂g

†�x��̂e�x� − H.c.� ,

�9�

and

M̂�x� =� dx��̂g
†�x���̂e�x��	�x − x�� ,

	�x� = �
−k0

k0

dkx

�kx�
2�

eikxx,


�kx� =
k0

2

8��0
�

−
k0
2−kx

2


k0
2−kx

2

dky�dge · ��2e−z0
2��k0 − kz�

2+ky
2�/2


k0
2 − kx

2 − ky
2

,

for detuning �=�0−�L and photon flux of the laser F0. z0 is
the characteristic length scale of the condensate in the tightly
trapped z and y directions �i.e., z0=
� /m�z�. The quantum

Wiener increment dÂ�x , t� obeys the Ito differential rule

dÂ�x , t�dÂ†�x� , t�=�2�x−x��dt �18�. This term models the
noise introduced into the system due to vacuum fluctuations
in the bath. The inner product between the dipole and polar-
ization vectors can be shown to equal �19�

�dge · ��p��2 = �dge�2 − �p · dge�2/�p�2. �10�

The above QSDE corresponds to a “cigar”-shaped conden-
sate where the BEC is tightly confined in the z and y dimen-
sions. We present the one-dimensional version of the unitary
evolution simply because one-dimensional simulations re-
quire less computational power. In the Appendix a more gen-
eral two-dimensional derivation for a “pancake” shaped con-
densate is given.

If we perform a homodyne measurement of the phase
quadrature on the laser light after it has interacted with the
atoms, then it can be shown that the best-estimate �in the

least-squares sense� �t of any system observable X̂ is given
by the equation �20,21�

d�t�X̂� = �t�L�X̂��dt − i� dx��t„X̂M̂�x� − M̂†�x�X̂…

− �t�X̂��t„M̂�x� − M̂†�x�…�dW�x,t� , �11�

where we have defined the Lindblad generator

L�X̂� =
i

�
�Ĥ,X̂� +� dx�M̂†�x�X̂M̂�x� −

1

2
�M̂†�x�M̂�x�,X̂�� .

�12�

dW�x , t� is the classical Wiener increment �i.e., Gaussian
white noise�. It satisfies dW�x , t�dW�x� , t�=��x−x��dt. This
noise is the random wave function collapse that corrupts the
homodyne measurement signal. By defining the conditional

density operator �̂c by �t�X̂�=Tr�X̂�̂c� we can construct the
following stochastic master equation �SME� for the quantum
filter:

d�̂c = −
i

�
�Ĥ, �̂c�dt +� dxD�− iM̂�x���̂cdt

+� dxH�− iM̂�x���̂cdW�x,t� , �13�

where

D�ĉ��̂ = ĉ�̂ĉ† −
1

2
�ĉ†ĉ, �̂� ,

H�ĉ��̂ = ĉ�̂ + �̂ĉ† − Tr��ĉ + ĉ†��̂��̂ ,

for any arbitrary operator ĉ.

A. Adiabatic elimination

For the trapped BEC under consideration the detuning of
the laser is necessarily large. This allows us to adiabatically
eliminate the excited state. We first transform to the follow-
ing dimensionless units:

� =
x

x0
, i =

ki

k0
, �� = t� , �14�

where x0=
� /m�T is the characteristic length scale of the
trap in the x direction, which has trapping frequency �T. The
field operators are made dimensionless by the transformation

�̂i�x�→ �̂i��� /
x0. Define the following parameters:

� = k0x0, 	sp =
1

4��0

4dge
2 k0

3

3�
, � =

dge

�

 F0k0�

2�2��3�0
,

where dge= �dge�. Then Hamiltonian �9� and conditional mas-
ter Eq. �13� can be written as

Ĥ =
�T

�
� d�„�̂g

†���Ha����̂g��� + �̂e
†���Ha����̂e���…

+� d��̂e
†����̂e��� + i

�

�
� d�„�̂g

†����̂e��� − �̂e
†����̂g���…

�15�

and
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d�̂c = − i�Ĥ, �̂c�d�� +
	sp

�
� d�D�M̂�����̂cd��

+
	sp

�
� d�H�M̂�����̂cdW��,��� , �16�

respectively, where

Ha��� = Ha�x�/��T,

M̂��� = − i� d���̂g
†�����̂e����	̃��� − ��� ,

	̃���� =
3�

8�
�

−1

1

dx
 
̃�x�
2�

ei�x�,


̃�x� = �
−
1−x

2


1−x
2

dy
�dge · ��2

dge
2

e−1/4w��1 − z�
2+y

2�


1 − x
2 − y

2
,

for w=k0
2z0

2 /2. Note that the Wiener increment has been res-
caled by mapping dW�x , t�→dW�� ,��� /
x0�. This preserves
the �-correlation dW�� ,���dW��� ,���=���−���d��. We inter-
pret 	sp as the rate at which a single atom spontaneously
emits into the bath, and � as the Rabi frequency for the
atomic system. We assume that the detuning � of the laser is
much larger than other characteristic frequencies in the sys-
tem, i.e., ��� ,	sp ,�T. Furthermore, the intensity of the
laser is sufficiently large such that ��	sp ,�T.

We begin the adiabatic elimination by calculating the evo-

lution of �̂e, which can be found from Eq. �11� by using the
Heisenberg equation,

d�̂e

d��
� − i

�T

�
��̂e���,Ĥ� . �17�

Note that the terms proportional to 	sp /� and 
	sp /� are
small and have thus been neglected. Furthermore, those

terms in Ĥ proportional to �T /� can be ignored, as they are
small compared with the terms proportional to � /� and
unity. Thus

d�̂e���
d�̃

� − i
�T

�
��̂e���,� d���̂e

†����
�

�T
�̂e�����

− i
�T

�
��̂e���,i

�

�T
� d����̂g

†�����̂e���� − H.c.��
= − i�̂e��� −

�

�
�̂g��� . �18�

For large detuning, any atom excited by the laser spends a
relatively short amount of time in the excited state before
returning to the ground state. Moreover, there are very few
atoms in the excited state in comparison to the ground state.
Hence, on longer time scales it will appear that the popula-
tion of excited atoms is tiny and changes very little. Thus, on

this slower time scale we can approximate d�̂e /d�̃�0. After
making this approximation, Eq. �18� gives

�̂e��� � i
�

�
�̂g��� . �19�

As �̂g
† and �̂g do not commute, there is an ordering ambiguity

upon substituting Eq. �19� into Ĥ. However, only one pos-
sible ordering yields a valid master equation,

Ĥ =� d��̂g
†���H0����̂g��� +

�2

�2� d��̂g
†���H0����̂g���

� � d��̂g
†���Ha����̂g��� , �20�

where the term proportional to 1 /�2 is very small, and has
hence been ignored. The conditional master equation simpli-
fies to

d�̂c = − i�Ĥ, �̂c�d� + �� d�D�M̂a�����̂cd�

+ 
�� d�H�M̂a�����̂cdW��,�� , �21�

where we have chosen the more convenient time scaling �
=�Tt and

M̂a��� =� d���̂g
†�����̂g����	̃��� − ��� ,

� =
	sp

�T

�2

�2 . �22�

It is now clear that there are two key dimensionless pa-
rameters upon which the system depends. The parameter �
represents the strength of the measurement. For a larger �,
more information is obtained in a fixed time. However, there
is also more measurement backaction due to the linear scal-
ing with � of the decoherence. � is the Lamb-Dicke param-
eter, which is clear when it is written as �=2�x0 /�
=�k0 / p0, where � is the wavelength of light emitted from the
atoms and p0=
��m is the characteristic momentum spread
in the harmonic trap. Thus � is proportional to the relative
momentum “kick” an atom gets from scattering a photon.

As a final note, typical experiments of the kind described
above operate in the regime where z0�� �i.e., w�1�. Thus
the exponential exp�−w�1−z�2�, which appears in the inte-
grand in the definition of 
̃�x�, is tightly peaked about x
=y =0. Physically, this is indicative of the fact that photons
are strongly scattered in the z direction, and therefore have
very little momentum in the x and y directions. Hence we are
justified in expanding z=
1− �x

2+y
2� to second order

within the exponent,

z � 1 −
�x

2 + y
2�

2k0
2 −

�x
2 + y

2�2

8k0
4 , �23�

in which case �z−k0�2��x
2+y

2�2 /4k0
2. Furthermore, we can

approximate z
−1/2�1 and �dge ·��p���dge with very little

effect on the form of 
̃�x�. Finally, we can extend the limits
of integration over y �and, incidentally, those for integral
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over x which defines 	̃���� to ��, to give a much simpler
functional form for 
̃,


̃�x� = �
−�

�

dye
−wy

2
exp�− w�x

2 + y
2�2/4� . �24�

In this regime our result is in agreement with the master
equation considered in �16�.

B. Control

Up to this point we have left the form of control com-
pletely arbitrary. Indeed this is the advantage of separating
the control problem into estimation and control stages. Since
the filter provides a best estimate of the system state, these
control terms can be a function of any system observable.
Thus one is free to concentrate on the design of an effective
feedback scheme, secure in the knowledge that the filter for
the system is independent of the choice of feedback. We
consider a general control Hamiltonian of the form

Hcontrol��� = 	
n=1

�

un�t��n. �25�

Haine et al. �4� performed a semiclassical analysis that
showed that the change in energy of the BEC was always
non-negative for the choice

un�t� = cn
d�x̂n�

dt
= cn

n

2
�p̂x̂n−1 + x̂n−1p̂� , �26�

for positive constants cn. In this paper we will be primarily
concerned with a feedback control consisting of only the first
term in Eq. �25�. More precisely

Hcontrol��� = c1�p̂�� . �27�

A feedback control of this form was used in �6,7�. Physically,
this control represents an adjustment of the trap minimum
such that the motion of the atom is dampened. Such a control
could be implemented experimentally via the use of chang-
ing magnetic fields.

III. SIMULATION

A. Single atom limit

Important insight into the behavior of a BEC under the
above mentioned control scheme can be gathered by consid-
ering the physical limit of a single atom. In this case the
density operator can be written as

�̂ =� d�� d�����,����̂†����0��0��̂���� ,

where the coefficients ��� ,��� are given by

���,��� = �0��̂����̂�̂†����0� .

The evolution of these coefficients is given by

d���,��� = �0��̂���d�̂�̂†����0� . �28�

Substituting Eq. �13� into Eq. �28� yields the following SME:

d�̂c = − i�Ĥa,�̂c�d� + �̃� dxD�

̃�x�e−ik0xx̂��̂cd�

+ 
�̃� dxH�

̃�x�e−ik0xx̂dW̄��x,����̂c, �29�

where

Ĥa =
1

2
�p̂2 + x̂2� + c1�p̂�x̂ ,

�̃ =
3�

8�
,

dW̄�x,�� =
1


2�
� d�e−ix�dW��,�� .

dW̄�x ,�� is the Fourier transform of the Wiener increment.
It behaves somewhat differently to the traditional Wiener
process,

dW̄��x,��dW̄�x�,�� = ��x − x��d� ,

dW̄�x,��dW̄�x�,�� = ��x + x��d� .

It is possible to express dW̄�x ,�� in terms of the Wiener
increment dW�x ,��. In particular,

dW̄�x,�� =
1

2
�i − 1��dW�x,�� + idW�− x,��� . �30�

Ultimately, we are interested in how the average energy of
the system E��x2�+ �p2�� /2 varies over time; in particular the
steady-state value for the energy. In the following analysis
we judge the effectiveness of the control based upon how
close the system is cooled to the ground-state energy ��T /2
and the time taken for the system to reach a steady state. The
energy was calculated by finding a numerical solution to the
stochastic Schrödinger equation corresponding to Eq. �29�.
The numerical integration was performed by using the open
source software package XPDEINT, which is a new version of
the XMDS package �22�.

Simulations revealed three important features of the sys-
tem. The first relates to the measurement strength parameter
�̃. For a sufficiently large �̃ the final average steady-state
energy increases with increasing measurement strength. This
is because the measurement has a greater backaction on the
atom for a larger measurement strength, which corresponds
to an increased heating rate. Thus, a small �̃ is required for a
low steady-state energy. A caveat, however, to choosing a
small �̃ is that less information is obtained about the system
per unit time. This translates to an increase in the time it
takes for the energy to reach a steady state. For optimal
control, one would like to balance these considerations by
choosing an �̃ that cools close to the ground-state energy on
a time scale much smaller than that of the experiment. How-
ever, an additional constraint is that the cooling does not
continue to get better as �̃ decreases. There is a threshold
value �̃c, where for any �̃��̃c the final average energy is the
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same as that for �̃c. Indeed, the only effect of decreasing �̃
lower than �̃c is that it takes longer before the energy reaches
a steady state. A demonstration of this dependence on �̃ is
shown in Fig. 2. If no other constraints are taken into con-
sideration, then this suggests that �̃c is in fact the optimal
value for �̃.

The second point to consider is the dependence on the
final steady-state energy on the Lamb-Dicke parameter �.
For small �, the energy imparted to the system during the
scattering of the light is negligible. However, for large � the
center of mass dynamics of the atom is greatly influenced.
This introduces additional heating into the system. It was
found that for larger values of �, the higher the final average
energy �see Fig. 3�. Furthermore, while the final average en-
ergy scales roughly linearly with �̃, it seems that it scales at
a greater rate for �. Preliminary investigations seem to indi-
cate that this scaling is quadratic. However, a more thorough
study is required in order to draw a more accurate conclusion
on this scaling. For typical trap frequencies
���0.1 Hz–1 kHz�, we can see that for a rubidium atom,
� will take values somewhere between 1 and 400. These
results, coupled with the limited ability to reduce the height
of the plateau by decreasing �̃, indicate that this measure-
ment and control scheme may only effectively cool a trapped
atom for strong trapping potentials.

The third interesting feature involves a consideration of
the effect of adding additional control terms of the form �25�
to the Hamiltonian. As demonstrated in Fig. 4, additional
feedback terms increase the effectiveness of the control. In
fact this is only true for larger values of �; if ��1 then the
higher order controls have little effect on the final average
energy. This is precisely because for a large � there is sig-

nificant coupling between the different modes of the atom.
This coupling is due to nonlinearities introduced by the
trapped atom experiencing different electric fields at different
positions in space. Hence energy can be removed from those
higher order modes which are not directly affected by the
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FIG. 2. �Color online� Plots of the energy for simulations of 500
paths. Simulations were for a normalized Gaussian function cen-
tered at x=2.0. Parameters chosen were c1=2.0, w=3000.0, and �
=6.0. The measurement strength �in order from bottom to top� is
�̃=2.0 �red�, 10.0 �blue�, 20.0 �green�, 40.0 �black�, 80.0 �cobalt�,
160.0 �margenta�. Full lines represent the mean, while dotted lines
indicate the standard error. Notice that those simulations with �̃
�20.0 converge to the same average steady-state energy.
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FIG. 3. �Color online� 500 path simulations of the energy for an
initial normalized Gaussian state centered at x=2.0, w=3000.0, �̃
=10.0, and c1=2.0. The Lamb-Dicke parameter �in order from bot-
tom to top� is �=4.0 �red�, 6.0 �blue�, 8.0 �green�, 10.0 �black�. Full
lines represent the mean, while dotted lines indicate the standard
error. This plot shows that relatively small increases in � result in
large increases in the final average energy.
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FIG. 4. �Color online� 100 path simulations of the energy in the
single particle approximation with feedback terms proportional to x
�red/highest�, x and x2 �blue/middle�, and x ,x2 ,x3 �green/lowest�.
The parameters chosen were w=3000.0, �̃=2.0, and �=8.0. Full
lines represent the mean, while dotted lines indicate the standard
error. The initial states chosen were normalized Gaussian functions
centered at x=2.0. The constants of proportionality for each feed-
back term were set to 2.0.
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feedback control. This is in contrast to a situation with small
�, where higher order modes remain unaffected by the con-
trol of the lower order modes. Thus, despite the additional
heating due to a large �, it may be possible to effectively
cool the atom close to the ground state with the introduction
of additional control terms.

B. Mean-field approximation

Although the single particle limit has its uses for qualita-
tive understanding, multiparticle effects are important in
many BEC phenomena. Indeed, the dynamics resulting from
collisions between the atoms simply cannot be included in a
single particle model. The next step toward modeling the
above situation for a BEC with interactions is to consider the
quantum filter �Eq. �13�� under the mean-field approximation

���� � ��̂���� .

This yields the following Ito equation of motion for the
mean-field wave function ����:

d���� = �− iHa������� −
�̃

2
� dx
̃�x������d�

+ �̃����� dx


̃�x�e−ix�dW̄��x,�� . �31�

In contrast to the single atom limit, numerical simulations
of Eq. �31� are not convergent. We conjecture that the diffi-
culty stems from an inherent mismatch between the mean-
field approximation and the type of measurement associated
with phase-contrast imaging. This imaging gives information
about the average density of the condensate, and is in effect
a measurement of the number of atoms in the BEC. Thus
over time, the continuous measurement projects the BEC
state toward a number state. However, upon making the
mean-field approximation it is assumed that the number vari-
ance is always that of a coherent state. This incongruity with
the measurement may explain why simulations of the quan-
tum filter under this semiclassical approximation give non-
physical results.

IV. SUMMARY AND CONCLUSIONS

This paper has investigated the prospect of generating a
stable spatial mode for a trapped BEC by using feedback
control to cool the condensate close to the ground state. In
particular, the state of the BEC was estimated using a realis-
tic measurement scheme based upon nondestructive imaging.
We presented the full Hamiltonian for the system and bath,
and derived a stochastic master equation for the conditional
density matrix of the system.

This SME was simulated in the single atom limit, and it
was shown that a feedback scheme which adjusted the trap
minimum would bring the atom to a steady-state energy.
However, the precise value for this final energy and the time
taken to bring the atom to that energy depends upon the
measurement strength, Lamb-Dicke parameter �ratio of scat-
tered photon’s kinetic energy to atom’s kinetic energy� and
feedback strength. Simulations revealed that decreasing the

measurement strength decreased the average steady-state en-
ergy, but only up to a point. Below a certain critical value the
steady state did not decrease; only the time taken to reach a
steady state increased. A more problematic issue is the addi-
tional heating introduced into the system for values of the
Lamb-Dicke parameter corresponding to some weakly
trapped BEC experiments. However, it was demonstrated
that much of this heating could be offset by the introduction
of additional control terms proportional to higher powers of
x.

The derived SME was also simulated under the mean-
field approximation, for a condensate with no interaction en-
ergy. These simulations did not converge. We hypothesize
that this lack of convergence is due the measurement project-
ing the state to an eigenstate that is no longer coherent,
which is a dynamical effect at odds with the approximation
itself. We are currently investigating the behavior of this fil-
ter under a number-conserving semiclassical approximation.
Ultimately, however, a definite answer to this question may
only be obtained via a full field calculation. Such full field
calculations may be possible using stochastic techniques that
are also currently under investigation �23�.
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APPENDIX: DERIVATION OF ITO STOCHASTIC
DIFFERENTIAL EQUATION FOR UNITARY EVOLUTION

In this appendix we present a derivation of Eq. �8� from
the total Hamiltonian �1�. The key physical approximation
involved is that the optical field acts as a Markovian reser-
voir. This requires a modal restriction of the atomic field,
which is equivalent to allowing the possibility of a light
pulse to travel away from the BEC and have no further in-
teraction with it. Although it is possible to make reservoir
approximations for the light when a finite number of modes
all interact with the same reservoir, we shall simplify our
geometry by assuming that the magnetic potential is suffi-
ciently tight in the z direction such that the BEC is highly
restricted in this dimension. This gives a pancake-shaped
condensate, and restricts the BEC to the occupation of a
single mode z direction. That is

�̂g�r� � g�z��̂g�x�, �̂e�r� � g�z�eik0z�̂e�x� , �A1�

where x= �x ,y�. �̂i�x� is interpreted as the two-dimensional
field operator for the ith state at position x. The inclusion of
the factor eik0z represents the phase shift an atom receives
upon being excited by a photon of momentum on the order
of k0=�0 /c. Under this approximation
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ĤI = −� dz�g�z��2� d2x�dge · Ê�r,t��

� ��̂e
†�x��̂g�x�e−ik0z + H.c� . �A2�

It is reasonable to assume that the density profile of the con-
densate in the z direction is a normalized Gaussian of width
z0. Specifically

�g�z��2 =
1

z0

�

e−z2/z0
2
. �A3�

Notice that before the dimensionality of the condensate
was restricted there was one mode of light per mode of the
condensate. After restriction, there are two infinite dimen-
sions of radiation for every mode of BEC. This allows us to
treat the z component of the electromagnetic field as a reser-
voir. This is most simply done by first transforming the inte-
gral over kz into an integral over frequency �. The frequency
is related to the wave number in the z direction by the
relationship

��kz� = c
�k�2 + kz
2, �A4�

for k= �kx ,ky�. This change in variables gives

ĤI = − i� d2k�
c�k�

�

d�
 ��2

2�2��3c2kz�0
�dge · ε�k,���

� „L̂†�k�â�k,��G�kz − k0� + L̂�k�â�k,��G�kz + k0�

− L̂†�k�â†�k,��G�kz + k0� − L̂�k�â†�k,��G�kz − k0�… ,

�A5�

where

L̂�k� =� d2x�̂g
†�x��̂e�x�e−ik·x �A6�

and

G�kz� =
1


2�
� dz�g�z��2e−ik0ze−ikzz = exp�−

1

4
z0

2�kz − k0�2� .

�A7�

The annihilation operators have been undergone the rescal-
ing â�p�→
c2kz /�â�k ,�� to ensure that the commutation
relation

�â�k,��, â†�k�,���� = �2�k − k����� − ��� �A8�

is preserved. Note that even though �kz give the same �, the
operators â�k ,kz� and â�k ,−kz� act on different Hilbert
spaces. However, given most of the scattering will be in the
positive z direction, we have ignored the contribution due to
â�k ,−kz�. The Hamiltonian for the electromagnetic field
becomes

HB =� d2k� d���â†�k,��â�k,�� . �A9�

We move into the interaction picture with the unitary
transformation

ÛI�t� = exp�−
i

�
�ĤB + ��L� d2x�̂e

†�x��̂e�x��t� ,

�A10�

where �L is the optical frequency of the laser. This trans-
forms the operators as follows:

â��k,�� → â��k,��e−i�t, L̂�x� → L̂�x�e−i�Lt.

�A11�

Now the coupling of the atoms to the electromagnetic field
will occur predominantly in a narrow frequency range �0
−�����0+� for some ���0. The rotating wave approxi-
mation can thus be used to neglect those terms which are
rotating quickly. Hence

ĤI = − i�
�

d2k�
�0−�

�0+�

d��k,��„L̂†�x�â�k,��e−i��−�L�t

− L̂�x�â†�k,��ei��−�L�t
… . �A12�

where we have defined the strength of coupling between the
system and photon bath as

�k,�� =
 �2dge
2

2�2��3c2kz��0
�d̂ge · ε�k,���G�kz − k0� .

�A13�

The domain of integration over k has been restricted to �
= �k :c�k���0� to ensure that � is never complex. It is as-
sumed that the coupling strength is roughly constant in fre-
quency space around the resonant frequency. That is,
�k ,����k ,�0�. Furthermore, let

â����k,t� =
1


2�
�

�0−�

�0+�

d�â�k,��e−i��−�L�t. �A14�

Then

ĤI = i��
�

d2k
2��k,�0�„L̂�k�â���†�k,t� − H.c.… .

�A15�

So far no direct assumptions have been made about the
nature of the electromagnetic field coupled to the system.
This field can be well approximated as a classical light field
with quantum vacuum fluctuations. Make the replacement
â����k , t�→ â����k , t�+ f�k , t�, and approximate the entire bath
as a vacuum state. The interaction Hamiltonian becomes

ĤI = i��
�

d2k
2��k,�0��„L̂�k�â���†�k,t� − H.c.…

+ „L̂�k�f��k,t� − L̂†�k�f�k,t�…� . �A16�

In the interaction picture, the evolution of the unitary op-

erator ÛI is
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d

dt
ÛI�t� = −

i

�
�ĤI +� d2x�̂g

†�x�Ha�x��̂g�x� +� d2x�̂e
†�x�

��Ha�x� + ����̂e�x��ÛI�t� , �A17�

where �=�0−�L. Substituting Eq. �A16� into this expres-
sion gives

d

dt
Û����t�

= −
i

�
Ĥ + �

�

d2k
2��k,�0�„L̂�k�â���†�k,t� − H.c.…�
�Û����t� , �A18�

where

Ĥ =� d2x�̂g
†�x�Ha�x��̂g�x� +� d2x�̂e

†�x�„Ha�x� + ��…�̂e�x�

+ i��
�

d2k
2��k,��„L̂�k�f��k,t� − H.c.… . �A19�

The superscript ��� has been used simply to highlight the
dependence of the unitary on �. It is reasonable to assume
that the BEC is much smaller in the x and y directions than
the spatial size of the coherent beam. This allows the laser to
be adequately approximated as a plane wave propagating in
the z direction with frequency �L. Thus f�k , t��
F0�2�k�,
where F0 is the photon number flux of the laser. Under this

approximation the Hamiltonian Ĥ reduces to Eq. �9�.
Now, note that as �→�,

â����k,t� → â�k,t� =
1


2�
�

−�

�

â�k,��e−i��−�0�t.

In vacuum �â�k , t��=0 and �â†�k , t�â�k ,s��=��t−s�, and can
therefore be identified as quantum white noise. Given that
the coupling is weak, in the sense that �k ,�0��1, Eq.
�A18� indicates that the time scale on which the system
evolves will be slow. Since the frequency range of coupling
is narrow, it can be assumed that �� ��k ,�0��2. Hence the
system is well described by taking � as practically infinite
�18�. The importance of this observation is that the quantum
analog of the Wong-Sakai theorem states that in the limit of
â�

����k , t� approaching quantum noise �i.e., �→�� the solu-
tion to Eq. �A18� approaches the solution to the Ito quantum
stochastic differential equation �QSDE�

dÛ�t� = �−
i

�
Ĥ −

1

2
�

�

d2k
�k�L̂†�k�L̂�k��dt

+ �
�

d2k

�k�„L̂�k�dÂ†�k,t� − L̂†�k�dÂ�k,t�…�Û�t� .

�A20�

where we have defined


�k� = 2��
�

d2k��k,�0��2, �A21�

and dÂ�k , t� is the quantum Wiener increment. It satisfies the

property dÂ�k , t�dÂ†�k� , t�=��k−k��dt. For an heuristic de-
velopment of this theorem, see �20�. A more rigorous treat-
ment can be found in �24,25�. Thus, to a good approxima-
tion, the unitary for the total system is given by the QSDE

�Eq. �A20��. Using the definition of L̂ given in Eq. �A6� and

dÂ�x,t� =
1


2�
� d2kÂ�k,t�e−ik·x. �A22�

QSDE �Eq. �A20�� can be written in the form

dÛ�t� = �−
i

�
Ĥ −

1

2
� d2xM̂†�x�M̂�x��dt

+� d2x„M̂�x�dÂ†�x,t� − M̂†�x�dÂ�x,t�…�Û�t� ,

�A23�

where

Ĥ =� d2x�̂g
†�x�Ha�x��̂g�x� +� d2x�̂e

†�x�„Ha�x� + ��…�̂e�x�

+ i
 F0k0
2�

2�2��3�0
�dge · ��0��� d2x„�̂g

†�x��̂e�x� − H.c.… ,

�A24�

and

M̂�x� =� d2x��̂g
†�x���̂e�x��	�x − x�� ,

	�x� = �
�

d2k

�k�
2�

eik·x,


�k� =
k0

2

8��0
�dge · ��2 e−z0

2�k0 − kz�
2/2


k0
2 − kx

2 − ky
2

,

for dÂ�x , t�dÂ†�x . , t�=�2�x−x��dt.
As a final note, a cigar-shaped condensate can be consid-

ered by assuming the BEC is tightly confined in both the z
and y directions. In this case

�̂g�r� � g�z�h�y��̂g�x�, �̂e�r� � g�z�h�y�eik0z�̂e�x� ,

�A25�

where �̂i�x� is the one-dimensional field operator for the ith
state at position x and

�h�y��2 =
1

z0

�

e−y2/z0
2
. �A26�

For simplicity we have assumed that the density profiles in
the y and z directions are both normalized Gaussians of iden-
tical width z0. A similar argument to that given above leads
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to the evolution of the one-dimensional unitary

dÛ�t� = −
i

�
Ĥ −

1

2
�

�

d2k2��1�k,�0��2L̂†�kx�L̂�kx��dt

+ �
�

d2k
2�1�k,�0��L̂�kx�dÂ†�k,t�

− L̂†�kx�dÂ�k,t���Û�t� . �A27�

where the coupling constant is now given as

1�k,�� =
 �2dge
2

2�2��3c2kz��0
�d̂ge · ε�k,���G�kz − k0�H�ky� ,

�A28�

for

H�ky� =
1


2�
� dy�g�y��2e−ikyy , �A29�

and

L̂�kx� =� dx�̂g
†�x��̂e�x�e−ikxx. �A30�

In this form, it is possible to integrate out the explicit depen-
dence on ky. Define


�kx� = 2��
−
k0

2−kx
2


k0
2−kx

2

dky�1�k,�0��2, �A31�

Also consider the one-dimensional quantum Wiener incre-
ment Â�kx , t�, which satisfies the relation dA�kx , t�dA†�kx� , t�
=��kx−kx��dt. So

�� d2k
2�1�k,�0�dÂ�k,t��
��� d2k�
2�1�k�,�0�dÂ�k�,t��†

=� d2k2��1�k,�0��2dt

= �
−k0

k0

dkx
�kx�dt

= ��
−k0

k0

dkx


�kx�dÂ�kx,t����

−k0

k0

dkx�

�kx��dÂ�kx�,t��†

.

This shows that Eq. �A20� obeys the same statistics as, and is
therefore equivalent to

dÛ�t� = �−
i

�
Ĥ −

1

2
�

−k0

k0

dkx
�kx�L̂†�kx�L̂�kx��dt

+ �
−k0

k0

dkx


�kx��L̂�kx�dÂ†�kx,t�

− L̂†�kx�dÂ�kx,t���Û�t� . �A32�

As before, this can be rewritten to give Eq. �8�.
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