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Repulsive Fermi gas in a harmonic trap: Ferromagnetism and spin textures
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We study ferromagnetism in a repulsively interacting two-component Fermi gas in a harmonic trap. Within
a local density approximation, the two components phase separate beyond a critical interaction strength, with
one species having a higher density at the trap center. We discuss several easily observable experimental
signatures of this transition. The mean-field release energy, its separate kinetic and interaction contributions, as
well as the potential energy all depend on the interaction strength and contain a sharp signature of this
transition. In addition, the conversion rate of atoms to molecules, arising from three-body collisions, peaks at
an interaction strength just beyond the ferromagnetic transition point. We then go beyond the local density
approximation and derive an energy functional that includes a term that depends on the local magnetization
gradient and acts as a “surface tension.” Using this energy functional, we numerically study the energetics of
some candidate spin textures that may be stabilized in a harmonic trapping potential at zero net magnetization.
We find that a hedgehog state has a lower energy than an “in-out” domain-wall state in an isotropic trap. Upon
inclusion of trap anisotropy we find that the hedgehog magnetization profile gets distorted due to the surface
tension term, this distortion being more apparent for small atom numbers. We estimate that the magnetic dipole
interaction does not play a significant role in this system. We consider possible implications for experiments on

trapped ®Li and *K gases.
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I. INTRODUCTION

In recent years, a series of beautiful experiments has
shown that a gas of two-component fermions interacting via
a Feshbach resonance exhibits a superfluid state at low tem-
perature [1-4]. An exciting new direction for cold atom ex-
periments is the study of ferromagnetism arising from repul-
sive interactions in a two-component Fermi gas. Such a
ferromagnetic “Stoner instability” [5] occurs, within mean-
field theory of a homogeneous Fermi gas at zero tempera-
ture, when the (repulsive) s-wave scattering length, ag, be-
tween two spin states is large enough that kpag> /2, where
fikp is the Fermi momentum of the gas. This condition can be
satisfied upon tuning ag to large positive values near a Fes-
hbach resonance provided the system stays stable for a suf-
ficiently long time. Since ferromagnetism arises from two-
body interactions, whereas atom loss due to Feshbach
molecule formation is because of three-body collisions [6],
there may be a range of densities where the lifetime is long
enough to reach the ferromagnetic state.

The suggestion that ferromagnetism may be achieved as a
metastable state in cold Fermi gases is not new. Salasnich
and co-workers [7] studied the mean-field theory of a har-
monically trapped Fermi gas with repulsive interactions and
found that this should lead to phase separation between the
two spin species if the net magnetization is zero. A similar
study was carried out by Sogo and Yabu [8] allowing for
nonzero spontaneous magnetization. Duine and MacDonald
[9] later showed that the ferromagnetic transition in a homo-
geneous Fermi gas changes from a continuous to a first-order
transition at low enough temperatures upon going beyond
mean-field theory. They also proposed that an initially mag-
netized Fermi gas will tend to stay spin-coherent for long
times even in the presence of magnetic field noise that is
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naively expected to cause strong dephasing, provided the
system is close to the transition into a ferromagnetic state
[9].

Using an optical lattice and engineering the band structure
to get flat (dispersionless) bands are other interesting routes
to achieving ferromagnetism. Such “flat-band ferromag-
netism” [10] has the advantage that the ferromagnetic state
occurs at weak repulsive interactions and can be theoretically
analyzed in a reliable fashion; however, an existing theoret-
ical proposal along these lines involves working with fermi-
ons in the p band of a honeycomb optical lattice [11]. A
recent work [12] has considered the possibility of ferromag-
netism for strongly interacting fermions in optical lattices
and studied, within a phenomenological Landau theory, the
energetics of possible spin textures (such as hedgehog states,
domain walls, and skyrmions) that might arise in a trap.

In this paper, motivated by earlier work and by ongoing
experimental efforts, we revisit the problem of ferromag-
netism in a harmonically trapped two-component Fermi gas.
We begin by using a “local density approximation” (LDA),
sometimes referred to in the literature as the Thomas-Fermi
approximation, to describe this system. Within the LDA, we
find that the mean-field release energy of the trapped gas (as
well as the potential energy and the kinetic energy compo-
nents of the release energy) provides a simple, albeit indirect,
diagnostic of the ferromagnetic transition. We find that the
formation of nonzero local magnetization in the trap causes a
suppression of the atom loss rate via three-body collisions.
This suppression competes with the growth of the loss rate as
the interactions get stronger, leading to a peak in the atom
loss rate at an interaction strength that is very close to, but
slightly beyond, the ferromagnetic transition point. We then
show how one might incorporate magnetization gradient (or
“surface tension”) terms in order to go beyond the LDA. Our
energy functional is akin to an earlier phenomenological
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Landau theory for ferromagnetism in an optical lattice [12]
but explicitly keeps track of the spatial dependence of all the
Landau theory coefficients that arise from density variations
in the trap. Using this extended energy functional, we study
the energetics of various spin textures in the case where the
net magnetization, which does not relax in these quantum
gases, is assumed to be zero. This corresponds to choosing
the initial population to be the same for both hyperfine spe-
cies of fermions. We show, in this case, that a hedgehog
configuration of the magnetization has a lower energy than
an “in-out” phase-separated configuration with a domain
wall. A similar phenomenon has been predicted for fermions
in optical lattices [12]. Finally, we turn to the effect of an-
isotropic trapping frequencies in a harmonic trap. While such
anisotropies can be incorporated by a trivial rescaling of co-
ordinates in the LDA, this is no longer true in the presence of
surface tension that leads to a breakdown of the LDA. (A
breakdown of the LDA has been observed [13] and theoreti-
cally addressed [14-16] in the context of polarized superflu-
ids in highly anisotropic traps.) We use our extended energy
functional to numerically study how the hedgehog state dis-
torts upon going from a spherically symmetric trap to an
anisotropic cigar-shaped trap. We conclude with estimates
that indicate that the magnetic dipole interaction between
atoms can be neglected for °Li and K.

II. FERROMAGNETISM WITHIN THE LOCAL DENSITY
APPROXIMATION

The Hamiltonian describing a uniform two-component
Fermi gas interacting through a repulsive s-wave contact in-
teraction is given by

&’K
H-= EJ 2 )36KcKUch+gfdRcRTchcRLcRT, (1)

where ex=%%K?/2M is the kinetic energy of atoms with
mass M and momentum #K. For a Fermi gas with N, par-
ticles of spin o, the uniform gas densities of each spin is
p,=N,/V and the total kinetic energy of the uniform gas is
just

3
K=3W(Epp; +Epip)), (2)
where V denotes the system volume and Ep,= ap(z,/%, with
a=(677)*3h%/2M, denotes the Fermi energy of particles
with spin o. A mean-field theory of the interacting Hamil-
tonian yields the total interaction energy,

U=gVpip,. 3)

At this level of treatment the contact interaction strength g is
related to the two-body scattering length ag in vacuum via
g=4magh’/ M.

The LDA for a trapped Fermi gas corresponds to simply
assuming that the above results apply locally in the presence
of a trap potential V(R). The ground-state energy of this
trapped Fermi gas is then obtained by minimizing the energy
functional,
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E{lp,(R)T} = f d3R{ —az P (R) +gp;(R)p|(R)

+V(R) X py(R) = 2 pe(R) |, (4)

where {p,(R)} denotes the density profile of both spin spe-
cies [p;(R),p|(R)]. Here we have introduced two Lagrange
multipliers u,, that act as chemical potentials for the two spin
species and serve to impose the constraints [d°Rp,(R)=N,.
The separate constraint on each spin component arises from
the assumption that the two spin components correspond to
the lowest two Zeeman split hyperfine levels of a Fermi gas.
Since the Zeeman splitting near a Feshbach resonance is
typically far greater than all other energy scales and the total
energy must be conserved in these thermally isolated gases,
we arrive at the constraint that the population of the two
Zeeman components cannot change for fermionic atoms
where the only interaction is between different spin compo-
nents. Thus, unlike in solid state ferromagnets, the magneti-
zation can be conserved on very long time scales.

A. Rescaling to the isotropic problem for a harmonic trap

Let us assume that the trapping potential is harmonic but
possibly anisotropic, so that V(R):%MZiwizRiz. Here o, .
are the trapping frequencies along different directions. In or-
der to make the problem appear isotropic we can rescale

distances by setting R R;(w;/Q), where Q=(w,0,0 )3 s

the geometric mean of the trap frequencies. With thls stan-
dard rescaling, we get

E{[p,(R)]} = J d3R{ —az P (R) + gp;(R)p|(R)

1 ~ ~ _
+ EMQZRZE Po(R) = X 1,po(R) | (5)

g

B. Noninteracting unmagnetized gas

For the unmagnetized gas, we have Ny=N =N/2 and for
the noninteracting case we can set g=0. This reduces the
energy functional to

Exdlp(R)]} = 2 E [po(R)], (6)

Eyo[p(R)]= f d*R{ <apy (R)
1 - -
Setting 5E2,/ Op,=0 leads to the equation

P23 (R) = (ufy - sMQ’R?), (8)

where we have used symmetry to set u;=pu lz,ug,. The solu-
tion to this equation is simply
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PolR) = o[~ SMOPROP. (9)
Clearly there is a maximum radius,

2py

(10)

beyond which p,(R)=0. Integrating up to this maximum ra-
dius using spherical symmetry of the density and employing
the constraint, we end up with

py = Ep=1Q(3N)", (1)

R = \/% = ayo(24N) "0, (12)
Ey= %NEOF = ?(3N)4’3, (13)
p,o\,’a(O) = #]\;3 = a;()(ﬁ) 1/2N1/2’ (14)

where ayo=(/MQ)"? is the oscillator length, and we de-
note the density solution for this noninteracting unmagne-

tized Fermi gas by p% (R). Here u, is the chemical potential
of the gas, Ey is the total energy of the gas, and pj(0) is the
atom density at the trap center.

C. Converting the interacting problem to dimensionless
variables

Let us use the noninteracting unmagnetized gas results to
convert to dimensionless variables as follows:

R
r= —0’ (15)

RN
nl)': Op—,_',?" (16)

PNU(R =0)

N\ =k}(0)as, (17)
e=E/EY, (18)
Yo = ol py. (19)

Here \ is the dimensionless interaction parameter, €, 7y, are
the total energy and chemical potential, respectively, in di-
mensionless units, and k(}(O) denotes the Fermi wave vector
at the trap center for the unmagnetized noninteracting gas.

In terms of these dimensionless variables, the energy
functional becomes
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16 3
elln, 0]} =55 J d3r[g[n%”<r> +n1 ()]

4
. 3—AnT<r)nl<r> =S (=) |
7T (o

(20)

If we assume that the ground-state solution for the densities
respects the spherical symmetry of this energy functional, we
can further simplify the energy functional to a one-
dimensional integral,

efln ()} =5 f drrzlg[n%“(r) +n} ()]

)~ 2 (- rz)nm} @

D. Variational minimization

The variational minimization SE/ dn,(r) leads to the fol-
lowing two equations:

4 32
ny(r) = {(w—rz—;)\nl(r))} , (22)
4 32
n(r)= [(yl—rz—;)\m(r))} , (23)
subject to the constraints
m N,
47Tj drr*n,(r) = ZWG (24)

These equations can be iteratively solved (numerically) for
the fermion densities given the interaction strength and the
total fermion numbers for each species. Having solved them
we can use the resulting fermion densities to compute physi-
cal observables. We will denote the average magnetization
by m=(N;=N,)/(N;+N|). For an unmagnetized gas, we
find that increasing the interaction A progressively modifies
the density profile of the gas from that of a noninteracting
Thomas-Fermi profile at A=0 to that of a fully polarized gas
when A>1.

E. Release energy and ‘““ferromagnetic transition”

The release energy of the trapped atomic gas is measured
by rapidly switching off the trap potential and measuring the
total kinetic energy of the atoms after some time delay. As-
suming that the switch-off process is instantaneous and that
all the interaction energy in the initial state has been con-
verted into the kinetic energy of atoms at the time of mea-
surement, the release energy and its separate kinetic and in-
teraction energy components are given, within the LDA, by

64 3 4
Erel = ;J drr{gg n(r) + ;T)\”T(V)”i(”) ., (25)
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Eint = ??_j-rf drrz{siw)\m(r)ni(r)] , (26)
64 3
Exin = 3—77J drr2|:§z nf;/%(r)] . (27)

The potential energy of the cloud, due to the confining har-
monic trap, can be easily obtained from experimental mea-
surements of the cloud profile and it is given by

64
Epot = ;Tf drr2{r2[nT(r) +n(r]}. (28)

From Fig. 1, we see that the release energy displays a
sharp transition point, for m=0, at A ;= 1.84. At this inter-
action strength, we find that kpag=/2 at the trap center,
with kj being the Fermi wave vector at the trap center in the
interacting cloud, which corresponds to the Stoner transition
point in the uniform gas. Further, an examination of the den-
sity profile of the two spin species shows that this corre-
sponds to an onset of phase separation in the trap—for A
> N, atoms of one spin type tend to have a higher density
at the trap center while atoms of the other spin type are
pushed away from the center leading to a nonzero magneti-
zation density near the trap center. Exactly which atom tends
to accumulate at the center is a spontaneously broken sym-
metry at zero magnetization, and this phase separation is
simply a local manifestation of ferromagnetic ordering. This
result for the A at m=0 translates into an estimate for the
critical two-body scattering length,

a§™ = 0.6NcanoN " = agoN ", (29)

beyond which one expects to see phase separation in the trap.
For /27~ 170 Hz we estimate for N=10%,10°,10° the re-
spective critical scattering lengths,

agcril)(‘loK) =~ 5300a,,3600a,2500a, (30)
al™(OLi) = 13800a(,9500a(,6400a,, 31)

where ay~0.529 A is the Bohr radius.

Figure 1 also shows the kinetic energy and the interaction
energy components of the total release energy. Each of these
observables shows a large and much more dramatic signature
at the transition (for m=0) than the total release energy and it
is likely to be more promising experimental signature, as
discussed in Ref. [17]. In addition, the potential energy of the
confined cloud also shows a maximum at the ferromagnetic
transition point.

Strictly speaking, there is no phase transition (beyond
mean-field theory) except in the thermodynamic limit that,
for a trapped Fermi gas, is obtained by taking N—c and
Q—0 with NQ? held fixed. For nonzero magnetization,
however, there is no phase transition even at mean-field
level; nevertheless, the release energy does display a fairly
sharp crossover at A for m=0.2. The measured release
energy can only tell us about the existence of a phase
transition—for N >\, in situ measurements of the magne-
tization profile, which we discuss below, are needed to show
that this transition corresponds to ferromagnetism in the trap.
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FIG. 1. (a) Dimensionless mean-field release energy, €, versus
interaction, N\, within the LDA for indicated values of n_1=(NT
—N))/N. For m=0, there is a phase separation transition that ap-
pears as a sharp kink in the release energy at A = 1.84. (b)—(d) Same
as in (a) but for the kinetic energy, interaction energy, and potential
energy of the gas. The energy per particle in physical units may be
obtained by multiplying these results by 3E2/4, where EOF
=AQ(3N)!3. As shown later, going beyond the LDA leads to neg-
ligible quantitative corrections to these results.
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FIG. 2. Dimensionless atom loss rate, I'/I'j, as a function of
interaction strength at various average magnetizations.

F. Atom loss rate

Atoms on the repulsive side of the Feshbach resonance
tend to be unstable to formation of molecules via three-body
collisions. Apart from kinematic and statistical constraints on
these processes, there is a simple constraint that two of these
atoms, which eventually form the molecule, must have op-
posite spins. One consequence of having a nonzero local
magnetization in the trapped gas is a suppression of the prob-
ability of finding fermions with opposite spin in the same
region of space, which leads to a strong suppression of such
three-body losses. Up to an unknown prefactor, I'j, we can
estimate this three-body loss rate as

1—‘ = Fo)\6f d3rnT(r)nl(r)[nT(r) + nl(r)], (32)

where the \® scaling follows from a study of the three-
fermion problem [6]. Figure 2 depicts a plot of I'/T7; as a
function of the interaction strength A. For m=0, the very
rapid growth of I'/T'y for small interaction strength arises
from the rapid increase in the \° coefficient, while the drop
beyond the ferromagnetic transition point arises from the for-
mation of a nonzero local magnetization in the trap that sup-
presses the product n;(r)n(r) in the integrand. These two
competing effects lead to a peak in the rate of atom loss, via
conversion to molecules, at an interaction strength that is
slightly beyond the ferromagnetic transition point. A mea-
sured peak in the atom loss rate as a function of increasing
interaction strength, as observed in Ref. [17], would thus hint
at local ferromagnetism developing in the trap.

III. BEYOND THE LDA: MAGNETIZATION GRADIENTS

The discussion in Sec. II F has focused on the properties
of the Fermi gas within the LDA. The energy functional at
this level of approximation does not have any gradient terms.
We will not worry about the shortcomings of this approxi-
mation for the density profile—it is well known that the
LDA breaks down near the trap edges—but instead focus on
going beyond the LDA by considering magnetization gradi-
ent terms with a view to studying the energetics of spin tex-
tures. We begin by noting that although we have been assign-
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ing a global spin axis to the magnetization, the LDA energy
functional would be unchanged if we, in fact, choose the
local spin quantization axis to vary from point to point; only
the magnitude of the local magnetization plays a role. In
order to go beyond the LDA and to study the energies of
various spin textures in such a Fermi gas, we therefore need
to extend the energy functional in two respects. First, we
have to promote the local magnetization to a vector quantity
so that the magnetization can point in different directions on
the Bloch sphere at different spatial locations. Second, we
have to include terms in the energy functional that depend on
the local magnetization gradients; this corresponds to adding
a surface tension term to the energy functional. The results
from such an extended energy functional should be com-
pared, in the future, with microscopic Hartree-Fock calcula-
tions.

We start with the dimensionless energy functional in Eq.
(20) and set

ny(r) = ?[1 +m(r)], (33)
n(r)
n(r)= 7[1 -m(r)], (34)

which define the local magnetization density m(r). As dis-
cussed, the spin quantization axis can be chosen to be differ-
ent at each space point within the LDA. Let us next expand
the energy functional in powers of m(r); we will keep terms
up to m®(r) although terminating the expansion at m*(r)
would not qualitatively affect our results. The energy func-
tional then splits into two parts as

& =¢g,[n(r)]+ e,[n(r),m(r)], (35)
where
16 6 n(r)\>?
sa[n(l‘)] = m d3r|:§(7>
b ) - (- r%(r)] .66

eln(e).m(e)) = 35 | @A) + As(em'r)

+ Ag(r)m®(r) — hn(r)m(r)]. (37)

Here ¢, only depends on the density profile that depends on
the interaction A and that we assume is unchanged from that
given by the LDA calculation earlier. This is a good approxi-
mation since the corrections to the LDA energy are weak for
typical atom numbers used in experiments, as we will see
below. The coefficients of the magnetization-dependent en-
ergy functional, g, are

5/3
no =52 X, 39)
5/3
At = 2 (39)
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7n>3(r)

A= 225157

(40)

A,(r) depends on \ explicitly. In addition, all the coefficients
Aj 46 depend on the spatial location in the trap through the
density and thus also depend implicitly on the interaction
strength A. This dependence was ignored in earlier phenom-
enological work on trapped fermions in an optical lattice
[12]. The Lagrange multiplier in the energy functionals are
given by y=(y;+7v)/2 and h=(y;-v)/2. Promoting the
magnetization and the Lagrange multiplier & to vectors Wi h
and including gradient terms lead to an energy functional of
the form

6
&p[n(r),mi(r)]= ;_ﬂlf 6131‘{1‘\2(1‘)|’71(l‘)|2 + Ay (r)|rii(r)[*
1
+ Ag(r)[rii(r)|° + Efs(r) ai[vimj(r)]z

— h(r) - r?z(r)}. (41)

Here, a;=(w;/)?, which comes from our rescaling to an
isotropic problem. The stiffness {,(r) depends on r only
through the density n(r), and it can be computed in the uni-
form Fermi gas assuming that the magnetization variation is
slow on the scale of the interparticle spacing but fast on the
length scale over which the total density varies, so that den-
sity variations can be ignored in this computation. The
Lagrange multiplier h(r) must be chosen to satisfy global
constraints on the magnetization, for instance,
JdPrn(r)m,(r)=0 for each component i. We next outline the
derivation of the stiffness term.

A. Computation of the stiffness (r)

For small magnetization, we can obtain the result for ¢
from the result for the magnetic susceptibility of the uniform
Fermi gas. Note that the excess energy in an applied field
h(q) (pointing in any direction) is given by AE(q)
=%X(q)h,-(q)h,-(—q) that defines the wave-vector dependent
magnetic susceptibility. This tells us that the magnetization
M(q) in this external field is simply M(q)=x(q)k(q), so that
we can instead set AE(q):%X‘l(q)M,-(q)M,-(—q). Expanding
x"'(@)=x;'(1+bq?) then yields

AE(qQ) = 3x5 (1 + b )M (@M (- q). (42)

The well-known result for a Fermi gas at 7=0 is that b
=1/12k12;, using which the energy cost becomes, in real
space,

1

1247

AE=—— f d3R[IM<R>|2+ [VMRP |, (43)
2Xo

where
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L mR R
Xo =

Mkp M

(372p)~13. (44)

Rescaling distances to get an isotropic harmonic trapping
potential and setting M,;=p\, (r=0)n(r)m(r), with r=R/R},

we find
g (r) ~ n—1/3(r) 1 1 2/3
233 6[37n(r) P3| pi (R’

1
"~ 72n(r)(3N)??"

(45)

For general values of the magnetization, higher order gradi-
ent terms might also become important. We will focus here
on the effects of this simplest gradient term in the energy
functional.

B. Simplified magnetization energy functional

Before proceeding to the energetics of various spin tex-
tures, let us slightly simplify the energy functional. Notice
that n(r) varies over the length scale of 1 in our dimension-
less units. For large atom numbers, the stiffness is small as
seen from Eq. (45) and we therefore expect significant varia-
tions in the magnetization to occur on length scales € <1 in
our dimensionless units. Making this assumption, we can set
VIn(r)m;(r)]=n(r)Vm,(r), which results in the slightly sim-
plified energy functional

16

&=32 d3l‘{/“2(l‘)|rﬁ(l‘)|2 + Ay (1) (r)[* + Ag(r) i () [°

n(r)

+ };(I‘) . rﬁ(l‘) + W

ai[vimj(r)][vimj(r)] , (46)
where A(r) is chosen to satisfy

f dra(r)m;(r) =0 (47)

for each component i (for zero net magnetization). Recall
that o;=(w;/Q)%, where Q=(w,0,0,)"” is the geometric
mean of the trap frequencies.

IV. ENERGETICS OF SPIN TEXTURES

The energy functional we have derived above allows us to
study the energetics of various magnetization patterns in the
trapped Fermi gas. We begin by considering the isotropic
harmonic trap, for which we compare energies of a hedgehog
configuration and a domain-wall configuration of the magne-
tization. We then turn to an anisotropic cigar-shaped trap and
show how the hedgehog state gets deformed from the isotro-
pic case. In each case, we begin by constructing the appro-
priate ansatz for the magnetization. We then numerically
minimize the resulting energy functional, by discretizing it
on a fine grid of points and using a simulated annealing
procedure, to obtain the optimal magnetization profile and its
energy. Assuming that the density and magnetization satisfy
the constraints that the total atom number is fixed and the
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1.28 ¢

1.267

total energy

1.24¢

1227

1.8 20 22 24
A

FIG. 3. (Color online) Dimensionless total energy, &;+&,,
shown as a function of interaction strength, \, for an isotropic har-
monic trap. DW indicates the energy of the domain-wall state for
10* atoms (solid) and 10° atoms (dashed). HH denotes &,+¢, for
the hedgehog state that is nearly identical for 10* and 10° atoms.
Also shown (thin solid line, “unmagnetized”) is &, defined in Eq.
(44), which depends only on the total density profile.

total magnetization is zero (so that the Lagrange multipliers
can be dropped), we can express the total energy as a sum
£€=g,+&,, where

16 [, [6/n)\? rP(r)
S O H o I e

6
&= ;—ﬂlf d3r{z‘\z(r)lfﬁ(r)l2 + Ag(0) i (0)[* + Ag(r) i (r)|°

’ %qvﬁw} . o)

A. Isotropic trap: Hedgehog state

For the isotropic trap, the density profile is spherically
symmetric, which allows us to set

5/3 2
o)
ko

. + rzn(r)} . (50)

For the magnetization-dependent energy functional, we must
set ;=1 in the isotropic trap, and the hedgehog state corre-
sponds to choosing 7i(r)=m(r)7. This leads to

64
&, = ;Tf dr rz{Az(r)mz(r) + Ay (rm*(r) + Ag(r)m®(r)

n(r) m*(r) (dm(r))z]
+144(3N2’3[2 2\ ar ' GV

We do not have to pay attention to the zero magnetization
constraint since this is guaranteed for any choice of m(r) by
the hedgehog ansatz symmetry. For typical particle numbers
in experiments, N~ 10*=10°, the stiffness term has a very
small coefficient. We will therefore assume that the average
density profile n(r) obtained from our earlier LDA calcula-
tion remains unchanged and only focus on changes in the
magnetization profile arising from inclusion of gradient
terms.
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FIG. 4. (a) Magnetization profiles for the hedgehog state at A
=2.0 (solid) and N=2.4 (dashed). (b) Magnetization profiles for the
domain-wall state at A=2.0 (solid) and N=2.4 (dashed). The profiles
have been calculated for 10* atoms in an isotropic trap. The hedge-
hog state has zero magnetization at the trap center while the
domain-wall state magnetization gets suppressed around the domain
wall but remains nonzero at the trap center. Insets indicate the sche-
matic magnetization plot of the hedgehog state and the domain-wall
state.

Figure 3 shows the energy £/ of the hedgehog state ob-
tained by finding the function m(r) that minimizes the hedge-
hog state energy. Figure 4(a) shows the magnetization profile
of the hedgehog state at two different interaction strengths.
We find that the magnetization is suppressed in a small re-
gion around the trap center and vanishes at r=0. To under-
stand the magnetization profile of the hedgehog near the trap
center, we can focus just on the last two terms in Eq. (51).
Taking a functional derivative with respect to m(r) and set-
ting it to zero then suggest that m(r) ~r? at small r, so the
energy density coming from the central region of the hedge-
hog is finite. Far from the center, we expect the magnetiza-
tion to be small. These expectations are consistent with the
magnetization profiles shown in Fig. 4(a).

B. Isotropic trap: Domain wall state

For the domain-wall state we have, as before,
64 2[ 6<n(r)>5/3 A2 (r)
ei=— | drr| -| — +—

Py +r2n(r) . (52)

3T 5\ 2
For the magnetization-dependent energy functional, we set
a;=1 in the isotropic trap and choose 7i(r)=m(r)Z for the
domain wall. This is capable of describing a state with spin
T, say, at the trap center with spin | pushed away from the
center, what we might call an in-out domain wall. We find

64
&y = 3_77f dr rz[Az(r)mz(r) + Ay(r)m*(r) + Ag(r)mS(r)

d 2
) 2/3( m(r)> ]» (53)
144(3N) dr
where, for N;=N|, we must satisfy the constraint

fdr r’n(r)m(r)=0. Figure 3 shows the energy £V of the
domain-wall state obtained by finding the function m(r) that
minimizes its energy subject to the zero magnetization con-
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straint. We find that this domain-wall state has a higher en-
ergy than the hedgehog state. Figure 4(b) shows the magne-
tization profile of the domain-wall state. As expected, the
magnetization is suppressed in a small region around the
domain wall but remains nonzero at the trap center.

C. Cigar-shaped trap: Distorted hedgehog

If we consider a cylindrically symmetric (cigar-shaped)
trap, we can look at an ansatz of the form

7i(r) = m(p,z)(fsin 1//,Xsin ,cos (/1), (54)
P p

where p=\x*+y? and = i(p,z). For y=6=tan"'(p/z) this
reduces to the spherical hedgehog ansatz. Note that the di-
rection of the magnetization on the Bloch sphere is unrelated
to the location in real space. We could equally well have
chosen, for instance,

ii(r) = m(p,z)(cos ¢,£sin zﬁ,isin (ﬁ). (55)

With the choice of magnetization in Eq. (54), we have
|rii(r)[>=m*(p,z), while
m2
a,(9m;)(9m;) = aL(&pm)2 +a,(dm) + aL?sinz v

+m*[a, (3,9)* + (9.9, (56)

so the integral [d’r — 2w [dzdpp. We can assume that m is
an even function of z and that ¢{p,—z)=7—¢(p,z) [so that
sin? Y(p,—z)=sin® ¥(p,z)] to restrict the energy integration
grid to just z>0. These conditions ensure that the total mag-
netization integrates to zero. The final expression for the en-
er hus b i =\p?+72

gy can thus be recast, with r=\p~+z-, as

5/3
81:36_4 rrz[ (n(zr)> +
o

A2(r)

. +r2n(r)}, (57)

82='—-J~ .[\'mx dppF(p.z), (58)

2
n m
F(p,2) =A-m>+ Am* + Agm® + ————=1 a, —sin”
(p:2) 2 4 6 144(3N 2/3 ipz ¥

+ ai(apm)z + a’z(azm)z + mz[ai(’?pl/f)z + az(azl;b)z]} >

(59)

with (p=0,z)=0 and (p,z=0)=m/2 by symmetry. For
notational simplicity, we have suppressed the coordinate la-
bels on n,m, ¢ in the above functional.

We find, numerically, that = 6, so, in fact, the ansatz
simplifies to the form

Jii(r) = m(p,z)( f) (60)

~:|><
‘:I‘\<

The main effect of going from the spherical to the cigar-
shaped trap is that the magnitude of the magnetization is no
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FIG. 5. (Color online) Two-dimensional magnetization profile
for the distorted hedgehog showing breakdown of the LDA for the
magnetization density for 10% atoms in an anisotropic trap with A
=24 and o, =2,2,=0.25(w, /w.~2.8). (a) Plot of the magnitude
of the magnetization m(p,z) and equal-magnetization contours dis-
played in rescaled coordinates in which the trap potential is spheri-
cally symmetric. Colorbar to the right indicates the value of m(p,z).
We see that m(p, z) is larger in magnitude for larger values of p than
it is for z, indicating that the surface tension makes it easier to
change its value in the weak trapping direction. (b) 77 shown as a
quiver plot indicating the magnitude and direction of the magneti-
zation (plotted in coordinates where the trap anisotropy is explicitly
shown). Shaded area indicates the region of the trap where the atom
density is nonzero.

longer just dependent on the radial coordinate r. The magne-
tization however still points (in our rescaled coordinates)
along the radial direction. The plot of the magnetization for
A=2.4 in the rescaled and in the original coordinates for a
trap anisotropy corresponding to a, =2, a.=0.25 (a trap fre-
quency ratio o, /w.~2.8) is given in Fig. 5.

V. EFFECT OF DIPOLAR INTERACTIONS

Our results for the spin texture energetics and magnetiza-
tion profiles have been obtained by neglecting the role of the
long range magnetic dipole interaction between the fermions.
The dipole interaction will add to the magnetic energy of
atoms in the trap. In addition, it will lead to spatial variations
in the magnetic field seen by atoms within the trap and, thus,
tend to cause dephasing as atoms in different regions will
precess at different rates. Such effects are known to be im-
portant in 8’Rb spinor Bose condensates [18,19]. In order to
estimate the dipole interaction energy and the time scale of
this dephasing, we have considered the spatial variations in
the dipole field for the simple case of the spherical trap.

The expression for the precession frequency at distance r
from the center of the spherical trap is, for the hedgehog
state,
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o g S22\ &\
1%20%=;zﬁ#§<;;;)<;ﬁ3) N'2

drid6r? sin 6m(ry)n(r,)
3/2

F(r,r,0), (61
(r2+r%—2rrlcos¢9 (r.r1,0), (61)

(r; = rcos 6)(r, cos 6— r)]

F(r,r;,60) =1 cos -3
(r.71,6) [ (r2+r%—2rr1 cos 6)

(62)

where up=~9.27X107%* J/T is the Bohr magneton and u,
=47 X 1077 N/A? is the permeability of free space. Evalu-
ating this, we find that the typical values of (and also the
variation in) the precession frequency for A=2.5, N=10°,
and Q=27(170 Hz) are ¥/ (°Li)~0.03 Hz and 47 (*'K)
~().6 Hz. The energy associated with the dipole interactions
is far smaller than our estimate of magnetic exchange ener-
gies, ~500 Hz, arising from the s-wave contact interaction
between fermions (in the interaction range where we expect
ferromagnetism). At the same time, measurements of the
typical atom lifetime, 7, on the repulsive side of the Fesh-
bach resonance indicate that 7~ 10 ms for *°K [20] and 7
~100 ms for °Li [2,21]. These are clearly much less than
the variations in the precession period induced by spatial
variations in the dipolar field as estimated above. Taken to-
gether, these estimates show that ignoring the effect of dipole
interactions is a very good approximation in this system.

VI. CONCLUSIONS

In conclusion, we have studied ferromagnetism and spin
textures in ultracold atomic Fermi gases in the regime of
strongly repulsive interactions using the LDA extended to
include magnetization gradient corrections. Within the LDA
at zero temperature, we have shown that the release energy
of the gas, as well as its separate kinetic energy and interac-
tion energy components, shows a sharp signature of the fer-
romagnetic transition. We have also shown that the atom loss
rate via three-body collisions has a peak very close to the
ferromagnetic transition and it provides yet another diagnos-
tic of the transition into the ferromagnetic state. We have
gone beyond the LDA by deriving a surface tension correc-
tion to the energy functional, which depends on atom number
and the trap geometry and used it to study the energetics of
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various spin textures in a two-component trapped Fermi gas.
For a spherically symmetric trap, we find that a hedgehog
magnetization profile has lower energy than a domain-wall
state. For large atom numbers, the small surface tension
leads to a small energy difference between the two spin tex-
tures and the results are close to those of the LDA. In this
case, the surface tension is responsible for selecting the
hedgehog state as having the lowest energy but we have
checked that it does not significantly change our results for
the release energy and the atom loss rates. These continue to
be useful, albeit indirect, diagnostics of the transition into the
ferromagnetic state. For elongated clouds, we have shown
that the surface tension term distorts the hedgehog states, in
rescaled coordinates where the trap is isotropic, in such a
manner that the magnitude of the magnetization changes
more easily in the weak direction of the trap than would be
expected on the basis of the LDA. Such a breakdown of the
LDA is more apparent for smaller atom numbers. Finally, we
have considered the effect of magnetic dipolar interactions
on our results and find that it is a good approximation to
ignore dipole interactions in this system.

The typical atom loss rate near the Feshbach resonance
sets a constraint that the formation time for the ferromagnetic
state will have to be on the order of tens of milliseconds for
40K [20] and hundreds of milliseconds for °Li [2,21] in order
for it to be observed. A direct way to probe the spin textures
discussed here would be through high resolution in situ mag-
netometry, as has been done for spinor Bose condensates
[22]. An experimental observation of ferromagnetism in
trapped Fermi gases would provide impetus for future theo-
retical work on finite temperature effects and collective
modes in the strongly interacting regime.
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