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We investigate the total effect of correlations on photoionization of atomic states with nonzero orbital
momentum in the nonrelativistic high-energy asymptotic limit, considering the exclusive case of the dominant
final state of an initial neutral atom. We find that the substantial cancellation of the dominant intrashell
correlations, which had been reported earlier, can be understood utilizing the closure properties satisfied by the
eigenfunctions of the nonrelativistic Hamiltonian. Considering the sum of correlations with all states, occupied
or not, we show that complete sum is equal to the contribution of the high-energy part of the continuum.
Consequently there is a total cancellation between the contributions of the bound states (occupied and unoc-
cupied) and the low-energy part of the continuum states. This means that the real correlations in the physical
atom due to the sum rule over the occupied states can be also obtained as the negative of the sum of
contributions of low-energy bound and continuum unoccupied states. We calculate this in the framework of the
quantum-defect model. As we would expect, the results are close to those obtained earlier in particular cases by
direct summation over the occupied states. However this approach also allows us to see that the sum of
correlations over the occupied states is smaller than the dominant intrashell correlation. Hence, there is a partial
cancellation between correlations with the occupied states. We can also obtain some limits on the correlation
effects by considering calculations with the screened Coulomb functions. The role of correlations in the
exclusive photoionization processes, also the modification of correlations in the case of atomic ions, is

discussed.
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I. INTRODUCTION

For many years there was a general belief that, at photon
energies far above the thresholds, the photoionization can be
described in framework of the independent particle approxi-
mation (IPA). However, the experimental data for photoion-
ization of p states of external shells of neon by photons of
the energies of about 1 keV [1] could not be interpreted in
the framework of IPA. Later the breakdown of IPA in the
high-energy photoionization was found in experiments [2,3]
and was also looked for in [4]. This was followed by a num-
ber of theoretical studies of the subject [1,4-9]. Thus during
the last decade the IPA breaking effects were in line with
such major items as nondipole effects in photoionization and
electron correlations in double photoionization, see, e.g.,
[10].

In IPA the p electron is ionized by direct interaction with
the photon. Dias er al. [1] suggested a mechanism of IPA
breaking by the final-state electron interactions. The photon
ionizes rather the s electron of the same subshell. In a next
step the outgoing electron moves the p electron to fill the
hole in the s state created by the photon. The final-state cor-
relations have been studied later in [5-8], with the initial-
state IPA breaking effects being included in [6], where they
were shown to be small except some special cases. It was
demonstrated for several cases that at still larger energies,
much greater than all the binding energies of the atom, there
is a large cancellation between correlations with various
shells. Such cancellations were first found in the angular dis-
tributions of photoionization [5] and later at the amplitude
level [8].
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In this paper we study the effect of the final-state correla-
tions on the amplitudes and cross sections of photoionization
of atomic states with nonzero values of orbital momenta in
the nonrelativistic high-energy asymptotic limit. We demon-
strate that the tendency of the sum of such correlations to
cancel, demonstrated in [5,8], for several particular cases is
quite a general feature based on the propertied of the eigen-
functions of the nonrelativistic Hamiltonian. As it stands
now, there is no experimental data on IPA breaking effects
for this energy region. Our results are in agreement with
previous theoretical results [5,8].

As a practical outcome of our analysis we can recommend
an energy region, which is most appropriate for observation
of the IPA breaking effects. The photon energies should not
exceed strongly the binding energies in the K shell. Also, the
correlations manifest themselves stronger in positive ions,
where some of participants of cancellations are removed.

Calculations involving cancellations require very accurate
wave functions since subtraction of close values is involved.
That is why we try to demonstrate the cancellations in an-
other way. We consider asymptotic energies of the outgoing
electron,

E>1,

where [ is the ionization energy of the single-particle ground
state, and we seek to obtain the asymptotic amplitude. Thus
we assume E to be much larger then all single-particle bound
state energies. Our analysis is completely nonrelativistic, i.e.,
we assume E<<m, with m as the electron mass (we employ
the system of units with i=c=1). We consider only rela-
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tively light atoms, with not very large values of the nuclear
charge Z, describing the bound electrons by nonrelativistic
functions, with corrections of the order of («Z)? being ne-
glected. We focus on the case of p electron photoionization.

Assuming that all initial electrons are moving in the same
self-consistent field, we show that these cancellations can be
understood, utilizing the closure properties satisfied by the
eigenfunctions of the nonrelativistic Hamiltonian. Consider-
ing the sum of correlations with all states, occupied or not,
we demonstrate that complete sum is equal to the contribu-
tion of the high-energy part of the continuum. Thus there is
total cancellation between the contributions of the bound
states (both occupied and unoccupied) and the low-energy
part of the continuum states, for which we will give a precise
definition. However, this sum contains the contribution of the
unoccupied states. Hence the sum of the physical correla-
tions, which includes only the correlations with the occupied
states, can be expressed as the negative of the sum over
low-energy unoccupied states.

We perform some explicit calculations for real atoms by
calculating the contribution of low-energy unoccupied states,
using the quantum-defect model combined with the Fermi-
Segre theorem and making a rough estimate of the contribu-
tion of the low-energy part of the continuum. In our ap-
proach all such terms are positive. Our results are close to
those obtained by direct summation over the occupied shells.

These direct terms occur with both signs, in the cases
where such summations were carried out [5,8]. Hence, there
is a partial cancellation between the correlations with the
occupied states in a real atom.

For example, in ionization of the 2p electrons in neon the
correlations with 1s electrons are —1.11 times correlations
with the 2s electrons [5,8], with the sum being —0.11 times
of the latter. In our approach the small number —0.11 is ob-
tained as a sum of two terms of the same sign —(0.04
+0.07) coming from discrete and continuum states. For ion-
ization of 3p states in argon correlations with 1s and 2s
states make —1.12 and —0.03 of correlations with 2s state
correspondingly. Thus “shell by shell” summation of corre-
lations provides 1—-1.12—0.03=-0.15 times correlation with
the 3s electrons. In our approach this will be again a sum of
two numbers with the same signs, i.e., —(0.05+0.10)
=-0.15.

We have carried out direct calculations also for the Cou-
lomb case, and we find certain limits on the correlation ef-
fects in this case. Using perturbative treatment of the screen-
ing we show that the magnitude of cancellations in the real
atom is greater.

In our analysis we have used the perturbative approach to
the final-state interactions of the electrons developed in [11].
This approach was employed earlier for investigation of the
IPA breaking in photoionization [6]. Inclusion of these ef-
fects removed or strongly diminished the discrepancy be-
tween experimental data and the IPA calculations. We shall
use the expressions obtained in [6] throughout the paper.

In particular calculations we use the simplifying assump-
tion that the overlap matrix elements between the orbitals of
different subshells in the initial-state atom and the final-state
ion are small and can be neglected. In this approximation the
spectator electrons (i.e., those that do not interact with the
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photon directly) do not change their states, and the inclusive
cross section (i.e., summed over the final states of the spec-
tator electrons) coincides with a particular case of the exclu-
sive one (by exclusive process we mean the one with a fixed
final state of the spectator electrons) in which the state of the
spectator electrons does not change. The latter cross sections
correspond to the experiments [1,12]. We show that the cor-
relations considered in the paper can also manifest them-
selves stronger in exclusive processes of photoionization ac-
companied by excitation of external electrons. In the case of
atomic ions there will be less cancellation among the
correlations.

The paper is organized as follows. In Sec. II we recall the
main equations for the perturbative treatment of the IPA
breaking effects in photoionization. In Sec. III we write the
sum rules provided by closure and show that they have the
consequence that there is total cancellation between the sum
over all bound states (occupied and unoccupied) and the low-
energy continuum states. In Sec. IV we obtain the correla-
tions of the occupied states, both directly (from previous
work [8]), and as the negative of the sum over unoccupied
low-energy states. In Sec. V we make explicit calculations
using some simplified models. We show the results of these
approaches in Table II, including also the cases of large Z for
illustrative purpose. For the direct calculations we investi-
gate the Coulomb case in Sec. VI, with the results given in
Table III, and give some discussion of screening in an effec-
tive charge approach. In Sec. VII we consider the role of
correlation in exclusive processes and for atomic ions. We
summarize in Sec. VIII. Some details of computations are
presented in Appendixes A and C.

II. PERTURBATIVE TREATMENT OF IPA BREAKING
EFFECTS

We recall the general points of our perturbative approach
[11], restricting ourselves here to asymptotic analysis. We
shall use a simplifying assumption that the bound electrons
are described by single-particle wave functions. This is not a
necessary assumption, and the approach has been employed
for the case of correlated functions as well [13,14]. Consider
the asymptotic amplitudes F; for ionization of initial state i
with quantum numbers i=n,{,{_. The final-state interactions
between the outgoing electron and the residual ion in their
lowest order in the amplitude beyond the IPA can be ex-
pressed in terms of a linear combination of the IPA
asymptotic amplitudes Fﬁ) for ionization of all the other oc-
cupied atomic states j:

F=F+ 3 A, (1)
J

with A;; as the matrix element for a transition from the state
i to the state j=n’,€’ €. caused by the outgoing electron
following photoionization of the state j. In the asymptotics
F})~w‘(3+€’)/2 [15,16], and thus only correlations with n's
states contribute to asymptotics of the amplitude F;. Hence
we must include only
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with z/f? as the plane-wave approximation for the wave func-
tion of the outgoing ejected electron, N, as the normaliza-
tion factor of the radial function of the n's electron ,,(r)
=y, (/N4 N, =/, (0), 7=maZ, and y=—i(e-V)/m is
the interaction operator between the photon with polarization
vector e and the electron.
The plane-wave approximation

PO r) = expli(P - 1)] (3)

with momentum of the outgoing electron P> 7is appropriate
for Eq. (2) in velocity form. This corresponds to normaliza-
tion of the continuum wave functions by the condition [17]

f Erip(r)p(r) = 2m)3 (P - P").

The amplitude Fj) is evaluated in Appendix A.
If the photon energy well exceeds the binding energies of
the bound states i and j, the matrix elements Aj can be

represented as

i
>

Aj,i=i§Sj,i’ (4)

with é=ma/ P (P as the momentum of the outgoing electron)
as the Sommerfeld parameter of the final-state interaction of
the outgoing electron with the residual ion. The matrix ele-
ments

Sji=<f|1n(r—z)|i> (5)

(with z as the projection of the coordinate vector r on the
direction of the momentum of the outgoing electron) ob-
tained in [11] describe the transfer of an electron from the
states i to fill the hole in the state j of the positive ion with
the hole in i state. The operator In(r—z) comes from integra-
tion over the distances between the photoelectron and the
bound i electron. One can write In(r—z)=In r+In(1-1), with
t=(P-r)/Pr and P as the momentum of the outgoing elec-
tron. For states i and j with different angular momenta the
matrix element [Eq. (5)] with In r vanishes due to orthogo-
nality of the angular parts of the wave functions of the states
i and j. Thus when the states i and j have different angular
momenta we can write

Sj,i=<j|1n(1 —f)|i>- (6)

Only such states contribute to the asymptotic amplitude
when i is not a s state (which we will assume) since the
dominant asymptotic amplitudes P{; require j to be a s state.
Thus, we shall consider only the states j with quantum num-
bers €=¢€_=0, i.e., j=n',0,0. Taking the direction of the out-
going electron momentum as the axis of quantization of an-
gular momentum, we find that correlations occur only for i
states with €,=0 since only these states are coupled by Eq.
(6).

We may therefore write
Fi=F?+i§2jAj,i’ (7)

where
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Aji=F}S, (8)

with §;; given by Eq. (6) as the photon energies, well ex-
ceeding the binding energies of i and j states (being sup-
pressed otherwise [1,11]). For example, as shown in [1], in
ionization of the 2p electrons of neon by photons with ener-
gies of about 1 keV correlations with 2s electrons are impor-
tant, while those with 1s electrons are not but by 10 keV
correlations with 1s electrons become important. We will
write A;; as A; omitting the index i.

Note that we did not use the partial wave expansion.
Since F? are the asymptotics of the IPA amplitudes, they
should be considered in the dipole approximation since the
higher angular momenta terms drop faster with the increas-
ing photon energy. However, for example, amplitude ng for
ionizations of np state actually contains the contributions,
corresponding to s and d waves of the photoelectron.

Now we restrict ourselves to the case of ionization of p
states only, i.e., we consider the case i=n,1,0. We use the
standard spectroscopic notation, e.g., the state with quantum
numbers 7,0,0 is a ns state. Then Eq. (6) can be evaluated as

3
Sji== 5 Ay ). ©)

with the first factor coming from the angular integration, %’p
and ¢>;,S are, respectively, the radial wave functions in the
field of the atom and of the ion with the hole in np state, and

(0 = f dr gl (1),

Note that since all the other electrons in initial and final
states belong to different Hamiltonians, there are nonzero
overlap integrals between orbitals of different subshells. This
makes the whole picture more complicated, see [18]. For
example, in our case there are other channels for ionization
of 2p state. In one of them the photon interacts directly with
2s electron, while the ls electron suffers shakeup into the
hole in the 2s state of the ion. The photoelectron pushes the
2p electron into 1s hole of the final-state ion at the end of the
story. The contribution of this channel to the total amplitude
of ionization from the 2p state is thus FS A (5 |4 ). If
[(5,| 1) <1 we can neglect this contribution with respect
to the other terms on the right-hand side (rhs) of Eq. (1).

We shall consider this very case, thus assuming that
Ko, |, 0| <1 for all n#n’. Hence we find 1-[¢ |4/, )|*
<1 for all n, and the inclusive cross section with the sum
over all possible states of the final ion coincides with the
exclusive cross section in which the spectator electrons do
not suffer transitions. In this approximation we must replace

Eq. (9) by

B3,
Sii=-— 7<lﬁnrs|<//np>~ (10)
Hence,
3
A== F o (W |,)- (11)
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Recall that Fﬁ ,, the asymptotic IPA amplitude for ioniza-
tion of a n's bound state. We shall omit the upper index IPA
further. For correlations inside the same shell

V3
- _F25< %Y| lﬂl];p>
For ionization of 2p states, i.e., n=2,

(Whlvh,y =-1 (12)

for all atoms. This matrix element calculated with Hartree-
Fock wave functions is —0.91 for Z=5 with the value becom-
ing closer to —1 for larger Z. The Coulomb value is —\3/2.
Thus we can estimate that

(13)

For photon energies well exceeding the bounding energy
of L shell but not of the K shell, the correlation with the 2s
electron dominates. Correlations with 1s electrons are small
at these energies [1,6]. Correlations with other s electrons, if
there are any, are small. This happens for two reasons. The
overlap matrix elements [(¢,, [ )| <[(yh,[ i) for n' #2
due to Eq. (12) and to the closure relation =, |(/. | sz)|2
=1 (with summation over the states of both discrete and
continuum spectra). Also the asymptotic IPA amplitudes F 2,S
drop with n’. Hence at such energies the value [Eq. (13)]
determines the scale of IPA breaking effects.

However, at larger energies, greatly exceeding the binding
energy of the ls electrons, A, becomes comparable to A,,,
and there is a large cancellation between contributions of the
K shell and the other shells. Such cancellations were first
found in the angular distributions of photoionization [5] and
then observed at the amplitude level [8]. The calculations
require knowledge of rather precise wave functions for the
description of the bound electrons.

For photon energies much greater than all the binding
energies the asymptotic contribution of correlations to the
amplitude is

T,= 377 =25 A, (14)

with the sum over all occupied 7s states, where A, is given
by Eq. (11) for all occupied states j and A; is given by Eq.
(8), namely,

A= (3lpX i r(1 = 1)) = (gl Ay (slin (1 = D))
(15)

There are only two active electrons in our analysis, while
the others are just ignored. This corresponds to calculation of
the amplitude for an inclusive process since the sum over all
possible final states @, of the spectator electrons in the final-
state ion described in the initial-state atom by the function W,

D APV =1
f
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III. CLOSURE CONDITION AND SUM RULES

Using closure we can write simple relations for ampli-

tudes such as Td in Eq. (14), but now summed over various
states j. We will do it in a 3d formalism. We will sketch these
relations here and complete their proof subsequently. The
closure condition for the wave functions of the initial-state
nonrelativistic Hamiltonian can be written as

20 10l = 1= 2l + 20 10Xl + 2 15 5,
J j J* Je

(16)

with j and j* labeling the occupied and unoccupied states of
discrete spectrum correspondingly, while j,. are suitably nor-
malized continuum states. The closure condition can be rep-
resented as

2 U O ()

n' ' m'

[ £ Va0 +

= slr—r),

for W, which are asymptotically plane waves as in Eq. (3).
For any state j, occupied or not, we can write, generalizing

Wl = (17)
P
A= pliin 1 -0,
We may write using Eq. (16)
T=T,+T,, (18)

with

P
T=3A;=()]9Inr(1-1)|g) = (:1—)<¢§2|1n r(1=1)|g)
(19)

as the sum over the complete set of states j, 7, is the sum
over occupied and unoccupied states j of the discrete spec-
trum, while 7, is the sum over the continuum states.

We may now separate the continuum amplitude 7. for
which the continuum states j. may be labeled by asymptotic
momentum Q, in two parts

TC = TCl + TCZ' (20)

Here, T,; will sum states for which ¢<<P and T, states with
Q~ P. More precisely, we pick a Q for which p>Qy> T,
with 7. as the characteristic momentum of the bound state
(one can assume 7,~maZ), and define T,, as the sum over
states Q<@g and T, as the sum over Q> Q.

We may show (see Appendix B) that for states in T, the
wave function i, may be replaced by a plane wave: wg
=exp[i(Q-r)]. We may also show (see Sec. IV) that the sum
over plane-wave states EQ>Q0|'/’(()2><‘/%| in T., may be ex-
tended to a sum over all plane-wave states EQ, that is, the

013406-4



PARTIAL CANCELLATION OF CORRELATIONS IN THE...

sum over plane-wave states, Q <0, makes no contribution
in T, But Z|yy)(iy| over plane-wave states is a sum over
a complete set of states (=1), and therefore for 7., one again
obtains Eq. (19), i.e., in the asymptotics

T=T,. (21)

In Appendix C we show that the amplitude T, has the
same asymptotics as T;. Hence, presenting

Td= ’fd+ TZ, (22)

with 7, and T, as the sums over occupied and unoccupied
states of the discrete spectrum correspondingly, we can write

0=T +T;+T.; Ty=—T;,-T,. (23)
This gives an alternative way to calculate Td which, as we
shall see, has some advantages. [In fact all these are
asymptotic amplitudes, and so for Eq. (23) to follow from

Eq. (21) we must show that these are all amplitudes of the
same order. We shall do this in Sec. IV.] In Sec. IV we shall

make explicit calculations of the amplitudes, determining T‘d
from T} and T,;, as well as further discussing its direct
calculations in Sec. V.

IV. FORMALISM FOR PARTICULAR AMPLITUDES

In 3d formalism all of the particular amplitudes of the
previous section are of the form of Eq. (14), except that the
summation X5 in f"d is replaced by summation X in T, for
unoccupied bound states and by integration [ %37% in T, for
continuum states with Q<Q, and 9>Q, for 7., and T,
correspondingly. Also, T, corresponding to summing over the
complete set of states, was given explicitly in Eq. (19).

We can also represent the amplitudes in terms of radial
functions. Using Eqgs. (2) and (10) we can write

23727 (e - P)
m P

4=

2N (24)

!
n

and correspondingly for partitions Td and T, summing over
occupied or unoccupied bound states n's.

Continuum radial wave functions for s states (as well as
those for a nonzero value of €) are normalized by condition

f driyl; (N, (r)=dle—¢'),

with w;,’x(r)=J,VPys(r)/(ZwP)”z, Yp(r)=yp (r)/2P+terms
with nonzero values of €. The closure relation is

J e (N, () + 22l (P () = Sr = 1),
Thus the calculation of 7., proceeds in the same way again
(see Appendix A) and yields Eq. (24), except that for the
radial functions we write [jde instead of X,/ and replace
N:m by N.. (The integration over energies has been ex-
tended to infinity, with the energies exceeding strongly the
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binding energy of the ionized state, including those for which
e> Q%/ 2m, providing a negligible contribution.)
For T,,, where Q> Q,, we may argue (Appendix B) that
in F%, corresponding to Eq. (2), z,//?2 is to be replaced by a
P .
plane wave. Thus F%=%25(P—Q). Hence, with plane wave
for i), we may extend the integration over Q to include Q
< Qy<< P, since there is no contribution from this region. On
the other hand, we can evaluate explicitly (see Appendix C)
Epts
(emP) 6\r3;i\7n 7'. (25)

c2

As we have already seen, T=T,,. Note that we have also now
shown that all these terms are of the same asymptotic order,
which we had needed to prove Eq. (23).

Note that we can write Eq. (23) in the form

d3
D F S+ f (253F(Q())SQW=O, (26)
n'
with §;; defined by Eq. (5), Fsa)s are the high-energy IPA
photoionization amplitudes [19] while F (QO) is the bremsstrah-
lung amplitude in the tip region [20]. Following the previous
analysis, the integral in the second term involves all values
of Q. However it is determined by Q ~ r=maZ.

We can now write expand the radial function :,Vnp(r) in
terms of the functions ¢/ (r)(x=n',¢):

©

%p(r) = 2 lr//:,rs(r)an’s,np + J ds{Vss(r)ass,npv (27)

0
with
Ap'snp = <lr/f,r1's| %p% Aesnp = <df;'5|(r”np>’ (28)

while the closure can be written as
2 2 _
E an’s,np + f() dsaans,np =1. (29)
nl

[Note that ay ,,==2/\3Sy . With S,,,, given by Egs. (6)
and (9)]. Note that integrals on the rhs of Egs. (27) and (29)
are determined by energies of the order of the np electron
binding energy.

The ratio of correlations of the np state with n’s and &s to
correlation with the ns state may be described by the factors

"
N _ Nn’san’s,np . _ N;Sas,n (30)
n's,;np = s es,np —
Nrruans,np N;san,n
We can write Eq. (23) in the form
Z Xn's,np + f dsxas,np =0. (3 1)
n' 0
The value
Xph = 2 Xiis.nps (32)
n

with 77 as the occupied states measures the total amount of
correlation relative to the intrashell ns,np correlation. It will
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be the subject of our calculations in the next section.

V. CALCULATION OF THE PHYSICAL VALUE x,,

Using Eq. (30) for x,,, one can see that there is a ten-
dency of cancellation of correlation effects for the 2p elec-
trons. Employing Egs. (12) and using Eq. (39) we find
|a,rsp| <1 for n’ #2. Since the normalization factors N/,
drop when n' increases, the contribution of these states to the
rths of Eq. (32) can be neglected for n’ >2. The case of n’
=1 requires additional analysis since N;,>N,,. One can see
that the contributions of n’=1 and n" =2 to x,, have different
signs; from Eq. (12) ay,,,<0, while a;,,,>0 since the
function ¢/, has no nodes, while the function ¢, is non-
negative. Hence, there is a partial cancellation between the
terms corresponding to correlations with the 1s and 2s states,
i.e., the sum of these correlations is smaller than each of
them taken separately.

Now we try to calculate x,, in another way, i.e., as the
negative of the sum of contributions of low-energy unoccu-
pied states, bound (x;) and continuum (x,):

5

Xph = E Xin=—"Xg—Xes  Xg= E Xntsapr X = f dsxes,np?
7 n

(33)

with n* labeling the unoccupied states of the discrete
spectrum.

A. Discrete states

It is known that for n' > n the dominant region of coordi-
nate space in the integral (¢, |4 ) is determined by the
characteristic size of the np state. These values of r are much
smaller than the characteristic size of the n's state. The de-
pendence on the energy of the n'th state in the Schrodinger
equation for ¢/, can be dropped [15], and the only n’ de-
pendence of this matrix element is contained in the normal-
ization factors N, ,. Thus, from Eq. (30), the ratio

N Z 's

xn/s,npz N2 .
ns

(34)

To estimate Ni*s for the unoccupied states with principal

quantum numbers n*, we use the quantum-defect approach,
in which the binding energy E,, of the n's state is

R — (35)
"2 =AY
with v=ma? and
A,—A as n' — o, (36)

Here the quantum defect A does not depend on n'.
Combining Eq. (35) with the Fermi-Segre formula [21],

dE,
dn'’

N, =47 (37)

we obtain
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n-A, \?
-xn’s,np= n = A, Kn' n» (38)
with
-4,
nrn= , - 39
S (39)

We neglect the derivatives Ar'l,, as justified below. Apply-
ing Eq. (39) to the highest occupied state 7z;, of known bind-
ing energy, we find its quantum defect A,. Alternatively, for
the lowest unoccupied level of s electrons, n*=m,+1, we
identify the quantum defect A, with the limiting value A,
defined by Eq. (36). The latter can be extracted from the
results of [22], on the phase shifts with respect to Coulomb
values S(E) since A=35(0)/ar. The values of A, calculated
by using the normalization factors NZ,S given in [23], and A,
are shown in Table I. We will assume that A, for all unoc-
cupied states is independent of n, A,=A. The comparison of
A, and A indicates the type of error that is being made.
Relatively small value of the difference A,—A justifies ne-
glect of the derivatives A,

The contribution of unoccupied discrete levels can be
written as

Xq = E Xn*s,nps (40)

ny+1

with n, as the principal quantum number of the highest oc-
cupied state. The summation over unoccupied states in Eq.
(40) can be carried out by using the formula [24]

oo

1 1 oo
= (k+a)3=_5‘”'(“)_§ (k+a)’ (1)

with (a)=I"(a)/T'(a), where I'(a) is the Euler gamma
function and 77;,+1 is the principle quantum number of the
lowest unoccupied state.

B. Continuum states

Equations (35) and (37) reflect the Coulomb-like behavior
of the excited states of the discrete spectrum at n’ — oo, Thus
for the continuum states with e=0 we can write

o,
x()s,np = E) l’lm (I’l 3xn’x,np)’ (42)

with [y=ma?/2=13.6 eV, or

471,

TR (43)

xOx,np =

Since the only characteristic energy is the binding energy
E,, <0 of the ionized state, we may suppose that the integral
in the last equality of Eq. (33) is determined by & ~|E, |. If
we suppose that x, ,,=Xq,,, for e<|E, | x.,,=0 for &
>|E,,| we find
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TABLE 1. The quantum defects of the highest occupied bound
states A;, and the asymptotic values A as defined by Eq. (36) ob-
tained from [22]; Z is the nuclear charge.
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TABLE II. The values of x,, x. and x,,, as defined by Eq. (33),
where n is the principal quantum number of the ionized np state
and Z stands for nuclear charge. The values x%" presented in the
last column are the results of direct summation over occupied

zZ A, A states [Eq. (32)].
5 0.96 0.76 7 " X, . o dir
1.23 0.95
10 1.44 127 2 0.08 0.12 -0.20
14 2.00 1.69 2 0.05 0.09 —0.14 ~0.18
18 731 204 10 2 0.04 0.07 -0.11 -0.11
3 304 274 14 2 0.06 0.16 -0.22
36 398 1,06 14 3 0.08 0.12 -0.20
50 306 337 18 2 0.06 0.20 -0.26
18 3 0.05 0.10 -0.15 -0.14
32 3 0.01 0.18 -0.19
4ZI|E,,| 32 4 0.13 0.11 -0.24
TN (44) 3% 3 001 019 =020
.. . . . . 36 4 0.08 0.11 -0.19
This is clearly a fairly crude estimate, but we will see that it 50 5 0.06 013 019

is consistent with results from direct calculations of x,,.

C. Results for x,,

Note that in the quantum-defect approach x,;> 0. Assump-
tion (44) provides also x.>0. Hence the values x,,, are nega-
tive. This means that the total correlation effect in the ampli-
tude has a sign, which is opposite to that of correlation inside
the same shell. Employing Egs. (40), (41), and (44) we find
the values of x,, shown in Table IL.

Our results are in good agreement with the results x%"
obtained by direct summation of the correlations with occu-
pied shells in the photoionization amplitude [8]. Results of
[8] obtained by inclusion of correlations with 2s and Is
shells in nitrogen and neon are x,,=-0.18 and x,,=-0.11,
respectively. Since the results of [8] are in good agreement
with those of [6] for angular distributions, our results agree
with those of [6] as well. For ionization of the 3p state in
argon, shell by shell calculation [8] gives x,,=-0.14, also in
agreement with the result of the present work.

Now we estimate the total contribution of correlations to
the amplitudes and cross sections of photoionization of p
states. We use the estimate <¢np| Y, =—1 for all n [see Eq.
(12)]. Presenting the ratio of IPA amp_litudes in terms of nor-

malization factors F, o/ F, 0=N,;/\V3N,, we find

Nr

Foio=F, 0|1+ 21\;; Xpn | » (45)
np

and thus the cross section for ionization of np state beyond

IPA is

Nr
Onp = ng(l + 3]\;: xph)’ (46)

np
with ng standing for the IPA values.

Using the numerical values of the normalization factors
[23] we find that the total correlations diminish the values of
cross sections of photoionization of 2p states in nitrogen and
neon only by about 2.5%. In contrast, inclusion of correla-

tions only with the 2s shell would increase the cross sections
by 18% and 22% correspondingly. The full cross section for
ionization of 3p states in argon becomes smaller by 1.8%,
while it becomes larger by 12% if only correlation with the
3s shell is considered.

VI. CALCULATION FOR HYDROGENLIKE FUNCTIONS
AND LIMITATIONS FOR THE MANY-ELECTRON
ATOMS

We can also make explicit calculations of correlations in
the case of Coulomb wave functions and also in using an
effective charge approximation for screening. All results for
Coulomb functions can be obtained analytically. The results
for x,/, ,, do not depend on the values of nuclear charge Z.

Starting with ionization of 2p electrons we obtain the val-
ues of the parameters that are presented in Table III (upper
indices C indicate that the quantities are calculated in the
Coulomb field of the nucleus).

One can see that in this case the correlation with the 1s
state is about 50% larger than that with the 2s state. For the
contribution of the continuum with £ <E one can obtain by
direct calculation

B CD(e)
YW= (o r )

TABLE III. Parameters for ionization of 2p and 3p states ob-
tained by using Coulomb functions.

’ C C
n Xor50p Xr53p
1 -1.58 -1.26
2 1.00 -0.02
3 0.041 1.00
4 0.015 0.04
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®(e) = exp{-2¢&[arctan(2/£))] - 2/&,}),

& =Tle= V/IZI, d0)=1, (47)
where

. c
C=2 lim n'3xn,

n' —o

12y =078 (48)

is obtained by using the well-known Coulomb wave function
for the bound n's state for n' =1 [15]. This gives x,=0.52, in
agreement with Eq. (31).

Consider now ionization of 3p electrons, see again Table
III. The correlation with 1s and 3s states cancel to a larger
extent than in the case of the 2s state. The contribution of the
continuum is now x,.=0.22.

Now we analyze the situation for more realistic atomic
models. We shall compare the values x,, calculated is the
unscreened and screened Coulomb fields. Here we obtain x,,,
as the sum over occupied states, taking into account that, as
we showed above, for ionization of a np state only correla-
tions with ns and ls states are important. Using Eq. (30) we
can write in this approximation

xph =1+ .xlx’np, (49)

with x,,,<0, as shown above. As one can see from Table
11, the Coulomb values |x{,, |>1. Now we show that for
the screened Coulomb values |x;,,| < |va’np|, and thus the
Coulomb values x© can be used as the lower limits for the
physical values x,,.

We can calculate the screening effects, assuming that the
initial electrons are described by the Coulomb functions with
effective values of the nuclear charge Z,,=Z- 8,¢ [15,25]. In
this approach we find for ionization of 2p electrons

—,C .
xls,np - xlS,l‘lp 7,

~ (z_1>3( 3Z )4(Z2S+Z2p>5 27 (50)
"\z,,) 2z 2,,) \ 2z ) 32,,-2,,

with =1 if screening is neglected and thus Z,,=2,;=2,,
=Z. In the lowest order of expansion in powers of J,, Eq.
(50) provides n=1+06/Z, with 6=—8,/3-58,,/3+25,,. If a
small influence of the electrons in the higher states on the
values of J,, is neglected, & is the same for all atoms with
the totally occupied K and L shells. Using the values &,

=0.35, 6,,=3.25, and 6,,=4.75 [25], we find 6<0. Thus 7
<1, and indeed

Xphys > x€, (51)

while x¢<0. Using Eq. (50) for neon with these values of
One we find ©=0.676, providing x,,,=-1.068 and thus
Xphys=—0.068, with |x,,, | smaller then that shown in Table
II. Note however that this value is a result of subtraction of
two much larger values. Putting 7=0.702, i.e., increasing it
by 4% we would find x,,,,=—0.11, in agreement with the
data in Table II.
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VII. EXCLUSIVE AND INCLUSIVE PROCESSES IN
NEUTRAL ATOMS AND IONS

Instead of photoionization of neutral atoms we can con-
sider photoionization of ions. Since the cancellation of cor-
relations is due mainly to cancellation between correlations
with 1s and with ns electrons, a hole in either the 1s or ns
shell breaks this balance, and the net correlations will greatly
increase. This was observed earlier [5] for the cases of nitro-
gen and neon. A hole in other shells will not influence
strongly the total correlation.

One is often interested in exclusive photoionization, as in
ionization of a 2p state but perhaps also exciting other elec-
trons. The theory of such processes was much studied
[26-28] in the case of shake off and shake up.

As already noted, our discussion considering only two
active electrons was inclusive in its treatment of the spectator
electrons; it could be exclusive if overlap integrals between
initial and final spectator states were considered. Note that in
principle one should have also, in the presence of correla-
tions, include other electrons as active, capable to undergo
further excitation or ionization beyond the shake-off or
shake-up mechanism. We can try to estimate the magnitude
of these various mechanisms.

Assume that the bound electrons, moving in a certain self-
consistent field, find themselves in another field after the
electron is ejected. Photoionization of an n,{ state can be
followed by a transition of an electron n',¢’' to the state
n*,€*. One should consider the process simultaneously with
ionization of n’, €’ state followed by a transition of an elec-
tron n, € to the state n*,€¢*. The asymptotic IPA amplitude of
the process, without correlations, is

FO= Pl bl thr o) = For b cslthne), (52)

with ¢ and ¢ as the functions in the fields of the atom and of
the ion with a hole in n,€ and n’,€’ states for the two terms
in the right-hand sides (rhs) of Eq. (52) correspondingly, F*,
is the asymptotic IPA amplitude for ionization of nf state.
One needs €*=¢' or {*={ otherwise the matrix element van-
ishes due to orthogonality of the angular parts of the wave
functions.

Correlations provide another mechanism of the process in
which n, € electron is ionized by direct interaction with the
photon, and in the next step the photoelectron excites the
n'€’ electron to n*¢* state. One should include possible per-
mutation of the nf and n'€’ states. The amplitude, which
includes the correlations can be written as

f:fo'*'F'?z{fAn*«f*,n’f’_Ffl)’é”An*W,il{” (53)

with F° given by Eq. (52). The correlations can cause these
transitions even if €* coincides neither with € nor with €’,
and the shakeup mechanism can not contribute.

Note that the contribution of correlations on the rhs of Eq.
(53) is written omitting the terms containing as additional
factors the overlap matrix elements of the type (¢, ¢| 1 ¢).
We neglected such terms in particular calculations through
the paper, see Sec. III. Inclusion of such terms would not
alter the asymptotic energy dependence of the amplitude.
Hence we shall use Eq. (53).
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Consider, for example, photoionization of Be with the
final-state ion containing electron excited into 2p state. In
this case n=1,n"=n*=2,6=€'=0,¢*=1. Both terms on the
rhs of Eq. (53) turn to zero, providing F°=0, and thus

F= F?SAZP,ZS - ngAZp,IS' (54)

Now we study the relative role of the shakeup and corre-
lation mechanisms of the process for various relations be-
tween €, €', and €*. To obtain the energy dependence of the
contributions on the rhs of Eq. (53) one can employ that in
the asymptotics

FO, ~ @307
nt 9

The estimation for FU, is well known [15]. The estimation
for A, ¢« ¢ 18 the consequence of Eq. (4), in which the ma-
trix element of A between the bound states is proportional to
the factor £~ w2,

As we have seen for € # €' # £* only correlations contrib-
ute. Turn now to other cases. If € #{'=€* the second term
on the rhs of Eq. (52) vanishes and the TPA amplitude is

jEO = F2€<¢n*€’|l/jn’€’>~

Using Eq. (55) we find that the second term on the rhs of Eq.
(53) drops faster than F°, and hence the asymptotics is

"T=F2€<¢n*€’|¢n’€’>_FS/gIAn*é”,n€' (56)

Further analysis depends on relation between € and ¢'.

For €'=¢*<{-1(for example, n's—n"s and n'p—n'p
transitions in ionization of d states), the correlations deter-
mine the asymptotics of the process since the first term on
the rhs of Eq. (56) drops with energy faster then the second
term. For €' =¢*=€—1 (for example, n's— n"s transitions in
ionization of p states) states the two terms on the rhs of Eq.
(56) behave with energy in the same way. However the first
term is proportional to the overlap matrix element, which is
usually small. If it is the case, the correlations dominate the
process.

Similar analysis shows that for ¢’=€*>€-1, including
the case €=¢€'={" (for example, n's— n"s transitions in ion-
ization of s states), asymptotic is determined by the shake-up
mechanism, described by the first term on the rhs of Eq. (56).
However, at finite energies, where the experimental data are
available, interplay of the shakeup and correlation terms ap-
pears to be important [14,29].

To obtain the cross section for the inclusive process one
should sum the squared amplitude given by Eq. (53) over n’
and n”, depending on the conditions of experiment.

An*{,’*,n( -~ w—1/2. (55)

VIII. SUMMARY

We have calculated the IPA breaking correlation correc-
tions to the high-energy photoionization amplitude, focusing
on ionization of p states. Instead of carrying out summation
over occupied states, we employed the closure results for
summation over all states of the spectrum. We showed that
the sum over all states of the spectrum is equal to the con-
tribution of its high-energy part. Therefore there is total can-
cellation between contributions of discrete and low-energy
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part of continuum spectra. This provided identities involving
the asymptotics of the amplitudes of photoionization and of
bremsstrahlung amplitudes at the tip region [Egs. (26) and
@BD].

We calculated the sum of correlations with the occupied
bound states as the negative of the sum over the unoccupied
bound states and the low-energy continuum states. We made
conclusions in a simple model based on the general features
of the bound states with large principal quantum numbers 7.
In this approach the sum of the occupied state correlations
has a sign, which is opposite to that of the correlation inside
the same shell. In spite of a crude model for the continuum,
the results are in good agreement with those obtained earlier
in direct calculation (Table II).

The sum of correlations with the occupied states calcu-
lated in such a way appeared to be smaller than the correla-
tion with each of the occupied state considered separately.
Hence, there is a partial cancellation between the terms cor-
responding to correlations with the occupied states. Thus we
have shown that there is a general tendency of cancellation
for the correlation effects. We demonstrated also that calcu-
lations with Coulomb functions give limits for the correla-
tion effects in screened atoms [Eq. (51)].

We showed also that the correlations beyond shake-off
and shake-up effects are important in inclusive processes,
where photoionization is accompanied by excitation of other
electrons. The relative role of the shake-up and correlation
mechanisms was found to depend on relations between or-
bital momenta € and €’ of the removed electrons and orbital
momentum €* of the excited electron. In some of the cases
the correlations dominate in the process. In the particular
cases, for which experimental data are available, interplay of
the two mechanisms is important.
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APPENDIX A

We calculate the asymptotic amplitude [Eq. (2)] for the
bound n's states, following the approach of [19]. Note that it
is determined at small r~ 1/P. Thus we can use expansion
of the function i,,(r) at r—0,

N’
(1) = —n;(l +agr)exp(=\r), A>0, A—0.
Va4
(A1)

Here the last factor has been introduced to insure the conver-
gence of the integral in the intermediate steps. We have kept
two terms of expansion in powers of r in brackets since the
lowest one, as we shall see below, vanishes at A=0. (Higher
terms in r would contribute in higher terms in 1/P.) The
parameter a, on the rhs of Eq. (A1) should is equal to the
first derivative of the function ,,(r) as determined by the
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first Kato cusp condition [30], being a,=—maZ=-7. Since

4 d ™ A
)N r (PP+\%)

(A2)

and re"":(—%)e"", we obtain Eq. (2).

Evaluation of the matrix element in Eq. (2) corresponding
to a continuum state j with asymptotic momentum Q < P can
be done in the same way, with the same form of expansion of
;. Since only s waves contribute, we can write

(e P)

<W,(f0)| i/| I#QS> = Fos = TXES’ (A3)
where ¢ is the energy of the continuum electron,
47N’ 1
= (A4)

with N_ =/ (0), where the upper index r again denotes the
radial part of the function, yielding Eq. (2).
APPENDIX B

Now we evaluate the amplitude T, defined, following Eq.
(17), as

P) [ &
e e (I N
with integration over Q> 7 and with
X(Q) = (olin r(1 = )¢5 (B2)

Using Eq. (9.6) of [15] and taking the first iteration, we
obtain

(o) = 2m) 8P - Q) + h(Q), (B3)
with
B v(P-0Q)
h(Q)_zm(Q+P)(Q—P+iV)’ >0, v—0.
(B4)

The first term on the right hand side of Eq. (B3) immediately
gives

Tc2 = %X(P),

(B5)

leading to Eq. (21) due to Eq. (19).

Now we show that the second term on the right-hand side
of Eq. (B3) provides higher-order terms of expansion in
powers of P!,

We put 2mV(q)=7v(¢*), with 7. being of the order 7
< P. One can see immediately that the regions |Q—P|~ P
lead to corrections of the order 1/P. The vicinity of the point
Q=P requires special analysis. Near this point we use the
well-known relation
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1

X+iv

=P)lc—i775(0). (B6)
For the first term on the right-hand side of Eq. (B6) the result
of integration over the angles leads to a function of
(P-Q)?, i.e., to an even function of P—Q. Together with the
denominator P—Q this leads to an odd function of P—Q in
the integrand of the integral over Q, providing contribution
of the order of ~7.X(p)/P. Contribution of the same order
comes from the whole interval O~ P. In a similar way one
can see that the second term on the right-hand side of Eq.
(B6) also contributes only beyond the asymptotics. Thus, in-
deed we can neglect the second term on the right-hand side
of Eq. (B3).

APPENDIX C

In order to calculate 7., we must evaluate the matrix el-
ement defined by Eq. (B2) of Appendix B. Since Q0> 7 we
first describe ¢, by a plane wave [Eq. (3)]. Then

X(Q)= f dVe % In(r - 2)¢(r). (C1)
For p states we can write
3
() =\ 1) (C2)

(recall that we need only the states with €,=0). Since we
shall need i(r) at r~1/Q, we can put ¥.(r)=Nire™"
(A\—0) in Eq. (A4), and thus Yi(r)=\3/47Nre™". We use
ze7%=iDye "% (with D, =4/ dp) and use the parabolic coor-
dinates

E=r+z, m=r-z, ¢=arctan(x/y)
so that
_Etn &7
r— F) Z - 9
2 2
and
+
dv= %]dgdndqﬁ.
Thus we find
~i\37'N,,
X(Q) = ) DQD)\JQs (C3)
with
N+1i N—i
JQ:fdgexp(— 21Q>J dn exp(— n 21Q>ln n
-4 N—iQ
=)\2+Q2<7E+1n 2 )7 (C4)

with y;=~0.578 as the Euler constant, leading to asymptotics
1/0%

Note that the asymptotics Q~* of the function X(Q) is due
to the logarithmic term in the integrand. Replacing it by a
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constant, we would obtain the asymptotics Q. Indeed, re-
placing In » by a constant, we would immediately find
X(Q)=0 due to the operator D,. Thus we must include the
next term of expansion of the function ,(r) in powers of r in

PHYSICAL REVIEW A 80, 013406 (2009)

a way similar to Appendix A. This gives X(Q)
~DoD;[1/(N*+0?)]=4/0°. It can be shown that the higher-
order corrections to the function ¢, contribute only to higher
orders of expansion in powers of 1/Q.
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