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Direct frequency-comb spectroscopy is a technique that employs a train of well-stabilized ultrashort pulses
to study the spectral properties of atomic or molecular systems. In this way, it opens the possibility of
incorporating various coherent-control techniques for such spectral investigations. Here we introduce a theory
for the interaction of a multilevel atom with such pulse trains, which is general enough to take into account an
arbitrarily shaped frequency comb. We illustrate its application by studying the interaction of 87Rb atoms with
trains of pulses of various shapes, resonant with the 5S-5D two-photon transition of rubidium. More specifi-
cally, we treat the interaction with hyperbolic-secant pulses, chirped pulses, and 0-� pulses, respectively. The
theory is designed to work at an arbitrary perturbation order. For the results presented here, we mostly used a
12th-order perturbation series at the pulse’s electric field. Due to the large number of levels involved, such
modeling may be quite complex computationally, and an important point of the present work is then to
introduce the required numerical approach to treat this problem efficiently.
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I. INTRODUCTION

The recent development of well-stabilized frequency
combs from femtosecond lasers has led to great advances in
the field of metrology of optical frequencies �1,2�. In the first
wave of applications of frequency combs to spectroscopy,
the comb was employed as a mean to coherently connect
atomic clocks directly to well-stabilized cw lasers, immedi-
ately leading to a considerable enhancement of precision for
measurements performed with such lasers �1�. In this way,
the frequency combs were perceived as the perfect comple-
ment for the already long tradition of high-resolution spec-
troscopy with cw lasers �3,4�. Direct frequency-comb spec-
troscopy �DFCS�, however, is at the center of a second wave
of applications of such combs to spectroscopy, one that takes
advantage of this novel level of spectral control in a deeper
way �5�. Here the comb as a whole is employed to probe the
spectral properties of the medium. This has led to parallel
high-resolution spectral analysis over large spectral regions
�6,7�, with possible applications to medicine due to the fast
chemical analysis it enables �8�. Simultaneously, DFCS
opens the way for applying coherent-control techniques to
spectroscopy �5�, a field still almost completely unexplored.
Finally, it also enables high-resolution spectral analysis in
regions of the spectrum that are difficult to reach with cw
lasers, like in the extreme ultraviolet �9,10�.

Even though it is quite recent the application of such fre-
quency combs for ultra-high-resolution spectroscopy, and
particularly for absolute frequency measurements with re-
spect to atomic clocks, their possible use for spectroscopy
was established already more than thirty years ago. In 1977,
Teets et al. reported the first use of a train of light pulses to
excite a two-photon atomic transition in sodium, producing
spectral profiles with linewidths much smaller than the
Fourier-transform limit of the individual pulses in the train
�11�. Such narrow linewidths are a result of interference be-
tween the atomic excitation caused by consecutive pulses in
the train, much like the interference responsible for the ob-
servation of Ramsey fringes �12�. The work by Teets et al.

was followed by a series of proof-of-principle experiments
demonstrating the adaptation of this idea to different spectro-
scopic techniques �13–19�. These first experiments, however,
suffered from the difficulties in stabilizing the absolute phase
between pulses of such pulse trains, rendering spectral infor-
mation with considerably less resolution than what could be
obtained with state-of-the-art stabilized cw lasers. This is the
problem that was only recently solved, leading finally to
spectra determined from pulse trains presenting already a
resolution similar to the best cw-laser results reported in the
literature �6�.

The present work aims to introduce the necessary theoret-
ical tools to model the excitation of multilevel atomic sys-
tems by an arbitrarily shaped frequency comb. In this way,
we hope to contribute to the development of new spectro-
scopic tools merging coherent control, high resolution, and
parallel excitation of multiple lines. The previous theoretical
treatments for the interaction of trains of pulses with atomic
systems were largely restricted to a small number of atomic
levels and simple pulse shapes �20–28�. The theoretical treat-
ment for multilevel atoms presented here is, in many ways,
an extension of the one employed in Ref. �6� to treat the
two-photon excitation of a cold rubidium sample by trains of
ultrashort pulses. In the treatment of Ref. �6�, however, the
excitation was considered to be impulsive and the particular
shape of the pulses was then completely disregarded. On the
other hand, the excitation of atoms by trains of pulses with a
complex shape has been investigated in other works both
theoretical and experimentally �29–31�. The theoretical ap-
proach in those cases, however, was again restricted to a
small number of levels, typically around three or four.

In the following, we are going to introduce the general
theoretical framework for our work in Sec. II. Crucial as-
pects of the numerical implementation of this theory are ex-
plained in Sec. III. The treatment of these two sections are
valid for a large class of atomic systems and pulse shapes. In
order to illustrate its application, we employ it in Sec. IV to
model the excitation of sequential, two-photon transitions in
87Rb atoms by trains of ultrashort pulses of various pulse
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shapes. We consider the fine and hyperfine structure of the
relevant energy levels, resulting in a total of 16 atomic states
involved in the process.

The general features of the coherent-accumulation process
behind the spectral resolution of DFCS are discussed in Sec.
IV A, still under the impulsive approximation employed in
Ref. �6�. Differently from Ref. �6�, however, we are able to
work here at a considerably higher perturbation order, which
effectively enables us to work with much higher pulse ener-
gies and to probe strongly saturated excitation regimes. We
also discuss in Sec. IV A how to characterize the numerical
errors in our program, and the present limitations of our nu-
merical approach.

The calculations considering different pulse shapes are
discussed in Secs. IV B–IV D. For the pulse shapes, we start
by considering the usual hyperbolic-secant pulses �Sec.
IV B� generated by femtosecond lasers, and then treat the
cases of chirped pulses �Sec. IV C� and 0� pulses �Sec.
IV D�. In each of these sections, we analyze the main fea-
tures of the spectrum that change with the pulse shape. Par-
ticularly interesting to illustrate the power of our method is
the modeling of the excitation by 0� pulses, since the re-
quired spectral resolution in the calculation approaches here
just a few comb lines. In this way, we emphasize that this
method can be used to model the interaction of real atoms
with frequency combs shaped at the level of a few frequency
modes �32�. Finally, in Sec. V we discuss our conclusions for
this work and the new perspectives it may open for the field.

II. GENERAL THEORY

Consider an electric field E�t� interacting with a multi-
level atom. The set of levels is denoted by ��i��. The Hamil-
tonian of the system is

Ĥ = Ĥ0 + V̂�t� , �1�

where

Ĥ0 = 	
i

Ei�i�
i� �2�

is the Hamiltonian for the free atom, with Ei being the energy
of the ith level, and

V̂�t� = − 	
i,j

Vij�t��i�
j� + H.c. �3�

is the interaction potential in the dipole approximation, with
Vij giving the time-dependent potential coefficient corre-
sponding to transitions between levels i , j.

The Bloch equations for the time evolution of the system
are then

��ij

�t
= −

i

�

i��Ĥ, �̂��j� − �ij�ij + �ij	

r

�ir�rr, �4�

where �ij stands for the relaxation rate of the ij component
of the density matrix, �ij is the Kronecker delta function, and
the term 	r�ir�rr gives the incoherent feeding of the ith level
by the population of the upper r states.

Substituting the expression for the free-atom Hamiltonian,
Eq. �4� can also be written as

��ij

�t
= − �i�ij + �ij��ij −

i

�

i��V̂, �̂��j� + �ij	

r

�ir�rr, �5�

where �ij = �Ei−Ej� /� is the transition frequency between
levels i , j.

Equation �5� can be integrated, resulting in the following
integral equation:

�ij�t�e�i�ij+�ij�t = �ij
0 −

i

�
�

0

t

dt�e�i�ij+�ij�t�
i��V̂, �̂��j�

+ �ij	
r

�ir�
0

t

dt�e�iit��rr�t�� , �6�

with �ij
0 giving the �ij element at t=0.

We are interested in investigating the action of an ul-
trashort pulse over the atom. In this case, the interaction

potential V̂ is very fast compared to any relaxation time �ij.
The temporal dependence with �ij can then be neglected in-

side the integrals that contain V̂, and Eq. �6� becomes

�ij�t� = e−�i�ij+�ij�t��ij
0 −

i

�
�

0

t

dt�ei�ijt�
i��V̂, �̂��j�

+ �ij	
r

�ir�
0

t

dt�e�iit��rr�t�� . �7�

Since we want to follow the atomic temporal evolution
with a long sequence of pulses, we need to obtain the expres-
sion that connects the state of the system prior to an arbitrary
�n+1�th pulse to the state prior to the nth pulse. This expres-
sion is obtained from Eq. �7� by simply making t=TR, where
TR is the laser repetition period. For the integrals that de-

pends on V̂, this is equivalent to make t→	, since we are
treating an ultrashort interaction. Equation �7� takes then the
following form

�ij
n+1 = e−�i�ij+�ij�TR��ij

c + �ijIi� , �8�

where

�ij
c = �ij

n −
i

�
�

0

	

dt�ei�ijt�
i��V̂n�t�, �̂c��j� �9�

gives the state of the system �̂c impulsively excited by the

nth pulse �V̂n� starting from the state �̂n prior to that pulse,
and

Ii = 	
r

�ir�
0

TR

dt�e�iit��rr�t�� . �10�

Equation �8� states in a clear way that the overall evolu-
tion of the atomic state, when excited by a train of ultrashort
pulses, is a combination of an impulsive excitation by the
electric field followed by the incoherent redistribution of
population among the various states caused by spontaneous
emission. These two effects develop in very different times-
cales, which effectively allows us to decouple them and
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separately evaluate their contributions, as described in the
following two subsections.

A. Coherent excitation

In order to evaluate the �ij
c terms, it is important to rewrite

Eq. �9� in a way that is more suitable for calculations, as a
function of the temporal evolution operator in the interaction

picture ÛI
n. This operator can be written as a Dyson series in

the form

ÛI
n = 1 + �−

i

�
��

0

	

dt�V̂I
n�t��

+ �−
i

�
�2�

0

	

dt��
0

t�
dt�V̂I

n�t��V̂I
n�t�� + ¯ , �11�

where

V̂I
n�t� = eiĤ0t/�V̂n�t�e−iĤ0t/� �12�

gives the interaction potential in the interaction picture. As a

function of ÛI
n, the integral equation �9� becomes then

�ij
c = 
i�ÛI

n�nÛI
n†�j� = 	

k,l
�k,l

n 
i�ÛI
n�k�
l�ÛI

n†�j� . �13�

In the form �13�, �ij
c is then obtained from the initial-state

components �kl
n and the complex transition matrix

Uij
n = 
i�ÛI

n�j� , �14�

which can be calculated directly from the expansion �11�,
particularly useful for obtaining perturbative solutions.

1. Pulse train

The calculation of the time evolution operator for the nth
pulse in the train is simplified once we remember that, for a
well-stabilized frequency comb �1,2�, its electric field is
given by

En�t� = E0�t − nTR�e2�nif0TR �15�

with E0�t� the electric field for the first pulse in the train, TR
the laser repetition period, and f0 the offset frequency of the
comb �2�. We are also writing the electric field for the first
pulse as E0�t�=E�t�ei�Lt, where E�t� is the pulse envelope and
�L the laser center frequency. When we treat the action of
well-stabilized frequency combs, we are essentially discuss-
ing a pulse train with well stabilized f0 and fR=1 /TR, the
laser repetition frequency. An essential point for the recent
development of high-resolution spectroscopy with frequency
combs is exactly that f0 and fR can be directly phase locked
to any frequency standard, like a cesium atomic clock �1,2�.
Defining f0 in the way of Eq. �15�, we have that each comb
mode can be identified by an integer N, such that its fre-
quency is


N = NfR − f0. �16�

With Eq. �15� in mind and using already the rotating-wave
approximation, the interaction potential for the electric-

dipole interaction of the nth pulse with the atom can be writ-
ten as

V̂n�t� = 	
i,j

�i,jE0�t − nTR�e2�nif0�i�
j� + H.c., �17�

with �i,j the electric dipole moment for the transition i→ j,
and the indices i , j running over all states in the system, with
j� i. This ordering helps to clarify that all transitions to
lower energies are acted by fields with a phase factor of
e2�nif0 per transition. With this in mind, we have the follow-
ing expression for the time evolution operator for the nth

pulse ÛI
n as a function of the one for the first pulse ÛI

0,

ÛI
n = nÛI

0n
†, �18�

where n is a diagonal matrix with the same dimensions as

ÛI
0, and with its elements given by
�i� � jk, for states j in the first manifold of states of lowest

energy;
�ii� e2�nif0TR � jk, for states j in the second manifold of

states, i.e., the manifold containing all states connected to the
first manifold by a single electric-dipole transition;

�iii� e2�nMif0TR � jk, for states j in the �M +1�th manifold of
states, i.e., the manifold containing all states connected to the
Mth manifold by a single electric-dipole transition, and of
higher energies than the states of the Mth manifold.

The state ordering assumed above ensures that the Mth
manifold have increasing energies as M is increased. Note
that to prove Eq. �18�, one just have to show that it is valid

when we substitute ÛI by V̂I.

B. Incoherent redistribution

The incoherent redistribution of population is described
by the second term on the right side of Eq. �8�. This term can
be calculated in a straightforward way by expanding it in a
series representing the cascade decay by spontaneous emis-
sion starting from the highest-energy level, and using the fact
that this incoherent redistribution occurs in a much longer
timescale than the coherent excitation by the ultrashort pulse.
In this way, we can write

Ii � 	
r

�ir�rr
c �

0

TR

dt�e��ii−�rr�t�

+ 	
r,s

�ir�rs�
0

TR

dt�e��ii−�rr�t��
0

t�
dt�e��rr−�ss�t��ss�t��

� 	
r

�ir�rr
c �

0

TR

dt�e��ii−�rr�t�

+ 	
r,s

�ir�rs�ss
c �

0

TR

dt�e��ii−�rr�t��
0

t�
dt�e��rr−�ss�t� + ¯ .

�19�

In the above series, the first term gives the redistribution
coming from just one spontaneous emission event, connect-
ing levels separated by just one dipole-allowed transition.
The second term comes from a cascade of two spontaneous
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emissions, connecting levels separated by two dipole al-
lowed transitions in a cascade configuration. The series con-
tinues then until describing the decay cascade starting from
the highest-energy level included in the model.

In terms of the dipole moments �i,j, the various �i,j are
given by

�i,j =
��i,j�2

	k��k,j�2
� j j , �20�

with k running over all states to which the jth state can
decay.

C. Impulsive approximation

An interesting parameter to characterize the action of a
pulse over the atom is what we call “atomic pulse area”

�a =
2ea0

�
�

−	

	

E�t�dt , �21�

with e the electric charge and a0 the Bohr radius. For a pulse
that is very short when compared to the timescales deter-
mined by the detunings to any atomic transition, note that we
can approximate

1

�
�

−	

	

V̂I
0�t�dt �

�a

2
M̂ , �22�

with M̂ a matrix of the normalized dipole moments of the

transitions M̂ij =�i,j� , and �i,j� =�i,j /ea0. If, besides being very
short, its pulse envelope E�t� could be describe by a real
function, note that we would also have

�
−	

	

dt1�
−	

t1

dt2 ¯ �
−	

tn−1

dtnE�t1�E�t2� ¯ E�tn�

=
1

n!��−	

	

E�t�dt�n

. �23�

In this case, the time evolution operator can be approximated
by

ÛI
0 � 1 + �−

i�a

2
�M̂ + �−

i�a

2
�2 M̂2

2!
+ ¯ , �24�

or just

ÛI
0 � e−i�aM̂/2. �25�

This simplified expression can be very useful to model some
physical situations or to obtain first, approximate solutions
for more complex problems. An example of successful ap-
plication of this approximation can be found in Ref. �6�,
where spectrally broad, approximately hyperbolic-secant
pulses were employed to probe the 5S→5P→5D transition
in an ensemble of laser-cooled rubidium atoms. It could not
be applied, however, to model situations where the pulse
shape plays a significant role, as in the case of the 0� pulses
of Ref. �29� and the frequency-chirped pulses of Ref. �30�.

D. Spectral-mask resolution

A frequency comb represents a collection of hundreds of
thousands phase-locked frequency modes. Since we aim at
modeling the action of an arbitrarily shaped frequency comb,
it is important to determine the maximum spectral resolution
achieved by the present theory. Our main limitation comes
from the requirement of the whole pulse being much shorter
than the laser repetition period TR. This requirement is intro-
duced to obtain the approximated Eq. �19�.

Since 1 /TR gives the separation between consecutive
comb modes, the spectral resolution �
res for our theory
should be then �
res�1 /TR, or a number Nres�1 of fre-
quency modes. In this way, the present theory should work to
model pulses modified by spectral masks with resolution
equivalent, roughly, to a number of modes Nres such that

1 million � Nres � 10.

This resolution is enough to model a large class of spectral
masks. For spectral resolutions equivalent to N�10 the
present theory will still produce consistent solutions, in the
sense that the temporal evolution of the system will preserve
the normalization of the density matrix describing the sys-
tem. The results, however, should be regarded as approxima-
tions to the solution whose validity decreases as Nres ap-
proaches unity.

III. NUMERICAL APPROACH

From the previous section, we notice that the hard part of

the problem is to calculate ÛI
0 for a particular problem. Once

we have that, we can directly calculate ÛI
n with Eq. �18�.

With ÛI
n and the expression for Ii, its straightforward to ob-

tain �̂n+1 from �̂n, Eq. �8�. In this way, we can model the time
evolution of �̂�t� from an initial state �̂0 up to an arbitrary
number of periods of the exciting laser.

However, besides the case of an impulsive excitation

�Sec. II C�, to find an expression for ÛI
0 means to numeri-

cally compute the Dyson series, Eq. �11�, up to a certain
perturbation order m, i.e., up to a term with mth order inte-
grals. At first sight, it may seem that this problem becomes
rapidly hopeless as the perturbation order increases. Fortu-
nately, this is not the case. Since we are dealing with a spe-
cific kind of mth order integral, time propagators, we can
actually numerically compute the Dyson series up to any
perturbation order as if it was a order-one integral, with the
computational time increasing linearly with m.

To understand this crucial point, consider first an electric
field defined by a long vector, size N, specifying its envelope
values Ei at times ti. Note that this is the most general situ-
ation when we consider the action of an arbitrarily shaped
pulse over atomic systems. Usually, we have a nicely shaped
hyperbolic-secant pulse at the laser output, which then passes
through a series of elements to modify its shape in an arbi-
trary way. These elements can be a simple transparent me-
dium, a vapor cell at room temperature, a grating pair with a
liquid crystal mask in the middle �33–35�, etc. Their action
over the pulse shape can be well modeled by transfer func-
tions in frequency space. The result of their action, however,
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does not usually result in an analytical function in time. In
this case, we are compelled to describe the pulse electric
field in time by the discrete set of values Ei numerically
calculated through the inverse fast Fourier transform of its
modified expression in frequency space.

Consider now a set of matrices P̂j, with j going from 0 to

m, of the same dimension as V̂I
0. At time t0, much before the

pulse arrived, we would have

P̂0�t0� = 1 , �26a�

P̂1�t0� = 0 , �26b�

P̂2�t0� = 0 , �26c�

] �26d�

P̂m�t0� = 0 , �26e�

with 1 the identity matrix and 0 a matrix of zeros only. At
any later time ti, these matrices would become

P̂0�ti� = 1 , �27a�

P̂1�ti� = P̂1�ti−1� −
i�t

�
V̂I

0�ti�P̂0�ti� , �27b�

P̂2�ti� = P̂2�ti−1� −
i�t

�
V̂I

0�ti�P̂1�ti� , �27c�

] �27d�

P̂m�ti� = P̂m�ti−1� −
i�t

�
V̂I

0�ti�P̂m−1�ti� . �27e�

In the expressions above �t is the time interval between two
consecutive ti’s. Note that, by using a small enough �t and

calculating the P̂j’s from t0 to time tN, we are able to approxi-
mate

ÛI
0 � P̂0�tN� + P̂1�tN� + P̂2�tN� + ¯ + P̂m�tN� , �28�

up to the mth perturbation order.
The calculation represented by Eqs. �27� corresponds to

the application of the rectangular rule for numerical integra-
tions �36�. It provides the most straightforward numerical
algorithm connecting the theory of Sec. II to a final program
implementing such calculation. However, as usual for such
integration problems, a considerably better algorithm, with
respect to precision and efficiency, is obtained by the appli-
cation of the trapezoidal rule instead �36�. In this case, Eqs.
�27� are modified to

P̂0�ti� = 1 , �29a�

P̂1�ti� = P̂1�ti−1� −
i�t

2�
�V̂I

0�ti�P̂0�ti� + V̂I
0�ti−1�P̂0�ti−1�� ,

�29b�

P̂2�ti� = P̂2�ti−1� −
i�t

2�
�V̂I

0�ti�P̂1�ti� + V̂I
0�ti−1�P̂1�ti−1�� , �29c�

] �29d�

P̂m�ti� = P̂m�ti−1� −
i�t

2�
�V̂I

0�ti�P̂m−1�ti� + V̂I
0�ti−1�P̂m−1�ti−1�� .

�29e�

In the following, all programs are setup using Eqs. �29�. In

this way, we can calculate ÛI
0 by running just once over the

times ti for an arbitrary perturbation order m. The computer
memory needed is the one to store the long vector specifying

the electric field, and two complete sets of P̂ matrices �for
times ti and ti−1�, which are modified at every step of the
above calculation. As can be seen from Eqs. �29�, if we in-
crease the perturbation order m by a number q we just add q
new equations to that set, effectively increasing linearly the
required computational time.

IV. APPLICATION TO 87Rb

As a first application of our model, consider the excitation
of the transition 5S→5P→5D of 87Rb by a train of femto-
second laser pulses. This transition involves 16 hyperfine
states, see Fig. 1, distributed over three manifolds. The first
manifold, labeled 0, contains the two hyperfine states of level
5S1/2. The second, intermediate manifold is labeled 1, and
includes the two hyperfine states of level 5P1/2 and the four
states of level 5P3/2. The transitions from manifold 0 to 1
include then all D1 and D2 lines of 87Rb, at 795 and 780 nm,
respectively. The third, highest manifold is labeled 2, and
includes the eight hyperfine states of levels 5D3/2 and 5D5/2.
The laser is tuned to have its central wavelength resonant to
the 5S→5D two-photon transition, at 778 nm. The manifold

5S1/2
F=1

F=2

5P1/2 F=1

F=2

5P3/2

F=0

F=1

F=2

F=3

5D3/2

F=0

F=1

F=2

F=3

5D5/2

F=4

F=3
F=2

F=1

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

state label

1515

manifold label

0

1

2

FIG. 1. Energy levels. On the left, the quantum numbers speci-
fying each level. On the right, the respective state and manifold
labels assigned in the various programs.
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label is used to calculate the n matrix in Eq. �18�. The
individual states are each labeled also with a number from 0
to 15, for increasing state energies.

The dipole moments between states i and j, �i,j, are cal-
culated as an average over all allowed � transitions �connect-
ing states with the same magnetic quantum number mF�. In
this way, we are treating the case of linearly polarized laser
fields exciting atoms at zero magnetic field, as in Ref. �6�.
The dipole moments are stored in a M̂ matrix, in their nor-
malized version �i,j� , as defined in Sec. II C.

The intensity of the electric fields will be always given in
terms of the “atomic pulse area” �a �Sec. II C� for the pulses
at the laser output, considering them as hyperbolic-secant
pulses at that point. This means that, when implementing the
theory of Sec. II, we will make the substitution

�i,jE�t�
�

→
�i,j� �a

2
E��t� ,

with E��t� a function giving the temporal shape of the pulse.
In general, the function E��t� is obtained from the application
of a transfer function �in frequency space� over an original
hyperbolic-secant pulse with unit area for the field envelope.
This notation facilitates the transition from the impulsive
theory of Sec. II C to the general theory with arbitrary pulse
shapes. It also provides a more intuitive measure of the pulse
strength. A pulse with �a��, for example, indicates an in-
tense pulse capable of nearly invert a single-photon transi-
tion, if applied to the sample right at the laser output. Pulses
with �a��, on the other hand, are very weak, leading to
small populations on the excited states. Note that the actual
area of the pulse acting on the atoms will depend on �a
multiplied by the area of the envelope E��t�, after its distor-
tion by an arbitrary transfer function. A 0� pulse, for ex-
ample, would have such area equal to zero �see Ref. �37��
even though the pulses would have a finite atomic area �a at
the laser output.

The study of this particular set of atomic transitions, Fig.
1, is also convenient because the frequency of the corre-
sponding states were all measured with great precision by
various investigations employing cw lasers �38–40�. These
measurements provide then independent inputs for the calcu-
lations, which can be compared to the experiments per-
formed with frequency combs �6�. Also, the population of
level 5D can be observed in this system through its decay to
level 6P and then back to level 5S, with emission of light at
420 nm �blue�, a very different wavelength when compared
to the laser’s 778 nm �infrared� required for the two-photon
transition 5S→5P→5D. This is a standard procedure em-
ployed in various works �6,19,29�. Due to this possibility, the
main quantity we calculate and plot in the following is the
5D population, the sum of all populations in manifold 2,
without distinguishing which particular state it comes from.

In the following, we will start in Sec. IV A by describing
the general features of the coherent-accumulation process
�41–43� behind the high resolution of the DFCS technique.
For this, we will employ the simple impulsive approxima-
tion, which is enough to explain all the basic features of the
problem. Similar analysis can also be found in Refs. �6,44�,

which also uses the impulsive approximation, up to the
fourth order in �a. It is provided again here, briefly, for com-
pleteness and to help the understanding of the other sections.
On the other hand since our theory here is setup to work at
arbitrary perturbation order, we were able to work here at a
considerably higher order �12th� than in these previous ref-
erences. In this way, our work could be extended well into
the nonlinear region of interaction between atom and pulse
train.

In Sec. IV B we finally start to model pulses with an
arbitrary temporal profile by considering the simplest case of
hyperbolic-secant pulses. We investigate then the effect of
their temporal width Tp by calculating the spectra obtained
with pulses of Tp=10 fs and 100 fs, respectively. In Sec.
IV C we consider the excitation by hyperbolic-secant pulses
with some frequency chirp. This is the simplest modification
a femtosecond laser pulse can go through since it can be
introduced during its propagation through simple optical el-
ements or even a piece of glass. The 0� pulses explored in
Sec. IV D, on the other hand, require a more sophisticated
spectral mask: a heated vapor cell with atoms resonant to the
laser pulse. In this case, we are typically interested in mod-
eling how such pulses, distorted by the propagation through
the vapor cell, would interact with a second atomic sample
consisting of cold atoms obtained, for example, from a
magneto-optical trap.

A. Impulsive approximation

As anticipated above, most of the basic features of the
coherent-accumulation process behind DFCS can be ex-
plained still under the impulsive approximation of Sec. II C.
It provides also a reasonable, simple model to various ex-
periments, as demonstrated in Refs. �6,44�. For these rea-
sons, we will start our discussion by exploring the modeling
of the system under this approximation.

After an ultrashort pulse excites an atom initially in its
ground state �manifold 0�, the excited atomic coherences and
populations start to decay freely. In this process, various
atomic coherences precess rapidly, with frequencies in the
optical region. When the next pulse in the train arrives, it
carries a fixed relative phase �2�f0TR in the rotating-wave
approximation� with respect to the previous pulse, and finds
the slowly varying coherences also at an arbitrary phase de-
termined by their free evolution. If this interpulse phase plus
the coherence phase of a particular atomic transition results
in a multiple of 2�, we observe a constructive interference of
the atomic excitation related to that transition. An example of
such constructive interference can be found in the solid line
of Fig. 2, where we tuned f0 and fR so that two teeth of the
frequency comb would be resonant to the sequential transi-
tion 1→7→12, with these numbers representing the state
labels shown in Fig. 1. In this case, we considered f0
=10 MHz and fR= fref +�fR, with fref =100 MHz and �fR
=6.8198 Hz. Note that the laser period is around 10 ns, so
that at 3 �s the atom interacted already with 300 pulses. To
be precise, it is important to have in mind that the complete
atomic population as a function of time should reveal a series
of spikes and decays, repeated at every period TR of the train
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�29�. The kind of theory presented here, on the other hand,
provides the smooth curve marking the lowest point of this
oscillatory behavior, which is proportional to the average
population during a particular period of the process, as dis-
cussed in detail in Ref. �29�.

Once we change �fR slightly, we see in Fig. 2 that the
resonance condition is progressively lost. The excitations
from different pulses do not add up coherently anymore, and
the resulting 5D population decreases. Of course, as the in-
terpulse phase difference, with respect to resonance, is in-
creased, the excited 5D population deviates more rapidly
from the one expected at resonance. This observation is ac-
tually better presented in Fig. 3, where we plot the 5D popu-

lation after different numbers of pulses as the detuning from
resonance is modified.

Figure 3 provides the best representation of the spectral-
resolution buildup from a single pulse to a pulse train. Since
there is no interpulse interference with single pulses, we ob-
serve no variation in the excitation by single pulses as �fR is
modified. As the number of pulses is increased, however,
such interference becomes increasingly important for �fR
values closer and closer to resonance. The measured reso-
nance line becomes then progressively narrower, until it
reaches the linewidth of the atomic line itself. As expected,
this occurs once the number of pulses multiplied by TR be-
comes larger than the atomic relaxation times. A direct ex-
perimental observation of such behavior can be found in Ref.
�30�.

The atomic linewidth �a, then, can be directly obtained
from the linewidth � f of the peak in Fig. 3 noting that any
variation in fR need to be multiplied by the mode number in
the comb in order to obtain the respective variation in the
optical frequency of the mode. The two-photon transition 1
→7→12 corresponds to the transition 5S1/2�F=2�
→5P3/2�F=3�→5D5/2�F=4� at 
1,12�770 THz. Two
modes N1 and N2 participate in the transition, one for its
lower part �close to 5S1/2→5P3/2� and the other for the upper
transition �close to 5P3/2→5D5/2�. Since fR�100 MHz, we
have N1+N2=
1,12 / fR�7.7�106. The full width at half
maximum �FWFM� of the peak in Fig. 3 is � f �0.20 Hz. In
this way, the atomic linewidth is given by �a= �N1+N2�� f
�1.5 MHz. This is larger, due to power broadening of the
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FIG. 2. �Color online� Time variation of the 5D population as
the atom is excited by the pulse train. From the highest to the lowest
curve, we have �fR=6.8198, 6.9, 7.0, 7.1, and 7.2 Hz, respectively.
For these curves, we also have f0=10 MHz, fref =100 MHz, and
�a=0.01�.
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FIG. 3. �Color online� Normalized 5D population as a function
of the detuning from an atomic resonance, for trains of pulses com-
posed of different numbers of pulses. The dashed line represents the
excitation by a single pulse. The other lines, from the largest to the
smallest linewidth, represent pulse trains with 10, 20, 40, 100, and
200 pulses, respectively. All other parameters are the same as in
Fig. 2.
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FIG. 4. �Color online� Population in level 5D as a function of fR

for �a� fref =100 MHz and �b� fref =100.12 MHz. The solid lines
are obtained with f0=10 MHz. The dashed line in �a� is obtained
with f0=40 MHz. The labels �i− j� in each peak indicate the initial
�i� and final �j� states of each two-photon resonance. The atomic
pulse area is here �a=0.01�, and we consider the observation of the
spectrum right after n=200 pulses.
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atomic transition, than the radiative linewidth �5D
=660 kHz. The atomic pulse area for Figs. 2 and 3 is �a
=0.01�. In order to obtain �a��5D, we should use �
�10−3�. Remember that the atoms here are excited by trains
of pulses, so that small pulse areas may lead to considerably
larger atomic excitations than in the case of single pulses.

1. Spectrum

The narrowest curves in Fig. 3 clearly show some asym-
metry on their wings. These come from other resonances on
the same region of the scan. A complete scan of the spec-
trum, with a variation of 26 Hz in fR, is given by the solid
line in Fig. 4�a�, plotting the population in 5D after n=200
pulses. From the discussion above, we note that a change in
�fR on the order of fR / �N1+N2��13 Hz would be enough
to repeat the two-photon spectra almost exactly, with just a
different pair of modes being responsible for the resonant
excitations. However, since the pulses are also resonant with
the one-photon transitions from 5S to 5P, which occur for
resonant mode numbers on the order of N1�3.8�106, we
observe an overall repetition of the spectrum only after �fR
changes by fR /N1�26 Hz. In this way, for each of the 26
Hz scans we discuss in the following, we will have a com-
plete set of the one-photon resonances and two complete sets
of the two-photon resonances.

The solid curve in Fig. 4�a� presents a clearly dominant
peak due to the fact that, for the chosen f0 and fref, we have
simultaneous �for the same �fR� one- and two-photon reso-
nances in the 1→7→12 transition. This is a very strong,
cycling transition in both 1→7 and 7→12 stages. A more
common situation is shown in Fig. 4�b�, where we chose
fref =100.12 MHz, for which the one-photon �1→7� and
two-photon �1→12� resonances do not occur simultaneously
anymore for �fR varying from 0 to 26 Hz. In this case, as
indicated in the figure, various two-photon resonances, be-
tween different states, occur with similar strengths. In Fig.
4�b� we identified only the most pronounced peaks, but we
can already note the repetition of the two-photon resonances
after 13 Hz, as expected from the above discussion.

The dominant peak in Fig. 4�a� helps to illustrate the ef-
fect that a change in f0 would have in the spectrum. The
dashed line in this figure presents the same scan as the solid
line, but now with f0=40 MHz. The peaks are then simply
dislocated by a �fR such that �N1+N2��fR=2�f0 and �f0 is
the difference between the old and the new f0. The factor 2 in
this expression comes from the fact that two modes partici-
pate in the process, each carrying a unit of the f0 dislocation.
For the particular case of Fig. 4�a�, we have �f0=30 MHz
and �N1+N2��7.7�106, with the corresponding dislocation
of about 7.8 Hz in the spectrum.

The �a value employed in the above figures was chosen to
be near commonly found experimental conditions for cw
power of the pulse train �29�. It is possible, however, to
obtain higher values for �a, and it would be important for the
theory to model power regions as broad as possible. As we
discussed before, the present theory works in principle at
arbitrary perturbation orders, and we can then use a longer
perturbation series to be able to work at higher excitation
powers. For the calculations presented in this section, we

used m=12 for the perturbation order. In this way, we were
able to model the system well into the saturation region, as
shown in Fig. 5, where the 5D population approaches a value
on the order of the unit. This is interesting to demonstrate the
versatility of our method. However, since we are here mainly
concerned with its applications to spectroscopy, we will not
explore this region of parameters, where the resonances get
so broad that we loose information about the detailed struc-
ture of the spectrum.

2. Numerical errors

As discussed in the previous paragraph, we employed a
m=12 perturbation-order calculation for the curves in Figs.
2–5. This value is determined from the minimization of er-
rors in the program. Usually, computational time is the cru-
cial problem in the calculation of such perturbation series.
However, due to the efficient algorithm introduced in Sec.
III, we ended up not being limited at all by that. This was the
key element that enabled us to move toward considerably
larger perturbation orders. Even though, we found a limita-
tion in the accumulation of numerical round-up errors as the
perturbation series increases.

In order to have a measure of such numerical errors, we
introduce the quantity

� = �1 − 	
i

�ii� , �30�

where the label i run over all states in the system. This quan-
tity, then, measures the depart from normalization of the den-
sity matrix after the system evolved by a certain amount of
time te=nTR. Note that, in the formal solution given above
for the system of Bloch equations, we do not impose such
normalization at every step. This normalization should come
naturally as a result of the system’s dynamics and the nor-
malization of the initial state. In this way, imperfections in
the modeling of this dynamics are reflected directly in the
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FIG. 5. �Color online� Population in level 5D as a function of fR

for various values of �a. From the lowest to the highest curve, we
have �a values of 0.01�, 0.02�, 0.04�, 0.07�, 0.1�, respectively.
The other relevant parameters are fref =100 MHz, f0=10 MHz,
and n=200.
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normalization of the density matrix as the system evolves,
which can then be used to quantify such imperfections.

For the various curves in Fig. 5, we can obtain the maxi-
mum error �max that occur in each 26 Hz scan of fR. From its
lowest �a �0.01�� to the highest �0.1��, we observe that �max
grows from 10−14 up to 10−6. For the parameters of that
figure, we also observe that no matter how low we decrease
�a or how high we make m, we always reach a plateau of
10−14 for �max.

This behavior has actually a simple explanation. The final
calculation of �̂�t� needs as input two files generated previ-

ously, the ones storing M̂ and ÛI
0, respectively. These files,

however, are presently generated and accessed using stan-
dard pre-formatted printing/reading functions that have a 17-
decimal-digits limit for the stored numbers. This problem
can be solved in a straightforward way by changing from
text to binary printing/reading routines. However, for the
scope of the present work, we found such error levels accept-
able, and did not proceed with such modifications. Of course,
these round up errors affect more the calculations once we
start to increase �a, our perturbation parameter.

Finally, this source of numerical errors is still the domi-
nant one when we consider the excitation by pulses with
arbitrary shapes. In this way, the discussion above also ap-
plies to all situations treated in the following. Since we will
keep �a=0.01� and m=12 from now on, our typical error
level for the 26 Hz scans will be, in the following, the mini-
mum �max�10−14.

B. Hyperbolic-secant pulses

Now we will start discussing the case of excitation by
trains of pulses with arbitrary pulse shapes. We begin by the
simplest pulse shape found in experiments, the hyperbolic-
secant pulse,

E�t� = E0 sech�1.763t/Tp� , �31�

where Tp is the pulse temporal width. In order to compare
with the previous results, we keep �a=0.01�, m=12, n
=200, and f0=10 MHz from now on. We are also going to
write the pulse field as a long vector �N elements� storing the
real and imaginary parts of E�ti� for times ti evenly separated
by �t, ti= ti−1+�t. Of course, this is not essential for such
pulse shape since it has a simple analytical expression. How-
ever, this general description is important for the other pulse
shapes considered in the next sections, particularly for 0�
pulses, and we want to directly compare their results with the
ones for sech pulses.

In the following, we consider sech pulses with different
widths, 20 and 150 fs, two values commonly found in ex-
periments. For the 150 fs pulse, we use a vector for the
electric field with about 106 components and �t=10 fs. For
the 20 fs, the analogous vector has 4�106 and �t=2.5 fs.
These vector sizes were determined to provide more than
enough spectral resolution to treat the 0� pulses �29,45,46�.

The 26 Hz scan of fR for these two pulse widths are
shown in Figs. 6�a� and 6�b�. In Fig. 6�a� the top curve shows
again the result of Fig. 4�b� for the impulsive approximation,
with a plot of the total population of level 5D as fR is

scanned starting at fref =100.12 MHz. The other two curves
are, from top to bottom, the analogous curves for the pulses
with Tp=20 fs and Tp=150 fs, respectively. In Fig. 6�b�, we
have the similar curves for the total population of level 5P,
where we also indicate the region of each single-photon reso-
nance. Labels for various of the two-photon resonances in
Fig. 6�a� are provided in Fig. 4�b�. Even though, we still
provide labels in Fig. 6�a� for five peaks whose variation
with the pulse width we want to analyze in more detail.

The kind of problem we treat here, coherent dynamics of
a multilevel system excited by a large number of frequency
modes, involves always a large collection of different behav-
iors and physical effects, whose causes are not always clear
from the calculation output. The modeling, however, allows
one to investigate these effects from multiple angles, many
of which are difficult to access experimentally. In the case
we treat here, for example, it is straightforward to access the
total population in level 5D �through the decay in the blue of
level 6P�, but it is harder to access the populations in levels
5P and 5S. It is even harder to have information on each
separate hyperfine state. In this way, one may use the present
calculation not only to predict different behaviors for the
final signals, but also to help in their interpretation. This
digression is just to point out that we do not aim here to give
full explanation for all different features appearing in Fig. 6
and the other figures that follow in this article. There is a
large complexity in each of them, so that we will highlight
just a few of their features in order to keep our focus in the
broad possibilities of application of the theory.
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FIG. 6. �Color online� Population in levels �a� 5D and �b� 5P as
a function of fR for two different pulse widths and for the impulsive
approximation. From the bottom to the top, we show the curves for
Tp=150 fs, for Tp=20 fs, and for the impulsive approximation,
respectively. In �a� we dislocated, for clarity, the vertical origin of
the two upper curves. All other parameters are the same as for Fig.
4�b�. The labels �i− j� in each peak indicate the initial �i� and final
�j� states of the respective resonances.
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The first important feature to note in Fig. 6 is the overall
decrease in the atomic excitation when we increase the pulse
width from 20 to 150 fs, even though we kept �a constant.
There was also a similar decrease, but in a small magnitude,
when passing from the impulsive approximation to consider-
ing pulses with Tp=20 fs. One point that affects the curves
directly is the fact that the laser bandwidth is changing from
effectively infinity �impulsive approximation�, to about 55
nm �Tp=20 fs�, and then to 7 nm �Tp=150 fs�. In this way,
the 150 fs pulse has not enough bandwidth to excite the 5P1/2
states �labeled 2 and 3�. All peaks involving these levels,
then, disappear in Fig. 6�b� once Tp is changed to 150 fs. In
Fig. 6�a�, two peaks at least also disappear for this reason,
the ones labeled 1:8 and 1:10. For the conditions of high
bandwidth in Fig. 6�a�, these peaks are actually a result of
two sequential transitions, 1→2→8 and 1→3→10, respec-
tively, which are greatly reduced once states 2 and 3 cease to
be excited.

On the other hand, we also see a considerable decrease of
peaks that continue to be close to resonance after changing to
Tp=150 fs, like the one for the transition 1:7 in Fig. 6�b�. To
understand this point one has to remember the precise defi-
nition of �a in Eq. �21�. This parameter gives an idea of the
strength of a single-photon atomic excitation by a particular,
well behaved pulse, if the pulse’s central frequency is reso-
nant to the atomic transition. However, if the pulse continue
to be well behaved, but its central frequency is detuned from
resonance, the effective pulse area �ij �the one that is directly
related to the atomic-excitation strength of transition i→ j� is
modified to take into account such detuning, being propor-
tional to the spectrum component of the pulse at the detuned
atomic resonance,

�ij =
2e�i,j

�
�

−	

	

E�t�e�ijtdt ,

with �ij the detuning of the laser central frequency �L to the
atomic transition frequency �ij. In this way, when we change
the pulse bandwidth from 55 to 7 nm, we change the relative
detuning of all atomic states from the laser central frequency,
effectively decreasing the strength of all atomic single-
photon transitions.

Note that this explains also the similar features observed
in the passage from the impulsive approximation to the situ-
ation where Tp=20 fs. In this case, we move from a situa-
tion where all transitions were effectively on resonance, to a
situation where level 5P1/2 presents some noticeable detun-
ing, but level 5P3/2 can still be considered on resonance.
Accordingly, we notice in Fig. 6�b� that the regions that are
most affected by the change from impulsive approximation
to the 20 fs pulses are the ones related to the one-photon
transitions to states 2 and 3 of level 5P1/2.

The two-photon transitions on Fig. 6�a�, on the other
hand, present a more diverse behavior. Note, for example,
that the peaks 1:11 at 3.56 Hz and 1:12 at 10.1 Hz both
increase as we change from the impulsive approximation to
considering pulses with Tp=20 fs. The 1:12 peak actually
increases even further once we change Tp to 150 fs. This
increase is a result of different population distributions

among the two lowest-energy states, 0 and 1. Even though �a
is small, in the long run the action of the pulse train can lead
to large population redistributions in the ground level 5S1/2,
due to optical pumping through levels 5P1/2 and 5P3/2. If, for
example, there is a resonance between state 0 and a state in
level 5P, and at the same time there is no resonance involv-
ing state 1, the population will tend to accumulate in state 1.
Of course, with the number of levels at play in Fig. 6, the
picture here is more complicated, with competition between
the optical pumping through different states in the first mani-
fold.

In Fig. 7 we show then the ground level populations as a
function of fR. We show the total population in 5S �dashed
curve�, as well as the populations in states 0 �solid curve� and
1 �dotted curve�. The dips in the dashed curves reflect then
the transfer of population to the excited states, and are di-
rectly related to the highest peaks in Figs. 6�a� and 6�b�. In
this way, we observe directly how the population distribu-
tions change in this level from the impulsive approximation
to the cases with Tp=20 and 150 fs, respectively. The two
vertical lines in each frame point to the positions of peaks
1:11 and 1:12. From these data, we observe that in 3.56 Hz
�peak 1:11� the populations in states 0 and 1 are distributed
50:50 under the impulsive approximation, but this distribu-
tion changes to 43:57, favoring state 1, once we consider
Tp=20 fs. This increase in state 1 population results then in
a corresponding increase in the 1:11 peak. When we change
to Tp=150 fs, the populations of states 0 and 1 are further
redistributed to 36:64. In this case, however, we do not ob-
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FIG. 7. �Color online� Populations in level 5S as a function of fR

for �a� impulsive approximation, �b� Tp=20 fs, and �c� Tp=150 fs.
The dashed curve on the top of each frame is the total population in
5S, and the solid and dotted lines are the results for the populations
in states 0 and 1, respectively. The two vertical lines �dash-dotted�
indicate the positions of the peaks 1:11 and 1:12. The other param-
eters are the same as for Fig. 4�b�.
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serve an absolute increase in the peak since the effective
pulse area for the intermediate 1:7 transition also decreases
when Tp changes to 150 fs, as discussed above. For 10.1 Hz
�peak 1:12�, we observe a similar trend, with a strong deple-
tion of state 1 for the impulsive approximation and Tp
=20 fs �85% of population in state 0� being attenuated when
we move to Tp=150 fs �71% in state 0�.

There is another 1:12 resonance at about 23 Hz. From Fig.
7, note that around 23 Hz there is no considerable change in
the population distribution among states 0 and 1 in the three
situations considered in Fig. 6. In this case, we see then that
there is no change in the 1;12 peak when we pass from the
impulsive approximation to Tp=20 fs. However, once we
change to Tp=150 fs, we notice a considerable decrease of
the peak due only to the modification of effective area of the
pulse exciting the atom through the sequential transition 1
→7→12. The transition at 23 Hz is still affected by the
wing of the 1:7 resonance occurring at about 26 Hz, and the
modification of the single-photon transition strength �due to
the larger relative detuning to the laser center frequency�
affects both the red and blue parts of the sequential transi-
tion, at 780 nm �1:7� and 776 nm �7:12�, respectively.

In order to have a broad understanding of Fig. 7, note that
the balance between the populations in levels 0 and 1 depend
on the prevailing one-photon resonance on that region of the
spectrum. In Fig. 7�c�, for example, we have only four pos-
sible transitions from the 5S manifold that contribute to the
optical pumping between the two ground states: 0:5, 0:6, 1:5,
and 1:6. The transitions 1:7 and 0:4 do not lead to optical
pumping since the complementary transitions, 0:7 and 1:4, to
the other ground state are forbidden. When comparing Figs.
6�b� and 7�c�, we notice then that the resonances 1:5 and 1:6
lead to larger populations in 0, and the resonances 0:5 and
0:6 to larger populations in 1. Figures 7�a� and 7�b� become
more complex with the increasing competition of the transi-
tions through states 2 and 3 as the pulse becomes spectrally
broader.

C. Chirped pulses

A frequency chirp on a femtosecond pulse implies that
some frequency components of the pulse are arriving before
others at a particular point in space. If the chirp is positive,
the lower frequencies arrive sooner. On the other hand, a
negative chirp results in the higher frequencies arriving
sooner. The result in both cases is a longer, not-transform-
limited pulse. This is one of the most common distortions a
femtosecond pulse can present in its shape since it can ac-
quire such chirp by passing through common optical compo-
nents, like a thick beam splitter or a glass window. Of course,
for the experiments we aim to model, we consider more con-
trollable ways to introduce frequency chirps. By using a
double pass grating stretcher and compressor �30,47�, for ex-
ample, it is possible to generate a tunable linear chirp in a
femtosecond pulse, resulting in pulse shapes like the ones we
consider in the following.

In the theory, the frequency chirp is introduced by first
taking the fast Fourier transform �FFT� of the pulse envelope

E��t�, obtaining in this way the pulse spectrum Ẽ��� around

the laser center frequency ��=�−�L�. The spectrum is then
multiplied by a transfer function Fchirp��� corresponding to
the appropriate frequency chirp, resulting in the new spec-

trum Ẽchirp���,

Ẽchirp��� = Fchirp���Ẽ��� = ei���2/2Ẽ��� , �32�

where �� is the chirp parameter, the second-order derivative
of the pulse phase with respect to its frequency, correspond-
ing to a certain amount of group velocity dispersion �GVD�.
In order to calculate ÛI

0�t�, we then take the inverse fast

Fourier transform �IFFT� of Ẽchirp���, obtaining the final dis-
torted pulse envelope Echirp� �t�. Using this new pulse enve-
lope, we proceed with the calculations as in the last section.

Figure 8 shows then how the 26 Hz spectrum of Fig. 6,
with Tp=150 fs, is modified as some frequency chirp is in-
troduced. The solid line in each frame of Fig. 8 represents
the spectrum without chirp. The dashed line presents the
same spectrum but now with a frequency chirp of ��
=33750 fs2. For the dotted line, we have ��=−33750 fs2.
For clarity, we divided the 26 Hz spectrum in six frames,
with different portions of it having different vertical scales.
In this way, we can appreciate modifications on peaks of
quite different sizes.

We concentrate on these few values of �� because we
found this is enough to highlight some general aspects of the
interaction of chirped pulses with the atomic system. The
first point to note in Fig. 8 is that the dashed line is always on
top of the other curves, i.e., for these values of �� the posi-
tive chirp always increase the population in 5D. We may
have, however, any relation between the solid and dotted
lines, and it will be useful to label the curves according to
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FIG. 8. �Color online� Population in level 5D as a function of fR

for three different values of the linear frequency chirp ��: �dashed
line� 33 750 fs2, �solid line� 0, and �dotted line� −33 750 fs2. For
clarity, the 26 Hz interval corresponding to a complete scan was
divided in six, consecutive frames with different vertical scales. The
original temporal pulse width was Tp=150 fs. The other parameters
are the same as for Fig. 4�b�. The various peaks are identified in the
same way as in the previous figures.
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which condition leads to a larger 5D population. We call then
type A peaks the ones for which the solid line is on top of the
dotted line, i.e., a negative chirp decreases the population in
5D. Examples of type A peaks are the 1:13, 0:10, and 1:11
resonances up to 3.7 Hz; the 0:15, 0:9, 1:10, and 1:13 peaks
between 9 and 14 Hz; the 0:13 peak at 17.3 Hz; and the 0:11
peak at 20 Hz. The type B peak, on the other hand, shows the
opposite behavior, with the negative chirp increasing the 5D
population when compared to a similar transform-limited
pulse. Examples of type B peaks are the 1:14, 0:13, 1:15, and
0:14 peaks between 3.5 and 8 Hz; the 1:12 peak at 10.1 Hz;
the 1:1, 1:4, and 1:5 resonances between 16 and 19 Hz; and
the 0:14, 0:15, 1:12, 0:9, and 1:10 peaks between 20 and 24
Hz.

In order to understand this overall behavior, it is essential
to remember that, in general, a transform-limited pulse is not
the most efficient pulse shape to excite a two-photon transi-
tion that has an intermediate state in the middle of the pulse
spectrum. This was first pointed out, to the best of our
knowledge, by Dudovich et al. in Ref. �48�. There, the au-
thors demonstrated that the two-photon transition probability
has two portions, one representing the on-resonance contri-
bution and another for the off-resonance contributions. The
on-resonance portion is shifted by a � /2 phase with respect
to the off-resonance portion, and the off-resonance spectral
components below and above the intermediate resonance ex-
cite the system with a � phase difference between them.
These phase differences result in destructive interference be-
tween different spectral components of the pulse contributing
to the atomic excitation. In Ref. �48�, the authors used spec-
tral masks to modify the pulse spectrum to compensate for
those phase differences, obtaining considerably stronger two-
photon excitations than with the unmodified, transform-
limited pulses.

Reference �48� considered the excitation of an atomic va-
por by single pulses and not by phase-stabilized pulse trains.
In this way, the on-resonance and off-resonance components
on that work always appear together. When considering cold
atoms excited by femtosecond frequency combs, on the other
hand, it is possible to tune the different modes on and out of
resonance and we can actually single out two-photon excita-
tions which has strong on-resonance components �sequential
transitions� and others that are almost purely off-resonant
two-photon transitions. Basically, when crossing the infor-
mation of Figs. 6�b� and 8, we observe that the type A peaks
discussed above are all related to on resonance, sequential
transitions. Note the coincidence of the 1:7, 0:5, 0:4, 1:6, 0:6,
and 1:5 transitions in Fig. 6�b� with the type A peaks in Fig.
8. The spectral regions far from 5S→5P resonances are the
ones presenting type B peaks. Note also the type B peak
corresponding to the 1:12 transition around 10.1 Hz. That is
a spectral region dominated by type A peaks, since we have
both the 0:4 and 1:6 single-photon transitions occurring
nearby. However, none of these two single-photon transitions
are intermediate steps to the two-photon 1:12 transition, see
Fig. 1, which is then very much off resonance from any
relevant intermediate level.

For the sequential, type A transitions, a positive chirp en-
hance the two-photon excitation probability because the first
portion �5S→5P at 780 nm� of the sequential transition has

smaller frequency than the second portion �5P→5D at 776
nm�. A negative chirp cause the opposite effect for the same
reason, i.e., we try to excite the second transition prior to the
first one. Note, however, that this enhancement and suppres-
sion of a sequential excitation by a pulse train occurs with
much smaller intensity than what would be observed in
single pulse excitations, since the atom is not at its ground
state prior to each pulse in the train �30�. The type A peaks
are dominated by this stepwise process, and the destructive
interference between different off-resonance components do
not play the major role here.

For type B peaks, however, we have a strong suppression
of the on-resonance processes. These peaks are then a direct
result of the combination between the red and blue part of
the pulse spectrum to have a two-photon off-resonant transi-
tion. Thus, they are very sensitive to the destructive interfer-
ence due to the � phase between the spectral components
below and above the intermediate transition. A transform-
limited pulse should suffer, then, a considerable suppression
of its excitation due to such phase difference, and any per-
turbation of this relative phase may enhance the two-photon
excitation probability with respect to a transform-limited
pulse. In this way, we see both positive and negative chirp
enhancing the 5D population when compared to an un-
chirped hyperbolic-secant pulse. The positive chirp still en-
hances more the excitation than the negative chirp for the
reasons discussed in the previous paragraph.

D. 0� pulses

The resonant propagation of a weak ultrashort pulse
through a dense sample of narrowband two-level atoms typi-
cally results in the distortion of the pulse envelope to a shape
known as 0� pulse �37�. This is just a limit of the well-
known area theorem �49�, which, among other things, re-
quires the area of a weak pulse to go to zero after propaga-
tion through a resonant two-level sample �50�. However, in
the case where the pulse bandwidth is much larger than the
bandwidth of the medium, this cannot absorb a large amount
of the pulse energy. In this case, the pulse keeps a finite total
energy, but develops an oscillatory tails that, after integration
of the whole pulse envelope, leads to a zero pulse area.

It is possible to generate such 0� pulses by simply pass-
ing a weak femtosecond pulse through a heated vapor cell
�51�. Examples of generation of 0� pulses from rubidium
vapor cells can be found in the works of various groups
�45,52,53�. Here we are interested in modeling the action of
such a pulse over atoms stored in a magneto-optical trap. In
this way, we consider that the 0� pulse was obtained by the
propagation through a heated vapor cell prior to the action
over the atoms. The heated cell then works here as a spectral
mask applied to the pulse.

The introduction of such spectral mask in the theory is
carried out in the same way as for the frequency-chirp mask.
The difference is just the corresponding transfer function,
which is now

F0���� = exp�− A���z� , �33�

where z is the distance propagated in the vapor cell and
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A��� = 	
i

�i�
−	

	 gi���d�

1/T2 + i�� − ��
�34�

is the function describing both the dispersion and absorption
of the pulse by the atomic medium �37,52�. In A���, the sum
runs over all 5S→5P transitions, gi��� gives the Doppler
distribution of transition frequencies in the medium corre-
sponding to the ith transition, and T2 is the homogeneous
transverse relaxation time of the medium. The parameter �i
is proportional to the atomic density of the medium and the
square of the transition’s dipole moment �i. When multiplied
by z and the medium bandwidth, �i gives the optical depth of
the medium related to the ith transition �37�. Defining �2 as
the sum of all �i

2, it is more convenient to specify the atomic
optical density through a related parameter �0=�i�

2 /�i
2, the

same for all transitions. In the following we consider T2 as
coming only from radiative decay, and the heated medium
inhomogeneous broadening as �I�1 GHz.

Our interest here in this particular pulse shape has two
reasons. First, it is the result of a high resolution mask, with
resolution on the order of the atomic transition lines �53�.
Second, it is straightforward to be obtained experimentally.
In this way, we can test the theory we present here in a setup
that highlights its application for finely shaped pulses, at the
same time that can be readily addressed experimentally.

In Fig. 9 we show then the results for the 26 Hz scan of fR
with 0� and sech pulses, respectively. In frame �a� we have
the results for the 5D population, and in �b� the results for
level 5P. The solid line, corresponding to a 150 fs sech
pulse, is generated for the same parameters as in Fig. 6. The
dashed line shows the similar results for the excitation by a
train of 0� pulses generated from an original 150 fs sech
pulse, after its propagation through 5 cm of a vapor cell with
�0=0.12. These parameters were found to model well the

generation of 0� pulses under common conditions in our
group �29,45,46�.

The first and most characteristic feature of the excitation
by 0� pulses is shown in Fig. 9�b�: the almost complete
suppression of excitation of the single-photon transition, the
5P level. When the excitation pulse changes from sech to
0�, the spectrum of level 5P in Fig. 9�b� starts to follow the
one at level 5D, since it results mainly from the decay from
these upper states. This behavior was already discussed in
Ref. �29�, for the case of a simpler, three-level model of the
atom.

For level 5D, the behavior shown in Fig. 9 follows closely
the discussion of last section, with distinct behaviors for se-
quential transitions �type A peaks� and pure two-photon tran-
sitions �type B peaks�. As expected from the suppression of
excitation to 5P, the sequential transitions are strongly sup-
pressed. The purely two-photon transitions, on the other
hand, may be even enhanced, since the spectral dispersion on
the 0� pulse disturbs some of the two-photon destructive
interferences characteristic of transform-limited pulses �see
previous section�. As examples of this behavior, we have the
set of peaks from 21 to 25 Hz in Fig. 9.

This enhancement of the 5D excitation by 0� pulses,
however, is a feature that strongly depends on the atomic
density. Typically, we observe such behavior for moderate
values of �0, like the one in Fig. 9, when the 0� pulse starts
to appear. In this situation, we notice a complete depletion of
the pulse’s spectral components corresponding to each
single-photon transition �52�, but this depletion is very sharp
around the Doppler-broadened atomic resonances. As �0 is
increased, such depletion extends over a larger portion of the
pulse spectrum. The two-photon transition is then increas-
ingly affected by this disappearance of spectral components
around the single-photon resonances. Eventually, for high
enough values of �0, the whole 5D spectrum excited by the
train of 0� pulses will have smaller values than the one
excited by the corresponding sech pulses.

V. CONCLUSIONS

In this work we introduced a theory to model the interac-
tion between a train of ultrashort pulses and a multilevel
atom. We considered a well-stabilized pulse train, with both
its repetition frequency and interpulse phase locked to some
frequency standard, a light field usually referred to as a fre-
quency comb. The pulses in the train can have here an arbi-
trary shape, modified by spectral masks with resolutions up
to a few comb lines. Even though it is a perturbative theory,
it was setup to work at an arbitrary perturbation order. Spe-
cifically, all results presented here were obtained with a
twelfth order perturbation series, which effectively allowed
us to investigate even highly saturated regimes. In this way,
this theory is able to model a large class of experimental
conditions, and to serve as a tool to guide complex experi-
ments trying to merge spectral resolution with the coherent
control of atomic transitions.

In order to demonstrate the versatility of our treatment,
we modeled the interaction of rubidium atoms with trains of
pulses of three different shapes: hyperbolic secant, hyper-
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FIG. 9. �Color online� Populations in levels �a� 5D and �b� 5P as
a function of fR for two pulse shapes: hyperbolic secant �solid line�
and 0� �dashed line�. The hyperbolic-secant pulse has Tp=150 fs.
The 0� pulse is generated from a 150 fs sech pulse, after propaga-
tion through a 5 cm long vapor cell with an atomic density corre-
sponding to �0=0.12. The other parameters are the same as in Fig.
6.
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bolic secant with frequency chirp, and 0�. More specifically,
we modeled the two-photon excitation from 5S to 5D in
87Rb, involving 16 different hyperfine states, with the center
of the frequency comb tuned to the two-photon resonance, at
778 nm. Throughout the analysis of our results, we showed
the strong dependence of the relative strength of the spectral
lines with the pulse shape. In this way, we highlighted the
possible applications that coherent-control techniques may
have in direct frequency-comb spectroscopy, by magnifying
different spectral components in a controllable way. Con-
versely, our results can also be understood as indicating the
possible applications of frequency combs to coherent con-
trol, by using the spectral resolution of the comb to select
different atomic-excitation outputs.

We designed the present theory to model directly feasible
experiments in cold atoms. A first stage of comparison be-
tween its results and actually experiments was already car-
ried out in Refs. �6,44�. In these previous experimental
works, comparison was made with a preliminary version of
this theory, employing a fourth-order perturbation series and

the impulsive approximation. As a result, such theory was
established as a proper guide to experiments, even in its sim-
plified version employed in Refs. �6,44�. We understand that
the next step now is the comparison of the present theory
with experiments in which the pulse shape is changed in a
controllable way, i.e., the comparison with situations like the
ones modeled in Secs. IV B–IV D of this paper. We hope,
then, the present treatment may foster experimental activity
along these lines, contributing to develop the engineering of
atomic-state control by frequency combs.
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