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We study statistical signatures of composite bosons made of two fermions by extending number states to
these quantum particles. Two-particle correlations as well as the dispersion of the probability distribution are
analyzed. We show that the particle composite nature reduces the antibunching effect predicted for elementary
bosons. Furthermore, the probability distribution exhibits a dispersion that is greater for composite bosons than
for elementary bosons. This dispersion corresponds to the one of sub-Poissonian processes, as for a quantum
state but, unlike its elementary boson counterpart, it is not minimum. In general, our work shows that it is
necessary to take into account the Pauli exclusion principle, which acts between fermionic components of
composite bosons—along the line used here—to possibly extract statistical properties in a precise way.
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I. INTRODUCTION

Quantum particles obey statistical laws that are high-
lighted by high-order correlations. This has first been shown
for light fields by the discovery of photon bunching in two-
photon correlations from an incoherent source �1�. Thereaf-
ter, second-order correlations have become increasingly im-
portant, particularly to distinguish classical from quantum
states of light �2,3�. Indeed, classical states are characterized
by bunched two-photon correlations while quantum states
yield antibunching. For elementary bosons, two-particle cor-
relations are directly connected to the variance of the prob-
ability distribution, which is usually expressed through the
so-called Mandel parameter Q �4�. The latter compares the
dispersion of the distribution to the one of Poissonian pro-
cesses. Hence, quantum states correspond to negative values
of Q, i.e., they follow sub-Poissonian statistics, while classi-
cal states lead to positive values of Q since these can solely
follow Poissonian and super-Poissonian statistics.

Recent advances with ultracold atoms have shown that
analysis of second-order correlations is also well suited to
probe matter states �see �5� and references therein�. Most
notably, antibunching and bunching effects have been ob-
served while measuring two-particle correlations of degener-
ate Fermi and Bose gases �6–8�. In quantum-mechanical
terms, these effects are due to interfering amplitudes for the
two paths that particles can take to reach the detectors. Inti-
mately, bunching and antibunching reflect the statistics
obeyed by the quantum particles: Bose-Einstein statistics im-
poses addition of the amplitudes, i.e., constructive interfer-
ence, while Fermi-Dirac statistics yields destructive interfer-
ence. In the latter case, as for elementary bosons, an
antibunching effect signals that the matter state has no clas-
sical analog. Note that fermion antibunching was also ob-
served for electrons �9–11� and neutrons �12�.

One encounters a more complex situation while studying
composite bosons made of two fermions. In an ensemble of
such quantum particles, the Pauli exclusion principle induces
fermion exchanges between composite bosons, which there-

fore do not exactly follow Bose-Einstein statistics. Semicon-
ductor excitons constitute a good example of such composite
bosons. These are made of electron-hole pairs and fermion
exchanges between the electrons, and holes of these excitons
are highlighted by optical nonlinearities �13�. Interacting
Fermi gases, made of, e.g., 6Li and 40K, constitute other
systems where composite bosons can be studied. In ultracold
samples �14�, these offer an interesting route toward precise
investigation of the Pauli exclusion principle. Indeed, ex-
changes between fermionic components can be varied, for
instance when imbalanced spin populations interact �15�.

Recently, a significant breakthrough was made in the the-
oretical description of composite bosons made of two fermi-
ons. A formalism, free from any mapping to an ideal boson
subspace, has been constructed, and a visualization of the
physical processes taking place between composite bosons
�cobosons� has been proposed through the so-called “Shiva”
diagrams �see �16� for a general review�. This coboson
many-body theory relies on two sets of 2�2 scatterings: the
“interaction scatterings” and the “Pauli scatterings.” The first
ones correspond to interactions between the fermionic com-
ponents of two cobosons in the absence of fermion ex-
changes while Pauli scatterings correspond to fermion ex-
changes between two cobosons, without any fermion
interaction.

In this work, we use this many-body approach to study
the influence of fermion exchanges in statistical signatures of
composite bosons. To highlight corresponding effects, we ex-
tend number states to composite bosons by considering a
many-body state constructed from N identical coboson cre-
ation operators. Hence, we calculate the number of coinci-
dences in two-particle correlations, gN

�2�, as well as the vari-
ance of the field that is evaluated through the Mandel
parameter QN. From the corresponding exact expressions we
then extract leading terms in density, in the large N limit, in
order to quantitatively probe the influence of particle com-
positeness on these quantum order parameters.

For number states made of elementary bosons,

��̄N�= B̄0
†N�v�, where B̄0

† is the field-particle creation operator
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and �v� is the vacuum state, it is known that ḡN
�2� and Q̄N read

as �1−1 /N� and �−1�, respectively: number states exhibit an
antibunched second-order correlation function and yield the
greatest negative value for the Mandel parameter. This im-
plies that measurements of such states are made with
the greatest sensitivity, i.e., that noise is reduced at the
smallest level. For composite bosons in a many-body state
��N�=B0

†N�v�, we find that fermion exchanges modify the
number of coincidences that reads, in the large N but small
density limit, gN

�2��1+ �−1+O���� /N. The dimensionless pa-
rameter �=N�aB /L�D is associated to the composite boson
density, aB being the coboson extension, L the sample size,
and D the space dimension. Here, O��� is a positive correc-
tion whose dominant term increases linearly with �. Conse-
quently, two-particle correlations of composite bosons
present a reduced antibunching effect when compared to el-
ementary bosons. Furthermore, the amplitude of the Q pa-
rameter for the state ��N� reads as QN�−1+O��2� in the
large N but small � limit. Hence, the dispersion of the prob-
ability distribution is increased by fermion exchanges. In
general, our analysis shows that it is necessary to take into
account the Pauli exclusion principle between fermionic
components of composite bosons in order to possibly extract
statistical properties of these quantum particles in a precise
way.

II. PHYSICAL UNDERSTANDING

Statistical properties of quantum fields are often studied
through the second-order correlation function. The latter
evaluates fluctuations in the number of field particles for a
given many-body state. Precisely, it measures the normalized
probability to detect a particle conditioned upon detection of
a previous particle. The normalized number of two-particle
coincidences in a state 0 is defined as

gN
�2� =

�B0
†2B0

2�N

�B0
†B0�N

2 , �1�

where �A�N= ��N�A��N� / ��N ��N� is the mean value of the
operator A in state ��N�, the field-particle creation operator
being B0

†.
For elementary bosons, comparison between the normal-

ized number of coincidences and one allows us to deduce
whether fluctuations of the number of particles follow clas-
sical or quantum statistics. Another way to study the variance
of the number of particles and to characterize a quantum field
is via the so-called Mandel parameter, which precisely reads

QN =
�n̂2�N − �n̂�N

2

�n̂�N

− 1, �2�

where n̂=B0
†B0 is the number operator for the state 0.

The parameter QN compares the fluctuations of the field
number operator to that of a Poissonian source �4�. A nega-
tive QN signals that the field statistics is sub-Poissonian and
hence corresponds to the one of a quantum state. Most strik-

ing examples are obtained for the number states ��̄N�
= B̄0

†N�v� of particles with bosonic statistics, i.e., �B̄m , B̄i
†�

=�mi. For these, we find ḡN
�2�= �1−1 /N� and Q̄N=−1 for any

particle 0 and any particle density. Note that �−1� is the
greatest possible negative value allowed for the Mandel pa-
rameter since the ratio in Eq. �2� is always positive: its de-
nominator is the norm of B0��N� while its numerator is the
norm of P�n̂��N�, where P�=1− ��N���N� / ��N ��N� is the
projector over the subspace perpendicular to ��N�, with this
operator being such that P�= P�

2 .
To demonstrate that fermion exchanges noticeably affect

statistical signatures of composite bosons, we extend boson
number states to cobosons, and evaluate gN

�2� and QN in the
state ��N�=B0

†N�v�. To understand in a simple way of how
fermionic components modify these two quantities, we start
with N=2 since most of the physical effects induced by the
Pauli exclusion principle already appear in the extreme dilute
limit with just two composite particles.

A. Two composite bosons

Since B0
2��2� is a zero-pair state, ��2�B0

†2B0
2��2� is equal to

��2�B0
†2�v��v�B0

2��2�. As �v�B0
2��2� is nothing but ��2 ��2�, the

normalized two-particle coincidences reduce to

g2
�2� =

��2��2�3

��2�n̂��2�2 . �3�

To better see the differences induced by the particle com-
posite nature, let us briefly reconsider elementary bosons,

i.e., bosons such that �B̄m , B̄i
†�=�mi. We then have B̄0��̄2�

=2��̄1�, so that B̄0
2��̄2�=2�v� and n̂��̄2�=2��̄2�. Consequently

��̄2 � �̄2�=2 while ��̄2�n̂��̄2�=4 and ��̄2�n̂2��̄2�=8. This leads

to the expected results, namely, Q̄2=−1 and ḡ2
�2�=1 /2, which

is nothing but �1−1 /N� taken for N=2.
We now turn to composite bosons. These have creation

operators that do not exactly follow bosonic commutation
rules �16� but instead

�Bm,Bi
†� = �mi − Dmi, �4�

where the so-called “deviation-from-boson” operator, Dmi, is
such that Dmi�v�=0 while

�Dmi,Bj
†� = 	

n

�� n i

m j
� + i ↔ j
Bn

†. �5�

The parameters �� n i
m j � are the composite bosons “Pauli scat-

terings”; they describe fermion exchanges between �i , j� in
the absence of fermion interaction �see Fig. 1�a��.

The previous commutators give B0��2�=2��1�−2L2
†�v�

and B0L2
†��1�=�2��1�+ �L2

†−2L3
†��v�, where we have set �2

=�� 0 0
0 0 � while

L2
† =

1

2
�D00,B0

†� = 	
n

��n 0

0 0
�Bn

†, �6�

L3
† =

1

2
�D00,L2

†� = 	
n,p

��p 0

0 n
���n 0

0 0
�Bp

†. �7�

This allows one to find B0
2��2�=2�1−�2��v�, which gives

��2 ��2�=2�1−�2�. This also leads to n̂��2�=2��2�−2L2
†��1�.
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In order to calculate ��2�n̂��2� in an easy way, it is conve-
nient to first note that ��2�L2

†��1�= ��2�B0
†L2

†�v�. From ��2�B0
†

as given above, we then find that ��2�L2
†��1�=2��2−�3�,

where �3=	n�� 0 0
0 n ��� n 0

0 0 � corresponds to the Shiva diagram
for fermion exchanges between three composite bosons 0,
shown in Fig. 1�b�. All this leads to

��2�n̂��2� = 4�1 − 2�2 + �3� . �8�

The most convenient way to obtain ��2�n̂2��2� is to first cal-
culate B0n̂��2� knowing B0L2

†��1� given above. By noting that
��2�L3

†��1�=2��3−�4�, where �4 corresponds to the Shiva
diagram for fermion exchanges between four composite
bosons 0, we end with

��2�n̂2��2� = 4�2 − 6�2 + �2
2 + 5�3 − 2�4� . �9�

Before going further, we can check that the above results for
cobosons reduce to the ones for elementary bosons when all
fermion exchanges, i.e., all �n’s, are dropped.

For cobosons 0 with center-of-mass momentum Q0 and
relative motion index �0, it is possible to show �16� that �n
=	k��k ��0��2n. This makes �n a positive constant of the order
of �aB /L��n−1�D, where aB is the spatial extension of the rela-
tive motion state ��0� and D is the space dimension. For 3D
excitons or hydrogen atoms, for which ��k ��0��2
=64��aB /L�3 / �1+k2aB

2�2, one can show �16� that

�n = 16
�8n − 5� ! !

�8n − 2� ! !
�64�aB

3

L3 �n−1

. �10�

This leads to �2= �33� /2��aB /L�3 and �3
= �4199�2 /8��aB /L�6, which makes �3	�2 and ��3−�2

2�, as
appearing below in the Mandel parameter, a positive constant
equal to �2021�2 /8��aB /L�6.

By collecting all the above results, we end with a normal-
ized number for two-particle coincidences of composite
bosons, which reads as

g2
�2� =

1

2

�1 − �2�3

�1 − 2�2 + �3�2 �
1

2
�1 + �2� , �11�

at leading order in �aB /L�D while the Mandel parameter is
given by

Q2 � − 1 + ��3 − �2
2� . �12�

This shows that, for N=2, the number of two-particle co-
incidences is slightly higher for composite bosons than for
elementary ones. We also find that the Mandel parameter is
slightly increased. As seen from Eqs. �11� and �12�, the cor-
responding variations are solely controlled by the Pauli ex-
clusion principle, through the exchange scatterings �n be-
tween n cobosons 0. Unlike elementary bosons for which the
second-order correlation function and the Mandel parameter
depend on N only, their counterparts for composite bosons
also depend on the state 0 at hand, through its spatial
extension aB.

B. Guess for N composite bosons

For N elementary bosons, number states are such that

n̂��̄N�=N��̄N� such that ḡN
�2�=1−1 /N and Q̄N=−1 for all N,

whatever the state 0 is.
For composite bosons, a “rule of the thumb” intuitively

gives the leading term in the small density limit, through the
replacement of �aB /L�D by �N−1��aB /L�D in the result for
N=2. Since �3 and �2

2 are both of the order of �aB /L�D, this
leads us to guess that the Mandel parameter dominant term
in density reads as

QN � − 1 + �N − 1�2��3 − �2
2� � − 1 + O��2� , �13�

where � is the previously defined dimensionless parameter
associated to density.

The situation for gN
�2� is more ambiguous. From Eq. �11�,

we might guess that

gN
�2� � �1 −

1

N
��1 + �N − 1��2� � �1 −

1

N
��1 + O���� .

�14�

This would lead to a crossover from antibunching to bunch-
ing when 1 /N crosses �, i.e., when the system size
increases—which is very unlikely, physically. However, we
might as well guess

gN
�2� � 1 +

− 1 + �N − 1��2

N
� 1 +

− 1 + O���
N

, �15�

which maintains the antibunching effect for all sample sizes
since the �n expansions performed in these calculations only
hold for �	1. The purpose of the next section is to demon-
strate that Eqs. �13� and �15� are indeed the correct expres-
sions of QN and gN

�2�. To do it, we must go deeper into the
composite boson many-body theory.

i

j

n

m

0

0

n

0

m

0

0

0

0

0

0

m 0

(a)

(b)

0

0

n

0

m

0

0

FIG. 1. Shiva diagrams representing fermion exchanges be-
tween composite bosons. Fermionic components are represented by
solid and dashed lines. �a� Fermion exchange between two “in”
cobosons in states �i , j� leading to the formation of two “out” co-
bosons in states �n ,m�. This diagram represents the Pauli scattering
�� n i

m j �. �b� Fermion exchange between three “in” cobosons 0 yield-
ing three “out” cobosons �m ,0 ,0�, as appearing in Eqs. �7� and
�A8�. For m=0, this exchange corresponds to the three-body scat-
tering �3=	n�� 0 0

0 n ��� n 0
0 0 � of Eq. �8�.
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III. SECOND-ORDER CORRELATIONS FOR N
COMPOSITE BOSONS

A. Key results from the coboson many-body theory

Many-body effects between N composite bosons linked to
fermion exchanges are obtained through the two following
commutators �16�

�Bm,Bi
†N� = NBi

†N−1��mi − Dmi�

− N�N − 1�Bi
†N−2	

n

�� n i

m i
�Bn

†, �16�

�Dmi,Bj
†N� = NBj

†N−1	
n

�� n j

m i
� + �� n i

m j
�
Bn

†.

�17�

These two commutators reduce to Eqs. �4� and �5� when
N=1. Using them, it is possible to show that the normaliza-
tion factor for N cobosons in the same 0 state differs from its
elementary bosons value �N!� due to fermion exchanges tak-
ing place between them. This led us to write

�v�B0
NB0

†N�v� = N ! FN, �18�

where the FN’s, which enter all calculations involving a large
number of identical cobosons, follow the recursion relation

FN = FN−1 − �N − 1��2FN−2 + �N − 1��N − 2��3FN−3 − ¯

= 	
n

�− 1�n−1 �N − 1�!
�N − n�!

�nFN−n. �19�

The �n’s, shown in Fig. 1 for n=2 or 3, are the previously
defined scatterings for fermion exchanges between n co-
bosons 0.

Equation �16� readily shows that

B0��N� = N��N−1� − N�N − 1�L2
†��N−2� , �20�

with L2
† given in Eq. �6�. The above equation used for B0��N�

and then for L2
†��N−1� allows us to show that

B0
†B0��N� = ��N� +

N − 1

N + 1
B0��N+1� . �21�

This last equation will turn very useful in calculating matrix
elements.

B. Calculation of QN

Since ��N�B0= ��N+1�, Eqs. �18� and �21� give the mean
value of the particle 0 number operator as

�n̂�N = 1 + �N − 1�
FN+1

FN
= N + �N − 1�
N

�1�, �22�

where we have set 
N
�n�= �FN+n−FN+n−1� /FN.

For N=2 cobosons, Eq. �19� gives F2=1−�2 and F3=1
−3�2+2�3, so that we recover Eq. �8�. For N elementary
bosons, FN reduces to one so that all the 
N

�n� differences
reduce to zero. Hence, the number-operator mean value is
equal to N, as expected. By contrast, 
N

�n� for composite

bosons are negative scalars since FN is a decreasing function
of N, as seen from Eq. �19�. This makes the number-operator
mean value for cobosons smaller than its elementary boson
value N due to a “moth-eaten” effect similar to the one we
have already found in other problems dealing with composite
bosons: when a coboson 0 is added to N other cobosons 0,
the additional coboson feels the other N’s through the Pauli
exclusion principle. Therefore N elementary fermion pair
states are blocked and thus missing in its linear combination,
as if these were “eaten” by N “moths.” This informal picture
allows us to physically understand all decreases found for
cobosons, when compared to their counterpart elementary
boson values.

By repeatedly using Eq. �21� for ��N�n̂2��N� split as
���N�n̂��n̂��N��, we can show that

�n̂2�N = N2 + �N2 − 1�
N
�1� +

N�N − 1�2

N + 1

N

�2�. �23�

Again, �n̂2�N for cobosons is smaller than its N2 value for
elementary bosons due to the same moth-eaten effect since
all the 
N

�n� are negative. Using F4=1−6�2+8�3+3�2
2−6�4,

as deduced from Eq. �19�, it is possible to check that the
above equation does agree with Eq. �9� when N=2.

The two above equations allow us to write the mean qua-
dratic deviation in a compact form in terms of two FN dif-
ferences only, namely,

�n̂2�N − �n̂�N
2 = �N − 1�2
− 
N

�1��1 + 
N
�1�� +

N

N + 1

N

�2�
 .

�24�

Since, in the small density limit, 
N
�1��−N�2+N�N−1���3

−�2
2� and 
N

�2��−�N+1��2+ �N+1�N�3, as deduced from Eq.
�19�, we find that the mean quadratic deviation has no term
in �aB /L�D, its small density dominant term being N�N
−1�2��3−�2

2�. Using Eq. �22�, it is then easy to show that the
leading correction of QN given in Eq. �13�, as guessed from
the rule of the thumb, is fully correct: the � term cancels,
making QN increase quadratically with �.

C. Calculation of gN
(2)

The calculation of the normalized number of coincidences
is a little more demanding. To evaluate the numerator of gN

�2�,
we first rewrite B0

†B0 using commutator �4�. This yields

�B0
†�B0

†B0�B0
†�N = �n̂2 − n̂�N + �B0

†D00B0�N. �25�

The first term readily follows from Eqs. �22� and �23�. How-
ever, nontrivial manipulations are necessary to get the second
term in a compact form. Otherwise, we end with FN expan-
sions that are far from obvious to sum up in terms of three
FN only, namely, FN, FN+1, and FN+2, as it ends by reading.
These manipulations are reported in the Appendix. They lead
to
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�B0
†D00B0�N = − 2
�2 + 
N

�1� +
�N − 1�2

N + 1

N

�2�

= − 2N�N − 1�� 
N

�2�

N + 1
− R� , �26�

where R, defined as

R =
1

N


N
�2�

N + 1
−

1

N�N − 1�
��2 + 
N

�1�� , �27�

tends to �2
2 in the large sample limit �see Appendix�.

Using Eqs. �22�, �23�, �25�, and �26�, it is then possible to
show that

�B0
†2B0

2�N = N�N − 1�
1 + 
N
�1� +

N − 3

N + 1

N

�2� + 2R
 . �28�

The above equation shows that gN
�2� reads in a compact

form in terms of FN, FN+1, and FN+2 only. To determine the
dominant contribution in the large sample limit, one can re-
member that 
N

�1� tends to −N�2 and 
N
�2� to −�N+1��2 while

R tends to �2
2 in this limit. We then find that the ratio in the

above equation tends to �1− �2N−3��2� / �1− �N−1��2� so
that we end with

gN
�2� = �1 −

1

N
�1 + 
N

�1� +
N − 3

N + 1

N

�2� + 2R

�1 +
N − 1

N

N

�1��2 , �29�

which, in the small density but large N limit, reads as

gN
�2� � �1 −

1

N
��1 + �2� � 1 +

− 1 + �N − 1��2

N
, �30�

in agreement with the result guessed in Eq. �15�. Since �2 is
in �aB /L�D, this shows that the correction induced by bosons
composite nature is in � for gN

�2� but in �2 for the Mandel
parameter QN.

IV. CONCLUSIONS

By extending number states to composite bosons, we have
shown that the Pauli exclusion principle modifies statistical
signatures of composite boson many-body quantum states.
This is underlined through the particular evaluation of the
number of coincidences in two-particle correlations and the
dispersion of the corresponding probability distribution.
These explicitly reflect fermion exchanges between compo-
nents of composite bosons. We find that the number of coin-
cidences in second-order correlations is enhanced compared
to elementary bosons and so is the variance of the field.
However, main statistical signatures are found to be pre-
served. Indeed, the extension of number states to composite
bosons still presents a strong quantum character, with a Man-
del Q parameter close to �−1�.

To highlight these effects in the simplest way, we have
first considered N=2 composite bosons. From results ob-
tained for the number of coincidences in two-particle corre-
lations as well as the Q parameter, we used a rather intuitive

rule of the thumb to determine these for arbitrary N. The
corresponding expressions, guessed from the N=2 results,
are thereafter confirmed by N-body calculations. These are
done following a procedure proposed in Ref. �16� to handle
fermion exchanges between composite bosons, exactly.

In general, our analysis confirms that the statistics of
bosonic fields is modified by the underlying fermionic com-
ponents of bosons. Precisely, fermion exchanges correlate
composite boson states through Pauli exclusion principle.
This, in particular, makes the mean value of the number op-
erator smaller for composite bosons than for elementary
ones. Therefore, coherence properties of composite bosons
cannot be directly deduced from their elementary boson
counterparts. For that purpose, the derivation of operators
peculiar to composite bosons, in order to possibly define
“number states” and “coherent states,” would be highly
valuable.

APPENDIX: EVALUATION OF ŠB0
†D00B0‹N

This appendix is dedicated to the calculation of
�B0

†D00B0�N in a compact form. For that, we first use com-
mutator �5�. This allows us to write

�B0
†D00B0�N = �D00B0

†B0�N − 2�L2
†B0�N. �A1�

The part ��N�D00 in the first term is obtained by mixing Eqs.
�17� and �20�. This leads to

D00��N� = 2NL2
†��N−1� = 2��N� −

2

N + 1
B0��N+1� . �A2�

By using Eq. �21�, it is then easy to show that the first term
of Eq. �A1� is equal to

�D00B0
†B0�N = − 2
N

�1� − 2
N�N − 1�

N + 1

N

�2�. �A3�

In the second term of Eq. �A1�, we use Eq. �20� for B0��N�
and then the same Eq. �20�, but for L2

†��N−1�. This leads to

�L2
†B0�N = − 
N

�1� − N�N − 1�R , �A4�

where R is defined by

R =
��N�L2

†2��N−2�N

��N��N�N
. �A5�

All this allows us to rewrite Eq. �A1� as in Eq. �26�.
To get R in a compact form is considerably more difficult.

Since it contains two Pauli scattering at least, through the
two L2

† operators, we can already say that its leading term
must be in �aB /L�2D. This is going to give a �2 contribution
to gN

�2�, negligible compared to the dominant term of gN
�2�,

expected to be in �. Nevertheless, for completeness let us
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now show how a compact expression of R can be obtained.
The trick is to note that, for L2

† given in Eq. �6�, we have,
using Eq. �16�

L2��N� = 	
n

��0 n

0 0
�
N�n0��N−1�

− N�N − 1�	
m

��m 0

n 0
�Bm

† ��N−2�

= N�2��N−1� − N�N − 1�L3

†��N−2� , �A6�

where L3
† is nothing but the operator defined in Eq. �7� since

	�� 0 n
0 0 ��� m 0

n 0 � is the three-body exchange scattering with
three cobosons 0 on the right and two cobosons 0 plus one
coboson m on the left, as readily seen from Fig. 1�b�. By
using the above equation for ��N�L2

† but Eq. �20� for L2
†��N�,

it becomes easy to show that

R =
�2

N − 1

FN−1 − FN

FN
+

��N−1�L3��N� − N��N−2�L3��N−1�
��N��N�

.

�A7�

The next step is to calculate ��N−2�L3��N−1�. This is done by
again using Eq. �A6� for ��N−2�L3 and then Eq. �20� for
L2

†��N−1�. This leads to

��N−2�L3��N−1� =
�2

N − 1
��N−1��N−1�

−
1

N2�N − 1�
��N��N�

+
1

N2�N2 − 1�
��N+1��N+1� , �A8�

so that we ultimately find the expression of R given in Eq.
�27�. By using the values of 
N

�1� and 
N
�2� in the large sample

limit, given above, one can show that R��2
2. The correction

to �B0
†D00B0�N induced by this R term is thus found to be of

the order of �2, as expected.
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