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Stimulated Raman adiabatic passage �STIRAP� driven with pulses of optimum shape and delay has the
potential of reaching fidelities high enough to make it suitable for quantum-information processing. The
optimum pulse shapes are obtained upon reduction of STIRAP to effective two-state systems. We use the
Dykhne-Davis-Pechukas �DDP� method to minimize nonadiabatic transitions and to maximize the fidelity of
STIRAP. This results in a particular relation between the pulse shapes of the two fields driving the Raman
process. The DDP-optimized version of STIRAP maintains its robustness against variations in the pulse
intensities and durations, the single-photon detuning, and possible losses from the intermediate state.
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I. INTRODUCTION

Stimulated Raman adiabatic passage �STIRAP� is a well-
established and widely used technique for coherent popula-
tion transfer in atoms and molecules �1�. STIRAP uses two
delayed but partially overlapping laser pulses, pump, and
Stokes, which drive a three-state �-system �1→�2→�3.
The STIRAP technique transfers the population adiabatically
from the initially populated state �1 to the target state �3. If
the pulses are ordered counterintuitively, i.e., the Stokes
pulse precedes the pump pulse, two-photon resonance is
maintained, and adiabatic evolution is enforced, then com-
plete population transfer from �1 to �3 occurs. Throughout
this process, no population is placed in the �possibly lossy�
intermediate state �2. Various aspects of STIRAP have been
subjects of intense research, both theoretically and experi-
mentally �2�.

Because STIRAP is an adiabatic technique, it is insensi-
tive to small to moderate variations in most of the experi-
mental parameters such as pulse amplitudes, widths, delay,
and single-photon detuning. A particularly remarkable and
very useful feature of STIRAP is its insensitivity to the prop-
erties of the intermediate state �2. For instance, STIRAP has
been demonstrated with high efficiency even for interaction
durations exceeding the lifetime of �2 by a factor of 100 �2�.
For these reasons, STIRAP is a very attractive technique for
quantum-information processing �QIP� �3,4�. However, it is
widely recognized that QIP requires very high fidelities, with
the admissible error of gate operations being below 10−4 for
a reliable quantum processor �5,6�. Such an extreme accu-
racy has not yet been demonstrated for STIRAP, as an accu-
racy of 90–95 % was sufficient for most traditional applica-
tions. When trying to increase the fidelity beyond this
number, one faces various obstacles related mainly to nona-
diabatic transitions. Being an adiabatic technique, STIRAP
reaches an efficiency of unity only in the adiabatic limit;
however, the latter is approached only asymptotically as the
pulse areas increase. For QIP, the pulse areas needed are so
large that they may violate various restrictions of a real ex-
periment.

In this paper, we propose how to achieve an ultrahigh
fidelity in STIRAP and thus make it fully suitable for QIP by
suitably shaped pulses. We utilize a recent idea of Guerin et
al. �7� who applied the well-known Dykhne-Davis-Pechukas
�DDP� method �8� to optimize the adiabatic passage in a
two-state system. In order to adapt this approach to STIRAP,
we reduce the three-level Raman system to effective two-
state systems in two limits: on exact resonance and for large
single-photon detuning. The optimization, which minimizes
the nonadiabatic transitions and maximizes the fidelity, leads
to a particular relation between the pulse shapes of the driv-
ing pump and Stokes fields.

It should be noted that a fidelity of unity can also be
achieved by a resonant � pulse in a two-state transition.
However, resonant techniques suffer from their sensitivity to
parameter fluctuations. The optimized version of STIRAP
presented here features both a very high fidelity and a robust-
ness against variations in the intensities and the single-
photon detuning.

This paper is organized as follows. In Sec. II we review
the DDP method and the optimization of two-state adiabatic
passage. Then we extend this idea to STIRAP in Sec. III and
discuss examples in Sec. IV. In Sec. V we extend these ideas
to fractional STIRAP �f-STIRAP�, which creates a coherent
superposition of �1 and �3. We summarize the results in the
concluding section.

II. OPTIMIZATION OF ADIABATIC PASSAGE
BETWEEN TWO STATES

A. DDP approximation

The probability amplitudes in a two-state system a�t�
= �a1�t� ,a2�t��T satisfy the Schrödinger equation,

i�
d

dt
a�t� = H�t�a�t� , �1�

where the Hamiltonian in the rotating-wave approximation
�RWA� reads as �9�
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H�t� =
�

2
� 0 ��t�

��t� 2��t� � . �2�

The detuning �=�0−� is the difference between the transi-
tion frequency �0 and the carrier laser frequency �. The
time-varying Rabi frequency ��t�= �dE�t�� /� describes the
laser-atom interaction, where d is the electric dipole moment
for the �1↔�2 transition and E�t� is the laser electric field
envelope.

A very accurate technique for deriving the transition prob-
ability in the near-adiabatic regime is the DDP approxima-
tion �8�. The DDP formula gives the following expression for
the probability for nonadiabatic transitions:

P � e−2 Im D�t0�, �3�

where

D�t0� = 	
0

t0

	�t�dt �4�

is an integral over the splitting 	�t�=
��t�2+��t�2 of the
eigenenergies of Hamiltonian �2�. The point t0 �the transition
point� is defined as the �complex� zero of the quasienergy
splitting 	�t0�=0, which lies in the upper half of the complex
t plane �i.e., with Im t0
0�. Equation �3� gives the correct
asymptotic probability for nonadiabatic transitions provided
�i� the quasienergy splitting 	�t� does not vanish for real t,
including ��; �ii� 	�t� is analytic and single valued at least
throughout a region of the complex t plane that includes
the region from the real axis to the transition point t0; �iii�
the transition point t0 is well separated from the other
quasienergy zero points �if any� and from possible singulari-
ties; �iv� there exists a level �or Stokes� line defined by
Im D�t�=Im D�t0�, which extends from −� to +� and passes
through t0.

For the case of multiple zero points in the upper t plane,
Eq. �3� can be generalized to include the contributions from
all these N zero points tk as

P � ��
k=1

N


ke
iD�tk��2

, �5�

where 
k=4i limt→tk
�t− tk��̇�t�; usually 
k=1 or −1. Here

�̇�t� accounts for the nonadiabatic coupling between the
adiabatic states, with ��t�= 1

2 tan−1��t� /��t�.

B. Optimization of two-state adiabatic passage

Guérin et al. �7� used the DDP method to optimize the
adiabatic passage between two states in a very simple man-
ner. Assuming that the probability for nonadiabatic losses is
solely due to the transition points tk, they have proposed to
suppress these altogether by choosing the Rabi frequency
��t� and the detuning ��t� such that there are no transition
points. This condition is obviously fulfilled if the quasien-
ergy splitting is constant,

	�t� = 
��t�2 + ��t�2 = const. �6�

For example, this condition is fulfilled for a detuning and
Rabi frequency defined as

��t� = 	0 cos��f�t��, ��t� = 	0 sin��f�t�� , �7a�

0 = f�− �� � f�t� � f��� = 1, �7b�

with f�t� being an arbitrary monotonically increasing func-
tion with the above property. Condition �6� is not the only
possible condition for adiabatic optimization, but it is the
simplest one �7�.

III. OPTIMIZATION OF STIRAP

A. STIRAP

The probability amplitudes of the three states in STIRAP
c�t�= �c1�t� ,c2�t� ,c3�t��T satisfy the Schrödinger equation,

i�
d

dt
c�t� = H�t�c�t� , �8�

where the STIRAP Hamiltonian within the RWA reads as �9�

H�t� =
�

2
 0 �p�t� 0

�p�t� 2� �s�t�
0 �s�t� 0

� . �9�

The time-varying Rabi frequencies �p�t� and �s�t� describe
the couplings between the intermediate state �2 and, respec-
tively, the initial state �1 and the target final state �3. STI-
RAP is easily explained with the so-called dark state �d�t�,
which is a zero-eigenvalue eigenstate of H�t�,

�d�t� = �1 cos ��t� − �3 sin ��t� , �10�

where the time-dependent mixing angle ��t� is defined as

��t� = tan−1�p�t�
�s�t�

. �11�

The pulses in STIRAP are ordered counterintuitively, i.e., the
Stokes pulse precedes the pump pulse,

lim
t→−�

�p�t�
�s�t�

= 0, lim
t→+�

�s�t�
�p�t�

= 0. �12�

Then 0←—
−�←t

��t�—→
t→�

� /2, and therefore the dark state �d�t�
connects adiabatically states �1 and �3,

�1←—
−�←t

�d�t�—→
t→�

− �3. �13�

Thus, if the evolution is adiabatic then the population passes
from state �1 to state �3. Moreover, because the dark state
does not contain a contribution from the �possibly lossy�
intermediate state �2, the properties of the latter are less
important.

When the evolution is not completely adiabatic, the popu-
lation transfer �1→�3 might be incomplete. Moreover, the
intermediate state receives some transient population, which
may either be lost if the state �2 decays to other states or lead
to decoherence if it decays back into �1 or �3. For STIRAP
to be a viable tool for quantum computing, nonadiabatic
transitions have to be reduced below the fault-tolerance limit
of �10−4 �5,6�. We can estimate the required resources for
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STIRAP to reach such a fidelity as follows. The adiabatic
condition for STIRAP �for �=0� demands large pulse areas
Ap,s=�−�

� �p,s�t�dt�1. This global condition is derived from

the local adiabatic condition, which reads ��t�� ��̇�t��. The
probability for nonadiabatic transitions in the perturbative

limit is Pna�t�� �̇2�t� /�2�t�; it measures the population that
escapes to other adiabatic states and reduces the fidelity. The
infidelity is therefore 1− P3�1 /Ap,s

2 . The fault-tolerance QIP
limit therefore requires Ap,s�100. In fact, this very rough
estimate neglects various details, such as the peculiarities of

the nonadiabatic coupling �̇�t�, and in reality the condition
for the pulse areas is more restrictive.

In the following, we show that an optimized version of
STIRAP can reach the fault-tolerance QIP limit by using
much smaller pulse areas. In order to optimize STIRAP, we
use the same ideas as in the two-state adiabatic passage op-
timization by Guérin et al. �7�. To this end, we make use of
the reduction of STIRAP to effective two-state problems.

B. Effective two-state systems

1. Single-photon resonance

On single-photon resonance ��=0�, the three-state system
is reduced to an effective two-state system, with a detuning
�s�t� and a coupling �p�t� �10,11�,

i
d

dt
�b1�t�

b2�t� � =
1

2
��s�t� �p�t�

�p�t� − �s�t�
��b1�t�

b2�t� � , �14�

where the probability amplitudes b1,2�t� are related to c1,2,3�t�
as follows �10,11�:

c1�t� = 2 Re�b1
��t�b2�t��sin ��t�

+ ��b1�t��2 − �b2�t��2�cos ��t� , �15a�

c2�t� = 2 i Im�b1
��t�b2�t�� , �15b�

c3�t� = 2 Re�b1
��t�b2�t��cos ��t�

− ��b1�t��2 − �b2�t��2�sin ��t� . �15c�

Because we have for STIRAP ��−��=0 and ����=� /2, the
initial condition c1�−��=1 demands the condition �b1�−���
=1 in the effective two-state system. The final-state popula-
tion in STIRAP is

�c3�+ ���2 = ��b1�+ ���2 − �b2�+ ���2�2. �16�

Consequently, an optimized adiabatic evolution in the two-
state system �14� implies optimized STIRAP. Hence applied
to STIRAP, the two-state optimum condition �6� simply
yields

�p�t�2 + �s�t�2 = �2 = const. �17�

In other words, the rms Rabi frequency should be constant.
Again, as in the two-state optimization, this is not the only
possible optimization condition but it is the simplest one.

2. Far-off-resonance fields

For large single-photon detuning ��t�, the intermediate
state can be eliminated adiabatically by setting ċ2�t�=0 in
Eq. �8�. We thus obtain �2�

i
d

dt
�c1�t�

c3�t� � =
1

2
�− �eff�t� �eff�t�

�eff�t� �eff�t�
��c1�t�

c3�t� � , �18�

where the effective Rabi frequency �eff�t� and detuning
�eff�t� are defined as

�eff�t� = −
�p�t��s�t�

2��t�
, �19a�

�eff�t� =
�p�t�2 − �s�t�2

4��t�
. �19b�

The two-state condition for optimal adiabatic passage now
reads as

�eff�t�2 + �eff�t�2 = ��p�t�2 + �s�t�2

4��t� �2

= const. �20�

For constant �, this condition is identical to the one we
found on resonance �Eq. �17��, that is, it requires a constant
rms Rabi frequency �. We point out that due to the identical
conditions on and off single-photon resonances, optimization
is ensured over a very wide range of single-photon detun-
ings.

IV. OPTIMIZATION OF STIRAP: EXAMPLES

A. Pulse shapes

Conditions �17� and �20� suggest the following parametri-
zation of the pump and Stokes fields:

�p�t� = � sin��

2
f�t�� , �21a�

�s�t� = � cos��

2
f�t�� , �21b�

where f�t� is an arbitrary monotonically increasing function
0= f�−��� f�t�� f���=1. Viewed mathematically, �p�t� and
�s�t� define an adiabatic path, for which the nonadiabatic
correction given by the DDP formula vanishes, which leads
to an optimal adiabatic following of the dark state.

The exact fulfillment of condition �17� requires a constant
� and, hence, infinite pulse areas. This unphysical condition
can be overcome by using a “mask” function F�t�,

�p�t� = �0F�t�sin��

2
f�t�� , �22a�

�s�t� = �0F�t�cos��

2
f�t�� . �22b�
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Then the rms Rabi frequency becomes time dependent,
��t�=�0F�t�. This replacement does not necessarily violate
the optimization condition �17� because DDP transition
points may still be absent, e.g., if the mask function has a
suitable shape, such as Gaussian. Still, a pulse-shaped mask
F�t� violates the DDP conditions because the eigenenergy
splitting 	�t���0F�t� becomes degenerate as t→ ��. The
implication is that the probability for nonadiabatic transitions
as a function of the pulse area is no longer expressed as a
simple exponential �Eq. �3�� but rather by a sum of an expo-
nential and an oscillatory term with an amplitude that van-
ishes only polynomially with the pulse area �11,12�. The ex-
ponential term dominates for moderate pulse areas, whereas
the oscillatory polynomial term dominates for large areas
�11,12�. The border value of the area Ab, where the exponen-
tial decline breaks down into slowly damped oscillations, is
proportional to the ratio R between the rms pulse area A
=
Ap

2 +As
2 and the overlap area Ao �the area of overlap of the

pump and Stokes pulses� Ab�R=A /Ao. The exponential de-
cline of nonadiabatic transitions is favorable for high-fidelity
STIRAP because it allows one to achieve high fidelity with
moderate pulse areas. This in turn implies a large value of
the breakdown area Ab, so that the �slowly damped� oscilla-
tions emerge only when the infidelity is very low. Hence, the
high-fidelity STIRAP is facilitated by asymmetric pulses,
with longer outer tails, so that the ratio R �and hence the
breakdown area Ab� is large. These observations are further
illustrated with the figures below.

The above arguments suggest the following recipe for
choosing F�t�:

�i� F�t� should be a flat function during the time of over-
lap of the pump and Stokes pulses, during which the popu-
lation transition takes place;

�ii� F�t� should have a sufficiently large width so that the
rms-to-overlap ratio R is sufficiently large.

In the examples below, as a mask F�t� we use the hyper-
gaussian function,

F�t� = e−�t/T0�2n
, �23�

where n=1 corresponds to the Gaussian shape. For larger
�positive integer� n, the condition F�t��const is fulfilled in-
creasingly better in the overlap region.

There is a some leeway in the choice of the function f�t�
as long as the adiabatic condition is fulfilled in the overlap
region. We use

f�t� =
1

1 + e−�t/T . �24�

We point out that other choices of the function f�t� are
also possible. However, with the chosen method of optimi-
zation being based on the DDP approximation, which is valid
only in the near-adiabatic regime, the function f�t� has to
fulfill the adiabaticity criterion,

��̇�t�� � �	�t�� , �25�

where �̇�t� is the nonadiabatic coupling. Using Eq. �25�, we
obtain the following condition for the function f�t�:

� ḟ�t�� � �0�F�t�� , �26�

hence f�t� should have a smooth time dependence in order to
facilitate adiabaticity. Once in the adiabatic regime, however,
the function f�t� does not affect the DDP optimization be-
cause it does not appear in the condition �17�.

Three different pulse shapes are shown in Fig. 1: pulse
shapes that obey the optimization condition �17� for all times
t, along with the more realistic example with a hypergaussian
mask �23� that obey the optimization condition �17� only in
the region of overlap of the pump and Stokes pulses, and
Gaussian pulses,

�p = �0e−�t−�/2�/T2
, �s = �0e−�t+�/2�/T2

, �27�

where � is the pulse delay. We note that the pulse area A for
the Gaussian pulses is almost identical with the DDP-
optimized pulses. In the following, we demonstrate that the
optimally shaped pulses are superior to the Gaussian pulses,
even with optimized delay for the latter, in achieving a very
high fidelity.

B. Examples of ultrahigh-fidelity STIRAP

In Fig. 2 we plot the STIRAP infidelity, i.e., the deviation
1− P3 from perfect transfer for the optimized pulses de-
scribed above and compare these to the results for the tradi-
tional implementation of STIRAP with a pair of Gaussian
pulses. The infidelity is shown as a function of the peak Rabi
frequency. For Gaussian pulses, the pulse delay is chosen
such that a nearly maximum fidelity is obtained. Despite the
optimum delay, the Gaussian shapes do not allow us to re-
duce the infidelity below the limit 10−4 in the shown range of
pulse areas �eventually, at very high pulse areas the infidelity
drops below this limit�. On the contrary, DDP-optimized
pulse shapes �with n=1, �=2, and T0=2T� break this limit
even for small pulse areas.

We note that the DDP pulses are not fully optimized due
to the mask function F�t� vanishing at large times. Therefore,
the respective fidelity curve starts to oscillate, which signals
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FIG. 1. �Color online� Pulse shapes. 1: ideally optimized pulse
shapes, which obey the optimization condition �17� for all times t;
2: pulse shapes with a hypergaussian mask �23�, with n=3, �=4,
and T0=2T; 3: Gaussian pulses �27�, with pulse delay �=1.2T.
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the occurence of nonadiabatic transitions. However, the mag-
nitude of these nonadiabatic transitions can be controlled by
the width of the mask function F�t�: a larger width pushes
these oscillations further down. Hence, even for small pulse
areas, the optimally shaped pulses are far superior to the
Gaussian pulses, as shown in Fig. 2. This tendency is also
visible in Fig. 3, where the infidelity is plotted as a function
of the pulse area for two different widths T0 of the mask
function F�t� �Eq. �23��. By increasing the mask width T0,
the validity range of the adiabatic optimization condition
�17� widens, and the optimized pulses approach the ideal
DDP-optimized pulse shapes in Fig. 1.

In Fig. 4 we compare the line profile as a function of the
common detuning � from the intermediate level �see Eq. �9��
for the optimized and Gaussian pulse shapes. The time delay
for the Gaussian pulses is numerically chosen for nearly
maximum fidelity. It is known that a single-photon detuning
does not affect the dark state �as long as two-photon reso-
nance is maintained� �2�. Nonetheless, adiabaticity deterio-
rates and the transfer efficiency decreases with increasing
single-photon detuning. The robustness of the high-fidelity

STIRAP �i.e., STIRAP where the infidelity is below the limit
10−4� against the single-photon detuning is much more pro-
nounced for the optimized pulses. This feature is readily ex-
plained by the fact that the same pulse shapes optimize STI-
RAP both for �=0 and for large �, as discussed above.

It is known that the transfer efficiency for STIRAP is
much more sensitive to a detuning from Raman resonance
than to the single-photon detuning �2�. Figure 5 shows the
Raman line profile for DDP-optimized and Gaussian pulses.
As before, the time delay for the Gaussian pulses is numeri-
cally chosen such that a nearly maximum transition probabil-
ity P3 is obtained. The optimized pulse shapes are far supe-
rior to the Gaussian pulses and allow one to maintain a high
fidelity over a wide range of two-photon detunings.

C. Relative error due to the RWA approximation

The RWA is widely used whenever laser-induced excita-
tions with optical frequencies � much larger than the Rabi
frequency � are considered. Typical optical �carrier� fre-
quencies are ��1016 s−1, while the typical Rabi frequencies
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FIG. 2. �Color online� Deviation �infidelity� from complete
population transfer vs the peak Rabi frequency for Gaussian �delay
�=1.2T� and DDP-optimized pulse �23� �n=3, �=4, T0=2T and n
=1, �=2, T0=2T�.
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FIG. 3. �Color online� Deviation �infidelity� from complete
population transfer vs the peak Rabi frequency for DDP-optimized
pulses for different values of the width T0 of the hypergaussian
�n=3� mask F�t� �Eq. �23��.
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FIG. 4. �Color online� Line profile as a function of the common
detuning � from the intermediate level for DDP-optimized
�n=3,�=4,T0=2T� and Gaussian pulses �delay �=1.2T� for a peak
Rabi frequency �=20.
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FIG. 5. �Color online� Raman line profile for the DDP-
optimized �n=3,�=4T0=2T� and Gaussian pulses �delay �=1.2�
for a peak Rabi frequency �=20.
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are within the range ��108–109 s−1 �9�. For two-level
systems, perturbative inclusion of the counter-rotating
terms results in the Bloch-Siegert shift of the eigenenergies
by ��2 /� �13�. Within a typical pulse duration T
�10−6–10−8 s, this accumulates maximum deviation from
the calculated probabilities of

�Pe � �T
�2

�
�2

� 10−8 – 10−16. �28�

It should also be noted that the results in RWA are exact in
case of the circular polarization �9�.

V. OPTIMIZATION OF HADAMARD GATES

f-STIRAP is a variation in STIRAP, which creates an ar-
bitrary preselected coherent superposition of states �1 and
�3,

� = �1 cos � − �3 sin � . �29�

As in STIRAP, the Stokes pulse precedes the pump pulse,
but unlike STIRAP, where the Stokes pulse vanishes first, in
f-STIRAP the two pulses vanish simultaneously, while main-
taining a constant ratio of their amplitudes �14�,

0←—
−�←t �p�t�

�s�t�
—→
t→�

tan � . �30�

A convenient realization of f-STIRAP reads as �15�

�p�t� = �0e−�t − �/2�2/T2
sin � , �31a�

�s�t� = �0�e−�t + �/2�2/T2
+ e−�t − �/2�2/T2

cos �� . �31b�

The DDP-optimized pulses, in analogy with the full STIRAP,
read as

�p�t� = �0F�t�sin��f�t�� , �32a�

�s�t� = �0F�t�cos��f�t�� , �32b�

where f�t� is again an arbitrary function that satisfies condi-
tion �7b�. It is easy to verify that these pulse shapes satisfy
the f-STIRAP condition �30�. For half STIRAP, when an
equal coherent superposition of states �1 and �3 is created,
we should have �=� /4. This superposition corresponds to
the Hadamard gate, which is one of the fundamental gates in
quantum-information processing �16�.

Figure 6 compares the transfer efficiency of f-STIRAP for
DDP-optimized pulses and for pulses given by Eqs. �31�.
The pulse delay for the pulse �31� is chosen numerically for
nearly maximum fidelity. In Fig. 6 the infidelity is defined as

1 − ��� final��desired��2, �33�

where �desired is given by Eq. �29� at �=� /4 and � final
is numerically calculated for both DDP-optimized and
Gaussian pulses. It is important to note that despite the delay

optimization, the pulses �31� do not allow reduction in
the infidelity below a certain limit. Due to the mask function
F�t�, the DDP-optimized pulses led to an oscillatory behavior
of the infidelity. However, the oscillatory regime and hence
the fidelity depend on the width T0 and can be controlled. In
particular, in the regime of small pulse areas, the DDP-
optimized version of f-STIRAP �with n=1, �=2, and T0
=2T� is superior to the traditional Gaussian pulses as shown
in Fig. 6.

VI. CONCLUSIONS

We have proposed an optimization of the fidelity of the
STIRAP technique, which uses the DDP approach to mini-
mize nonadiabatic losses. The rationale for this is the reduc-
tion in STIRAP from three to two states either on exact
single-photon resonance or for large single-photon detuning.
Interestingly, the optimized pulse shapes are the same in both
regimes, which makes the DDP-optimized STIRAP very ro-
bust against variations in the detuning. We have demon-
strated with numerical simulations that the fidelity of this
optimized STIRAP can reach very high values, with an error
well below the fault-tolerant QIP limit of 10−4, which is very
difficult to reach by optimizing the pulse delay with the usual
Gaussian pulse shapes �or other symmetric pulse shapes,
such as the hyperbolic secant�. The proposed optimization is
of potential importance for QIP because it supplements the
robustness of STIRAP against parameter variations with an
ultrahigh fidelity of gate operations. We furthermore empha-
size that a similar optimization method could also have a
significant impact on the vacuum-stimulated Raman scatter-
ing in cavity QED �17�.

ACKNOWLEDGMENTS

This work has been supported by the projects EMALI,
FASTQUAST, and SCALA of the European Union, the
EPSRC grant �EP/E023568/1�, the research unit 635 of the
German research foundation, and the Bulgarian NSF under
Grants No. 205/06, No. 301/07, and No. D002-90/08.

10-16

10-12

10-8

10-4

100

0 10 20 30 40 50

Gaussian
DDP-optimized, λ=2
DDP-optimized, λ=4

Peak Rabi Frequency (units 1/T)

In
fi

de
lit

y
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