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We investigate the coherent control of a single particle held in a quartic double well with a symmetric or
asymmetric driving and exhibit time evolutions of relative probability of the particle in one of the double-well
wells. It is shown analytically and numerically that the coherent destruction of tunneling could occur only for
the symmetric intense driving, and application of the asymmetric sawtooth driving leads to an increase in the
tunneling rate. The results agree with the recent experimental data reported by Kierig et al. �Phys. Rev. Lett.
100, 190405 �2008��. We also exhibit the effect of multiple photon resonances on the tunneling through a dc
field. Finally, we demonstrate a connection between the classically chaotic barrier crossing and quantum
tunneling numerically.
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I. INTRODUCTION

Research on the coherent control of quantum tunneling
with time-dependent external field has been a subject of re-
cent theoretical and experimental works �1–7�. A single par-
ticle in a quartic double well consisting of two wells and
driven by a monochromatic periodical field is a typical sys-
tem to demonstrate the coherent control. Previously, Lin and
Ballentine �8� proved that the tunneling rate can be highly
enhanced due to the periodic modulations associated with
chaos. Then Grossmann et al. �9� found another peculiar ef-
fect, namely, when the strength and frequency of the periodic
driving are chosen appropriately, a particle initially located
in one of the two wells never transfers to the other, which is
called the “coherent destruction of tunneling” �CDT�. Bavli
and Metiu �10� showed that a semi-infinite monochromatic
driving also can be used to localize an electron in one of the
double-well wells. Farrelly and Milligan �11� further exhib-
ited that the control of tunneling can be achieved by a two-
frequency driving with frequency ratio 1:2. Recently, Kierig
et al. �6� reported the first direct observation of the coherent
control of single-particle tunneling in a strongly driven
double-well potential. Periodic arrangement of the double
well is achieved by employing the standard optical light shift
potential and an atom of argon is prepared in one well ini-
tially. The momentum distribution is given and the tunneling
effect is directly shown up in the dynamics of the diffraction
efficiencies. The experimental results reveal that the symmet-
ric driving suppresses the tunneling and the asymmetric saw-
tooth driving raises the rate of tunneling.

In this paper, we investigate the coherent control of quan-
tum tunneling in the experiment reported in Ref. �6� by using
the perturbation analysis and nonperturbed numerical
method. It is shown that the CDT can occur only for the
symmetric intense driving and application of the asymmetric
two-frequency sawtooth driving leads to increase in the tun-
neling rate. Our results are in good agreement with the recent
experimental data �6�. We also reveal the effect of multiple

photon resonances on the tunneling through a dc field. Fi-
nally, we illustrate a connection between the classical chaos
and quantum tunneling and find a good correspondence be-
tween the classically chaotic barrier crossing and quantum
tunneling numerically through the Poincaré sections on clas-
sical phase space.

II. HIGH-FREQUENCY AND WEAK-COUPLING
APPROXIMATION

For a single particle confined in the double-well traps, we
focus on the lowest doublet of energy eigenstates, which are
composed of the linear combinations of low-lying state pairs
localized in the left and the right wells �12�. When the modu-
lation amplitude of the energies of the left and right wells is
much smaller than the representative excitation energy in a
single well, the tunneling dynamics of the system in Ref. �6�
can be described by the two-level model �13,14�. The corre-
sponding dimensionless Hamiltonian reads

H�t� =
��t�

2
��1��1� − �2��2�� + ���1��2� + �2��1�� ,

��t� = �0 − �1 sin��t + �1� − �2 sin�2�t + �2� , �1�

where �1� and �2� represent the left and the right localized
states in the double-well system; ��t� denotes the time-
dependent external field with � being the driving frequency
and � j�j=1,2� being the phases, �0 is the dc field strength, �1
and �2 are the driving strengths, and � is the tunneling co-
efficient between the two wells, which represents the gain in
kinetic energy in a tunneling event. For simplification, we
have set �=1 and normalized energy and time by �0 and �0

−1

with �0 being a fixed reference frequency. The parameters
� j�j=0,1 ,2�, �, and � are in units of �0. Thus all the pa-
rameters are dimensionless throughout this paper.

The quantum system �1� is described by the wave func-
tion ��t� which can be expanded in the basis �1� and �2� as

���t�� = �1�t��1� + �2�t��2� , �2�

where �1�t� and �2�t� are the time-dependent dimensionless
coefficients. Applying Eqs. �1� and �2� to the Schrödinger*Corresponding author; whhai2005@yahoo.com.cn
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equation i �
�t ���t��=H�t����t�� results in the coupled equa-

tions

i�̇1�t� =
��t�

2
�1�t� + ��2�t� , �3�

i�̇2�t� = −
��t�

2
�2�t� + ��1�t� . �4�

It is difficult for us to obtain the exact solutions of Eqs. �3�
and �4�. However, under the weakly coupled condition �
�1, we can construct the perturbation solutions as follows.
Setting �1�t�=b1�t�exp�− i

2�0
t ��t�dt� and �2�t�

=b2�t�exp� i
2�0

t ��t�dt� and inserting them into Eqs. �3� and

�4�, we obtain iḃ1=�b2 exp�i�0
t ��t�dt� , iḃ2=�b1 exp�

−i�0
t ��t�dt�. We then consider the perturbed corrections up to

the first-order approximation bj =bj
�0�+bj

�1� with �bj
�1��� �bj

�0��
for j=1,2. Clearly the zero-order solutions bj

�0�=cj are the
constants decided by initial conditions and the first-order so-
lutions obey the decoupled equations

iḃ1
�1� = �c2 exp	i


0

t

��t�dt� , �5�

iḃ2
�1� = �c1 exp	− i


0

t

��t�dt� . �6�

In the high-frequency approximation, when �0=�2=0 is set,
from Eqs. �5� and �6� the effective tunneling coefficient can
be reduced to �13� �J0�

�1

� � with J0�
�1

� � being the zeroth-order
ordinary Bessel function. Thus the CDT can be clearly seen
for the appropriate parameters �1 /� fitting J0�

�1

� �=0. For the
single-frequency field case such a result is consistent with
the corresponding result �9� from the Floquet analysis with
the tunneling splitting 	ef f =	J0�

�1

� �. We here are interested
in the two-frequency driving and nonzero dc field cases.

For the nonzero � j �j=1,2�, the time-evolution curves of
the driving ��t� may be symmetric or asymmetric depending
on the values of strengths and phases. In Fig. 1, we exhibit
the temporal symmetry and asymmetry for different driving
parameters. Curve 2 of Fig. 1�a� stands for the time evolution
of symmetric two-frequency driving field for the parameters
�=8, �0=0 , �1=19.26, �2=5 , �1=0 , �2=0.5
. Taking
�2=0 we transform curve 2 to curve 3 related to the symmet-
ric single-frequency driving. The parameters of Fig. 1�b� are

the same as that of curve 2 in Fig. 1�a�, except �2=0. Curve
2 of Fig. 1�b� denotes the time evolution of two-frequency
asymmetrical driving, which is similar to the sawtooth driv-
ing in the single-particle experiment �6�. The symmetry of
driving field is embodied by the perpendicular line 1 in both
the figures. We will investigate the coherent control for the
above two symmetric drives and one asymmetric drive, re-
spectively, as follows.

A. Case 1

This shows the single-frequency symmetric driving of Eq.
�1� with �1=0 and �2=0. Such a field is a simple sine func-
tion of time, which is plotted as curve 3 in Fig. 1�a�. Appli-
cations of such a function and the Fourier expansion
exp��ix cos��t��=�n�=−�

� Jn��x���i�n�exp�in��t� lead to the
expansion formula exp��i���t�dt�
=�n�=−�

� Jn��
�1

� ���i�n�exp�i�n����0�t�, where Jn��x� is the
n�-order Bessel function. Substituting the formula into Eqs.
�5� and �6� and setting �0=n�+ with ��� �

2 and n integer,
under the high-frequency approximation ��1, we obtain the
solutions

b1
�1�  − i−nc2��J−n��1

�
� eit − 1


, �7�

b2
�1�  �− i�−nc1��J−n��1

�
� e−it − 1


, �8�

where c1�=c1ei�1/� and c2�=c2e−i�1/�. Hereafter, we call  the
“reduced strength” of the dc field. The result implies that the
tunneling parameter � is replaced by the effective one �ef f

=�J−n�
�1

� � and the effective tunneling rate reads �ef f /�
�15�. Therefore we can set the appropriate driving parameters
��1 ,�� to make J−n�

�1

� �=0 such that the effective tunneling
rate vanishes. The zero �ef f means that bj

�1�=0 and �� j�2
= �bj

�0��2= �cj�2 for j=1,2, namely, the probabilities of the par-
ticle in every well are constants. Thus the particle will be
maintained in the initially localized state and no quantum
tunneling occurs. The results well agree with the correspond-
ing CDT experiment �6�.

We now see the effect of multiple photon resonance
�15–17� induced by condition �0=n� or =0. When →0 is
set, the application of l’Hospital rule to Eqs. �7� and �8� leads
to linear increase in the solutions with time, bj

�1�� t, which
indicate the appearance of resonance tunneling. In fact, we
can prepare the particle in the first well initially with c1=1,
c2=c2�=0 and from Eqs. �7� and �8� derive b1

�1�=0 and b2
�1�

� t so that the tunneling from the first well to the second well
will occur with linearly increasing amplitude. For the non-
zero , bj

�1� for j=1,2 are two periodic functions of time,
which means that ground-state levels of the two wells are
shifted out of resonance and the linear increase in tunneling
amplitude is suppressed. The results are similar to the recent
experiment observations of photon-assisted tunneling in op-
tical lattice �15�.
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FIG. 1. �a� Time evolutions of the driving function ��t� for the
symmetric two-frequency field �curve 2� and single-frequency field
�curve 3�. �b� Time evolution of the asymmetric two-frequency
driving field �curve 2�. Line 1 in both figures stands for the perpen-
dicular line. The driving function and time are dimensionless.
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B. Case 2

The two-frequency symmetric driving of Eq. �1� with �0
=0, �1=0, and �2=0.5
 is associated with the curve 2 in Fig.
1�a�. Applying Fourier expansion of the functions
exp��i

�1

� cos��t�� and exp��i
�2

� sin�2�t��, we obtain the ex-
pansion formula exp��i���t�dt�
=�n�=−�

� �m=−�
� Jn��

�1

� �Jm�
�2

� ���i�n���1�mexp�i�n�+2m��t�. In
the high-frequency case with ��1 and after substituting the
expansion formula into Eqs. �5� and �6�, we integrate them
and neglect the unimportant oscillating terms which are in-
versely proportional to �, producing the approximate solu-
tions with n�+2m=0,

b1
�1�  − id2�C��,�1,�2,��t , �9�

b2
�1�  − id1�C�− �,�1,�2,��t , �10�

C���,�1,�2,�� = �
m

����−mJ−2m��1

�
�Jm� �2

2�
� �11�

with the constants �=1, d1=c1ei�1/�, and d2=c2e−i�1/�. In
Eqs. �9� and �10�, the dimensionless coefficients
C��1,�1 ,�2 ,�� are real numbers for a set of fixed param-
eters. Although these are in the resonance case ��0=0�, CDT
may occur for some appropriate parameters. In order to il-
lustrate CDT, we take �1=4�2 that leads C��1,�1 ,�2 ,��
= �C��1,�1 ,��� to the function of

�1

� . The evolution of
�C��1,�1 ,��� versus

�1

� is plotted as curve 1 of Fig. 2. From
this curve we can see that at appropriate values of the pa-
rameter ratio

�1

� , C��1,�1 ,�� vanishes, which means bj
�1�

=0 for j=1,2 and the particle will be maintained in the ini-
tially localized state. The result indicates the CDT can be
realized under the two-frequency symmetrical driving. In the
meantime, we find that the evolution of the coefficient
C��1,�1 ,�� versus

�1

� �the curve 1� is similar to that of the
Bessel function J0�

�1

� � �the dotted line 2� in Eqs. �7� and �8�
for �0=0 and �1=4�2, which demonstrate the similar charac-
teristic between single-frequency and two-frequency sym-
metrical driving fields.

Based on the semiclassical Husimi-function method, for
the two-frequency driving field of Eq. �1� with �1=�2
=0.5
, Farrelly et al. �11� have reported the result on the
suppression of tunneling. A similar result can be easily es-
tablished by the above full quantum-mechanical treatment
because of the temporal symmetry of driving field in such a
case.

C. Case 3

The two-frequency asymmetric driving of Eq. �1� with
�0=0 and �1=�2=0 corresponds to the curve 2 in Fig. 1�b�.
The similar calculations to case 2 give the high-frequency
approximate solutions of Eqs. �5� and �6� as

b1
�1�  − ie2�C��,�1,�2,��t , �12�

b2
�1�  − ie1�C�− �,�1,�2,��t , �13�

with the constants e1=c1ei2�1+�2/2� and e2=c2e−i2�1+�2/2�.
Here coefficients C��� ,�1 ,�2 ,�� are defined by Eq. �11� for
�= i, which are two complex numbers with the same module.
Adopting the similar selection �1=4�2 with case 2, we plot
the evolution of the module �C��i ,�1 ,�2 ,���
= �C��i ,�1 ,��� versus

�1

� as the curve 3 of Fig. 2, and no
zero point is observed for any ratio

�1

� . After changing �1
from 4�2 to 3�2, curve 3 of Fig. 2 is transformed to curve 4
on which also no zero point is found. Further for the asym-
metric drive case we take many different groups of param-
eters to plot �C��i ,�1 ,��� and still do not observe any zero
point. So the solutions in Eqs. �12� and �13� will linearly
increase with time that indicates the appearance of resonance
tunneling. The result means that the CDT cannot occur under
the asymmetrical sawtooth-driving field. This is in good
agreement with the recent experimental data �6�.

III. NUMERICAL RESULTS FROM EXACT MODEL

Under the high-frequency and weak-coupling approxima-
tion, the analytical results given by Eqs. �7�–�13� describe
the coherent control of quantum tunneling well for the
single-frequency and two-frequency driving fields. Further,
we are interested in �a� the comparison between the analyti-
cal and numerical results, and �b� the numerical results with-
out the high-frequency and weak-coupling approximation.
We will seek general results of the coherent control, through
the numerical analysis from exact Eqs. �3� and �4�. Setting
� j =�� je

i�j, j=1,2 and z=�2−�1, �=�2−�1, and considering
the orthonormalization condition �1+�2=1, Eqs. �3� and �4�
are rewritten as

ż = − 2��1 − z2 sin � , �14�

�̇ = ��t� +
2�z

�1 − z2
cos � , �15�

where z is the relative probability of single particle in one
well and � the phase difference. The particle is localized in
the first well for z=1 and in the second well for z=−1. Based
on Eqs. �14� and �15�, we will explore the tunneling dynam-
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FIG. 2. �Color online� The evolution of function �C��� ,�1 ,���
versus

�1

� for �=1 �curve 1� and �= i �curves 3 and 4� with �1

=4�2 �curves 1, 2, and 3� and �1=3�2 �curve 4�. The dotted line 2

stands for the Bessel function J0�
�1

� �. The other parameters are cho-
sen as �0=0, �1=19.26, �=8. The dimensionless quantities and
parameters are used.
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ics numerically for the symmetrical and asymmetrical driv-
ing fields as follows.

First, we consider the single-frequency driving of Eq. �1�
with parameters �0=0.007 and �2=0 and the high-frequency
and weak-coupling case with �=8, �=0.05, and �1=0. For
two different values of driving strength �1, we plot the time
evolutions of z as in Fig. 3�a�. From this figure we observe
that at the zero-point

�1

� =2.404 75 of Bessel function J0�
�1

� �
the relative probability z maintains the initial value �curve 1�
that means the occurrence of CDT. However, when the pa-
rameter ratio

�1

� deviates from the zero point of Bessel func-
tion J0�

�1

� �, z oscillates in time with the largest amplitude
zmax=1 as curve 2 of Fig. 3�a� with

�1

� =2.25 that indicates the
periodic quantum tunneling, namely, periodic population os-
cillation. The numerical results are in good agreement with
the analytical ones from Eqs. �7� and �8�.

Similarly, we consider the high-frequency, weak-
coupling, and single-frequency driving case with parameters
�=8, �=0.05, �1=0 , �2=0 , �1=15 to exhibit the time
evolutions of z for different dc field strength �0 as in Fig.
3�b�. For the strength values �0=n� with n=0,1, from
curves 1 and 2 of Fig. 3�b� we find that the periodic tunnel-
ing of the largest amplitude zmax=1 occurs in both cases. But
n=1 case �curve 2� possesses smaller tunneling period com-
pared to n=0 case �curve 1� which implies the former having
larger tunneling rate. This result is very important for one to
design an atom device �18�. It should be noticed that after
considering the normalization, the multiple photon reso-
nances with �0=n� result in the largest amplitude of z. For
the nonzero reduced strength values �0==0.03,0.3, from
curve 3 and curve 4 of Fig. 3�b� we find that the amplitude of
z is suppressed and the larger strength value corresponds to
the smaller amplitude. The result is similar to the experimen-
tal result in optical lattice �15�.

In the strong-couple and single-frequency driving case,
from Eqs. �14� and �15� we also can explore the quantum
tunneling of particle. In Fig. 3�c� we show the time evolu-
tions of relative probability z for two different tunneling co-
efficients �=2 �solid curve� and �=3.5 �long dashed curve�
for the same potential parameters �1=18.65, �2=0 , �=8.
From the solid curve with �=2 we observe the small oscil-
lations of z. We also find that the increase in tunneling coef-
ficient � �from 2 to 3.5� leads the region of z evolution to
obviously increase. Keeping �=3.5 and decreasing the field
strength to �1=17.30, the amplitude of z is decreased again,
which is exhibited by the dotted curve with amplitude being
less than that of the long dashed curve case but greater than
that of the solid curve case. The result indicates that no CDT
occurs for any strong-couple and single-frequency driving
case.

Now we illustrate numerically that the CDT could occur
only for the symmetric driving. In Fig. 4�a�, for the param-
eters �=8, �=0.05, �0=0 , �1=19.26, �2=5, we display
the time evolutions of z for two-frequency symmetric ��1
=0 , �2=0.5
� and asymmetric ��1=�2=0� drives. The
curve 1 stands for the time evolution of relative probability z
in symmetrical driving, where the relative probability z ap-
proximately keeps the initial value z=1. The curve 2 indi-
cates the time oscillations of z in asymmetrical driving with
the largest amplitude �z�max=1. The numerical results agree
well with the above-mentioned analytical results.

Further, we explore the resonance tunneling rate numeri-
cally for the parameters �1=0 , �=8, �=0.05, �0=0 , �1
=18, �2=5 and the two-frequency symmetric ��2=0.5
�
and asymmetric ��2=0� driving fields. In Fig. 4�b�, we see
the periodic oscillations of z and reveal that the application
of the asymmetric driving can lead to increase in the tunnel-
ing rate. It is shown that the asymmetry case with �2=0
�curve 2� has smaller oscillating period of z compared to the
symmetry case with �2=0.5
 �curve 1� that means the
former corresponding to higher tunneling rate. The results
agree well with the recent experimental one �6�.

To see the coherent control from different viewpoints,
from Eqs. �14� and �15� we give the orbits of phase space z−ż
numerically as in Fig. 5. In Figs. 5�a� and 5�b� we show that
the single-frequency and two-frequency symmetric driving
fields can well suppress the change in relative probability z
in the small region 0.993�z�1. However, the asymmetric
driving leads the oscillation amplitude of z to the greatest
one −1�z�1 as in Fig. 5�c�. This demonstrates again that
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FIG. 3. �Color online� �a� The time evolutions of z for the pa-
rameters �2=0, �1=0, �0=0.007, �=0.05, �=8 and the differ-
ent strengths of driving fields �1=19.238 �curve 1� and �1=18
�curve 2�. �b� The time evolutions of z for the parameters �2

=0, �=0.05, �=8, �1=15, �1=0 and the different strengths of
static electric fields �0=0 �curve 1�, �0=8 �curve 2�, �0=0.03 �curve
3�, and �0=0.3 �curve 4�. �c� The time evolutions of z for the pa-
rameters �1=0, �=8, �0=0, �2=0, and the different parameter
pairs �=2, �1=18.65 �solid curve�, �=3.5, �1=18.65 �long
dashed curve�, and �=3.5, �1=17.30 �dotted curve�. The relative
probability z and time t are dimensionless.
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and t are dimensionless.
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the suppression of tunneling can be achieved only for the
symmetrical driving.

Finally, we seek the connection between classical chaos
and the quantum tunneling. The classical Hamiltonian corre-
sponding to quantum system �1� reads H�x , t�= P2

2 +V�x�
+ x

d��t� �12�, where V�x�=Bx4−Dx2 is the symmetric double-
well potential and d is the distance between the bottom of a
well and symmetric center of the double-well wells. We
choose the well parameters B=0.5��0 / ��m�4 and D
=10��0 / ��m�2 and the distance 2d=2�10 �m between two
wells. To make a comparison between classical and quantum
motions, we employ the symmetric and asymmetric driving
fields of Fig. 1 and the initial conditions x�t0�=−2.5 �m,
ẋ�t0�=4.5�0 �m �the particle being in the left well initially�
to plot the Poincaré sections of the phase space x−ẋ as in Fig.
6, where t0 denotes the initial time. It is very interesting
noting that for the single-frequency �Fig. 6�a�� and two-
frequency �Fig. 6�b�� symmetric driving fields the particle
being initially in the left well �x�t0��0� keeps in the same
well �x�t��0� for any t� t0. The corresponding phase orbits
are similarly regular for the both cases. However, for the
two-frequency asymmetric field �Fig. 6�c�� the particle can
cross the barrier between the two wells to reach the right
well with x�t��0. The numerical orbit in Fig. 6�c� seems to
be chaotic that agrees with the result of chaos-induced tun-
neling in Ref. �8�. Here, we demonstrate a good correspon-
dence between the classical barrier crossing and quantum
tunneling, which are affected similarly by the symmetric or
asymmetric driving field. The classical overbarrier in Fig.
6�c� could be associated with the instability of chaos, and its
quantum correspondence should be related not only to the
lower two states, but also to the higher quantum levels of the
system. The result is helpful for us to further understand the
connection between quantum tunneling and classical chaos
in a double-well system �8,19�.

IV. CONCLUSION

By using the perturbation analysis and nonperturbative
numerical method, we have investigated the coherent control
for the single particle held in the double-well wells and
driven by the time-dependent symmetric or asymmetric field.
The time evolutions of relative probability of the particle in
each well are illustrated, by which we demonstrate analyti-
cally and numerically the critical dependence of CDT on the
underlying symmetry of the driving field. It is revealed that
the CDT can occur only for the symmetric driving and the
application of the asymmetric sawtooth driving leads to in-
crease in the tunneling rate. We also exhibit the effect of
multiple photon resonances on the tunneling through the dc
field with strength �0. It is shown that the tunneling rate
could be enhanced by increasing the multiple n under the
resonance condition �0=n� and the amplitude of relative
probability can be suppressed by adjusting the reduced
strength  of the dc field for the nonresonance case �0=n�
+. Finally, we demonstrate the connection between quan-
tum tunneling and classical chaos and find the correspon-
dence between the classical barrier crossing and quantum
tunneling. The results are in good agreement with the recent
experimental data reported in Ref. �6� and can be easily ex-
tended to the case of a particle held in a chain of coupled
double-well wells �20�.
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=8, �0=0, �1=19.238 and �a� �2=0; �b� �2=5, �2=0.5
; �c�
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=8, �0=0, �1=19.26, �2=5, �2=0. The system parameters are
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