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We demonstrate a technique for performing stochastic simulations of conditional master equations. The
method is scalable for many quantum-field problems and therefore allows first-principles simulations of mul-
timode bosonic fields undergoing continuous measurement, such as those controlled by measurement-based
feedback. As examples, we demonstrate a 53-fold speed increase for the simulation of the feedback cooling of
a single trapped particle, and the feedback cooling of a quantum field with 32 modes, which would be
impractical using previous brute force methods.
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I. INTRODUCTION

The precise generation and control of quantum systems is
necessary for any proposed experiment in quantum informa-
tion and quantum computing, and many potential applica-
tions in precision measurement �1,2�. It is also necessary for
sensitive tests of quantum mechanics and emergent phenom-
ena in quantum physics. Just as it is for classical devices,
measurement-based feedback control �3–7� is a vital tool for
improving the control and stability of quantum systems
�8–13�. Due to the fact that the size of a Hilbert space grows
exponentially with the degrees of freedom of a quantum sys-
tem, simulating the behavior of large quantum systems is a
difficult process. This makes it hard to model and design
feedback for nontrivial quantum systems.

For high-dimensional unconditional quantum evolution,
the most effective ways for direct simulation have been
phase space methods using stochastic techniques �14,15�.
These approaches map the master equation describing the
system to a Fokker-Planck equation �FPE� for a quasiprob-
ability distribution. The evolution of this distribution is ob-
tained by considering the average behavior of a set of sto-
chastic variables, akin to the solution of the Langevin
equations corresponding to a FPE. Not all master equations
can be simulated efficiently in this fashion using current
techniques, but stochastic methods have been used exten-
sively to model low-dimensional quantum optical systems
�15�, low-dimensional atom optical systems �16�, optical
�17�, atomic �18�, and even fermionic-quantum fields �19�.
For example, a single optical mode in an optical cavity can
be simulated using the Wigner representation which has 2
degrees of freedom, the amplitude and phase quadrature.
When converted to a set of stochastic differential equations,
only 2 real-valued equations are required. Simulation of M
optical modes requires 2M stochastic equations �14,15�. This
linear scaling with number of modes is contrasted with the
exponentially increasing size of the Hilbert space. In the in-
finite dimensional limit, quantum fields with D spatial di-
mensions can be simulated with a D-dimensional stochastic
partial differential equation, which has been used for first-

principles calculations in a variety of systems �17–19�.
Unfortunately, for models of conditional systems, such as

those under continuous monitoring or controlled by
measurement-based feedback, an equivalent unraveling of
the FPE into low-dimensional stochastic equations cannot be
obtained using current techniques. In this paper we develop a
method of performing this unraveling, therefore extending
the scalability properties of phase space stochastic methods
to a class of problems where conditioning is required.

Models of systems undergoing measurement-based feed-
back require the development of conditional master equa-
tions with stochastic elements describing the outcome of
measurement results �3–6,20�. This is because the state of the
system correlated with a given measurement record is re-
quired to model the effect of applying feedback control
based on that measurement record. Note that the stochasticity
introduced here is of a different nature of that obtained from
the unraveling of a FPE. While the latter is a fictitious noise
used to map the evolution of a distribution in terms of ran-
dom trajectories, the former is a real noise generated by the
measurement process. The dynamics of a conditional master
equation can be mapped to the evolution of any correspond-
ing quasiprobability distribution using standard methods, but
the resulting equation of motion, which we will call a sto-
chastic Fokker-Planck equation �SFPE�, remains stochastic.

Conditional quantum systems have been simulated using
trajectory methods, which reduce the size of the problem by
treating the evolution of the conditional density matrix as an
average of an ensemble of state vectors undergoing a sto-
chastic process �21,22�. This reduces the dimensionality of
the problem from N2 to N, where N is the size of the Hilbert
space of the quantum system. Unfortunately, N scales as the
exponential of the number of degrees of freedom in the sys-
tem �e.g., the number of qubits, or the number of single
particle states of a quantum field�, so these methods will
never be tractable for truly high-dimensional systems. Thus,
some equivalent of the stochastic unraveling of quasiprob-
ability representations must be found that can be applied to
conditional quantum systems. An unraveling has been found
for an equation of motion for a classical conditional prob-
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ability distribution, called the Kushner-Stratonovich equation
�KSE� �22,23�. The resulting low-dimensional stochastic
equations had both kinds of noise discussed above: the “fic-
titious noise” that was introduced so that it would average
out to reproduce the diffusion terms of the KSE, and the
noise from the KSE itself, which is a function of the actual
measurement process. These equations used weighted trajec-
tories, which have also been used in quantum simulations of
master equations where the freedom introduced can produce
stochastic equations without singularities or instabilities �24�.
Unfortunately, mapping a generic conditional master equa-
tion to the evolution of a quasiprobability distribution pro-
duces a FPE with additional stochastic terms, rather than a
KSE.

In Sec. II we describe the general form of the stochastic
technique that simulates the stochastic FPE. In Sec. III we
apply this method to a low-dimensional example where the
FPE can be solved directly, a single trapped particle being
cooled by feedback control to the trapping potential. We use
the method on a trapped quantum field in Sec. IV to show
that a high-dimensional example is still tractable.

II. UNRAVELING TECHNIQUE

We will now demonstrate that a low-dimensional stochas-
tic unraveling of these stochastic FPEs can be achieved at the
cost of both introducing weights and simultaneous integra-
tion of all members of the ensemble. Consider a general
diffusive conditional master equation. �25–28�

d�c = −
i

�
�H,�c� + �

j

D�Lj��c + �
j

H�Lj�dWj , �1�

representing the dynamics under the Hamiltonian H and the
continuous monitoring of the operators Li. D�L���L�L†

−1 /2�L†L�+�L†L� and H�L���L�+�L−2��L� correspond
to the decoherence and to the innovation terms introduced by
the measurement, respectively. Stochastic equations will be
written in either Stratonovich or Ito forms and will be indi-
cated by the Wiener noises with �dW�s�� or without �dW�
superscript, respectively.

Using a phase space representation �15�, this master equa-
tion can be converted to a stochastic partial differential equa-
tion that is often of the form:

dp„x,W�t�,t… = 	
− �iAi +
1

2
�iCik�i�Ci�k + � − ����dt

+ �− �iBij + � j − ��� jdWj
�s��

�p„x,W�t�,t… , �2�

where we use Einstein summation notation and suppress
functional dependences for brevity. In this and the following
equations, the indexes i and i� span the variables in the phase
space representation, the index j spans the Linblad operators
in Eq. �1�, and the index k spans the size of the matrix C. p
is the chosen quasi-probability distribution, �f�
=�dx p�x�f�x�, �i�� /�xi, and x and W are, respectively, the
sets of variables describing the system and the Wiener noises

associated with the measurement. Ai, Bij, Cij, �, and �i are
functions of x that are determined by Eq. �1�, and the choice
of quasiprobability distribution. For simulations involving
measurement-based feedback, these functions may also de-
pend on the distribution p, making the equation nonlinear.
The first two terms form a Fokker-Planck equation for which
standard unraveling techniques are applicable, and the rest
arise due to the conditional dynamics.

We will now show that the following set of weighted
stochastic differential equations �WSDE� for the stochastic
variables xi and weight �,

dxi�t� = Aidt + �
j

Bij„x�t�,t…dWj
�s��t� + �

k

Cik„x�t�,t…dVk
�s��t� ,

d��t�
�

= �„x�t�,t…dt + �
j

� j„x�t�,t…dWj
�s��t� , �3�

is a valid unraveling of Eq. �2�. Here, dWj are real noises
corresponding to different actual runs of an experiment and
dVk is a set of artificial noises introduced by the unraveling.
The number of these artificial noises is determined by the
shape of the matrix C, which does not have to be square and
is not uniquely determined. This is not a unique factorization
of the equation of motion for the quasiprobability distribu-
tion p. This can lead to optimization choices, often called
“diffusion gauges,” but once that factorization is chosen, as
in Eq. �2�, we find that we must introduce an equivalent
number of noises. These increments obey the traditional Ito
rules

dWjdWj� = � j j�dt; dVkdVk� = �kk�dt; dVkdWj = 0,

�4�

and we denote the averaging over fictitious noises as E� � �.
Each path is assigned a “weight” �, so that observables

are calculated using E��f�x�� /E���, where we divide by
E��� for normalization. We will use the notation

f�x� � E��f�x��/E��� �5�

to indicate these weighted averages.
Using Eq. �3� and the Ito rules �4�, we find that the dif-

ferentiation rule for the averages in Eq. �5� is given by

df�x� = 
�
i

Ai�i f�x� +
1

2�
ii�k

Ci�k�i�Cik�i f�x��f�x�

− �̄f�x��dt + �
j

�

i

Bij�i f�x� + � j f�x�

− � j f�x��dWj
�s�. �6�

We are now in position to show that the stochastic average
f�x� coincides with the average �f�x�� extracted from the
probability distribution. Substituting Eq. �2� in d�f�
=�dxdp�x�f�x�, integrating by parts and assuming boundary
terms vanish, we get d�f�=df�x�. We have thus shown that
moments of a quasiprobability distribution with evolution
given by Eq. �2� are given by the weighted averages of our
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SDEs �3�. This means that a class of conditional master
equations for a quantum system with an N-dimensional Hil-
bert space can be simulated by a set of SDEs of size log�N�,
and we have the central result of this paper.

III. EXAMPLE: SINGLE TRAPPED PARTICLE

As a first example of this technique we will examine the
model for cooling a single particle undergoing a position
measurement-based feedback derived in �6�, and extended
for non-Gaussian states in �29�. The conditional master equa-
tion for such a system is given by

d�c = − i�Ĥ,�c�dt + �D�x̂��cdt + ��H�x̂��cdW , �7�

where Ĥ= x̂2 /2+ p̂2 /2−u�t�x̂, u�t�=kp Tr�p̂�c� is the control
signal, and all operators have been converted to harmonic
oscillator units. The equivalent SFPE for the Wigner �W�
distribution is

dW�x,p,t� = 
�p�x − u� − �xp +
�

2
�p

2 − ���x − x̄�2

− �x − x̄�2��Wdt + 2���x − x̄�WdW�s��t� .

�8�

We can convert Eq. �8� into a set of SDEs using Eq. �3�:

dx�t� = p dt ,

dp�t� = − �x − u�dt + ��dV�s�,

d��t�
�

= − 2��x − x̄�2dt + 2��xdW�s�. �9�

The first two equations are the SDEs governing a harmonic
oscillator driven by a measurement-induced white noise
force. Note that the equation for the weights contains all the
information from the innovations term.

We can analyze the convergence of this technique by
comparing the solutions of Eqs. �8� and �9� as shown in Fig.
1. These simulations were performed with an initial state
corresponding to a position-displaced ground state, and
kp=−1.35. The simulation was performed using a Mersenne
twister-based random noise generator to ensure the fictional
and real noises remain uncorrelated. The stochastic method
converges to the same solution as the Wigner representation
over a limited interval due to sampling errors. However, the
long-term convergence of these simulations can be enhanced
dramatically by using a “breeding” or “branching” technique
�30�. Trajectories that evolve to give negligible contribution
can be ignored in favor of resampling the remaining ones. If
a weight is found to be smaller than a chosen tolerance 	,
i.e., �small� / ���
	, the memory used to store this path is
freed and the path with the largest weight �max is resampled.
This means the variables of the �max path are copied into
�small� , and the �max weights are halved such that the calcu-
lated observables are still equal within the tolerance of the
integration. This increases the effective sampling and the sto-

chastic method converges over the full interval. Like most
numerical techniques if the error tolerance 	 is too large, the
resampled distribution does not retain all the properties of
the original distribution. To ensure that the breeding tech-
nique is convergent, the simulation must be tested by re-
peated simulations with lower tolerances. When a lower tol-
erance is required, a reduced 	 must be accompanied by an
increased sample size.

The primary advantage of stochastic techniques is that
memory requirements scale well for large Hilbert spaces. For
conditional simulations, the dependence of the evolution on
expectation values requires simultaneous integration of all
paths, so the actual integration is affected by sampling error.
This is in contrast to simulation of traditional master equa-
tions, where the sampling error is a purely statistical error in
the final averages. Although simultaneous integration of mul-
tiple paths is an increase in memory demand, this is more
than compensated by the log�N� memory requirements of the
individual paths, indicating that these techniques are still fea-
sible for quantum fields. We can demonstrate this advanta-
geous scaling by considering the multi-particle extension of
the single particle problem described in Eq. �7�, where we
model the evolution of a trapped bosonic quantum field un-
der feedback control.

IV. EXAMPLE: TRAPPED-QUANTUM FIELD

The simplest extension of the previous example to a high-
dimensional system is to consider the case of a harmonically
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FIG. 1. �Color online� Energy vs time for a single particle un-
dergoing measurement-based feedback averaged over 10 000 “fic-
titious” noises and 100 “real” noises. An initial coherent state dis-
placed in position with an initial energy of 3�� is effectively
cooled. We compare simulations using the Wigner phase space
method �solid, red�, and our WSDEs with �dashed, green� and with-
out �dot-dashed, blue� breeding. Dotted lines correspond to the stan-
dard errors. The estimation of the momentum variable becomes
rapidly inaccurate without breeding �see inset for momentum evo-
lution over a single “real” noise path�. This inaccuracy is fed back
into the equations of motion resulting in failure of the integration
method. Breeding corrects this sampling problem ensuring conver-
gence to the exact solution for longer times.
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trapped-quantum field where we can control the position of
the center of the trap. For an ideal measurement of the center
of mass motion of the trapped field, we have the following
conditional master equation:

d�c = − i�Ĥ,�c�dt + �D�X̂��cdt + ��H�X̂��cdW , �10�

where the Hamiltonian is Ĥ=�dx�̂†�x��x2 /2−�x
2 /2

−u�t�x��̂�x�, �̂�x� is the field annihilation operator, and the
observable for the center of mass position of the trapped field

is X̂=�dxx�̂†�x��̂�x�.
We can first convert this equation into a functional posi-

tive P representation �31�, P���x� ,�x� ,W�t� , t�, then use the
techniques outlined above to convert them to a set of WS-
DEs:

d��x,t� = − iH�x��dt − 2�x�X − X̄��dt + ��x�i�dV1
�s�

+ i�dV2
�s� + �dW�s�� ,

d�x,t� = − iH�x�dt − 2�x�X − X̄�dt + ��x�− idV1
�s�

+ idV2
�s� + dW�s�� ,

d��t�
�

= − ��X�2� + �X − X̄�2�dt + ��XdW�s� �11�

with X=�dx x��x��x�, and X�2�=�dx x2��x��x�.
Equations �11� were solved numerically in one dimension

with 32 modes and 1000 realizations of the “fictitious noise.”
The same parameters as the single particle calculation were
used, and similar cooling behavior is observed. The average
results of 20 realizations are shown in Fig. 2. Each simula-
tion took 6 min on a personal computer using the XMDS
numerical package �32�, showing that sizable conditional
quantum problems can be computed in reasonable time with
this method.

V. CONCLUSIONS

The stability of all stochastic methods depends strongly
on the dynamics of the system, as the simulation is always
more efficient when an appropriate basis is used for the qua-
siprobability representation. The introduction of a measure-
ment tends to project the system toward eigenstates of that
measurement, so the choice of measurement in the system
has a strong effect on the stability of any stochastic method
based on a given quasiprobability distribution. The stochastic
technique presented here will be most efficient when the un-

derlying basis of the representation is a reasonable match for
the likely states of the conditioned system.

This paper has described a stochastic method that can
simulate conditional quantum systems undergoing feedback.
The cooling of a single trapped atom is simulated as an ex-
ample, and compared to the evolution using a direct simula-
tion of the Wigner function. The stochastic method presented
in this paper is 53 times faster to compute, but its real ad-
vantages over “brute force” calculations come from its loga-
rithmic scaling with the size of the Hilbert space. This scal-
ing is demonstrated by the first-principles simulation of a
trapped single-dimensional bosonic field undergoing position
measurement and feedback, which is a simulation that can
only be performed by this stochastic method. This technique
opens the possibility for exploration of nontrivial quantum
systems undergoing feedback control.
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