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We formulate the theory of three-body scattering without explicit reference to exact asymptotic boundary
conditions on the wave function. The transition rate and amplitude are expressed as volume integrals of the
resolvent, which are insensitive to the region of asymptotically large distances. The physical branch of the
resolvent is selected through the arrow of time, which is required to point forward in each subchannel. This is
accomplished by first expressing the resolvent as an integral over time and then making a conformal transfor-
mation of each half of the time plane onto a unit disk. The physical branch corresponds to a path of integration
in the upper half of the disk. We have tested the method, using a real discrete basis, by calculating the total
cross section for singlet S-wave electron impact ionization of atomic hydrogen; our results are in reasonable
agreement overall with the landmark results of Bartlet and Stelbovics �Phys. Rev. Lett. 93, 233201 �2004��.
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I. INTRODUCTION

The three-body scattering problem stands as a bridge be-
tween the exactly solvable two-body problem and the com-
plex few- to many-body problem. A deeper understanding of
three-body Coulomb scattering is likely to provide further
valuable insight into many-body dynamics, a subject of im-
portance in many branches of science and technology. How-
ever, the theoretical nonperturbative treatment of three-body
atomic scattering remains a significant challenge despite the
impressive progress that has been made using current state-
of-the-art ab initio methods, which include, to cite just a few
examples, R matrix �1,2�, semiclassical R matrix �3�, J ma-
trix �4�, pseudostate close coupling �5�, convergent close
coupling �6�, complex exterior scaling �7,8�, propagating
complex exterior scaling �9,10�, Fadeev methods �11,12�,
spline methods �13�, and various approaches based on the
numerical integration of the time-dependent Schrödinger
equation �14–18�. It is the breakup of the system that poses
the most formidable problem. The exact asymptotic form of
the wave function for three charged particles at large separa-
tions �19� defies an exact numerical description, yet it plays a
role, if only formally, in the construction of the amplitude or
rate for breakup. Thus the typical calculation of the three-
body breakup amplitude or rate calls for the numerical inte-
gration of the �time-dependent or time-independent�
Schrödinger equation to very large distances.

In this paper we formulate the theory of a stationary three-
body scattering process without explicitly addressing
asymptotic boundary conditions. Assuming that two of the
bodies are initially bound to one another, we derive various
expressions for the asymptotic flux, and hence the transition
rate, in terms of volume integrals. These expressions are in-
sensitive to the region of asymptotically large distances since
the dominant contribution comes from the interaction region,
a region that can be covered by a finite discrete basis. We
focus on the resolvent rather than the wave function. The
advantage of doing so is that the resolvent is independent of

the asymptotic configuration of the system. Indeed, it is sub-
ject to a unique constraint, which is that among its many
branches only one—the “physical” branch—is acceptable. In
contrast, many possible �sub�channels are available to a few-
body system, and, accordingly, the asymptotic boundary con-
dition on the wave function is not unique.

The physical branch of the resolvent can be specified, at
least formally, by the requirement that the scattered wave in
each �sub�channel is an outgoing complex wave. In practice
this requirement may not be straightforward to implement. If
the wave function of the system is represented on a real
discrete basis, as is commonly done, outgoing waves cannot
be distinguished from ingoing waves. If a complex discrete
basis �one whose basis functions have a complex length
scale� is employed, as is also commonly done, outgoing or
ingoing waves, but not both, can be mimicked. This does not
pose a limitation if the process of interest is a half-collision
one, e.g., the photodecay of an atomic system, since only
outgoing waves are present, and a complex basis can be em-
ployed to readily calculate rates for partial and total decay
without knowledge of the exact asymptotic form of the wave
function �20,21�. However, a conventional collision involves
both incoming and outgoing waves. Furthermore, since the
asymptotic boundary conditions appropriate to a conven-
tional scattering process are real standing-wave boundary
conditions, the natural basis on which to represent the wave
function is a real one. Besides, a real basis demands half the
storage and execution time of a complex basis. More impor-
tantly, while complex basis functions are analytic in the
length scale, the complex-conjugate basis functions are not
analytic in this length scale and as a consequence expres-
sions constructed from both the wave function and its com-
plex conjugate do not have predictable convergence with re-
spect to increasing basis size.

An alternative way to specify the physical branch is
through the time rather than the spatial coordinates of the
system. In our world, time’s arrow points forward, yet time-
reversal invariance permits a microscopic system to evolve
forward or backward. The physical branch is the one for
which time’s arrow points forward in each �sub�channel. The
nonphysical branches are those for which time’s arrow points
backward in some, perhaps all, �sub�channels. In place of*robins@usc.edu
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many spatial coordinates we specify the physical branch
through a single time coordinate. At first sight the reintroduc-
tion of the time into the description of a stationary process
might seem like a needless increase in the number of dimen-
sions but it allows us to fully exploit the symmetry of time-
reversal invariance �22�.

The resolvent G�E��1 / �E−H� for a system whose
Hamiltonian and energy are H and E, respectively, has an
underlying time scale, t0, say, which we expose by writing

G�E� = − it0�
0

�

d�ei�t0E��U�t0�� , �1�

where �= t / t0 is a dimensionless time and where U�t� is the
time-translation operator:

U�t� = e−itH. �2�

We have chosen units in which �=1. We are free to shift the
eigenvalue spectrum of H by any amount, as long as we shift
E by the same amount, thereby leaving E−H unchanged. For
a reason explained below, it is useful to shift the spectrum so
that H is positive definite. Thus we include in H an amount �
that is slightly larger than the ground-state binding energy of
the three-body system. Furthermore, since we are interested
in describing a scattering process we suppose that E lies in
the continuous spectrum of H; i.e., we restrict E to the range
E��0�0 where �0 is the lowest �shifted� threshold for par-
tial breakup of the three-body system. The spectrum of H is
effectively bounded from above since the asymptotically
large-energy components of any physically reasonable wave
packet on which G�E� may act play no significant role. Thus
it takes a finite �not infinitesimal� time for a wave packet to
evolve noticeably under the influence of H; it is this time
which is characterized by t0. For definiteness we assign to t0
the value

t0 =
1

E + � − �0
, �3�

a time scale that incorporates both the times 1 / �E−�0� and
1 /�, which characterize the duration and strength, respec-
tively, of the interactions. Note that Et0�1 since �0��;
typically Et0�1.

The dichotomy posed by time’s arrow is illustrated by
the correlation amplitude C�t���a	U�t�	a
, where 	a
 is a
normalizable ket that represents a physically realistic, spa-
tially localized, wave packet at time t=0. Let us decompose
	a
 into the two orthogonal components 	abd
 and 	act
, which
lie, respectively, in the subspaces spanned by the bound-
and continuum-state eigenkets of H. We have C�t�=Cbd�t�
+Cct�t� where Cbd�t�= �abd	U�t�	abd
 and Cct�t�= �act	U�t�	act
.
As the wave packet evolves the continuum-state component
U�t�	act
 diffuses throughout space and becomes completely
unlocalized in the limit t→�, while the bound-state compo-
nent U�t�	abd
 remains localized, periodically returning to �or
almost to� its original form 	abd
 up to an overall phase fac-
tor. An informal examination �23� of C�t� reveals that Cct�t�
has a pair of second-order branch points, one at t=� and the
other on the positive imaginary axis at a distance of the order
of t0 from the origin. In contrast, Cbd�t� is free of branch-

point singularities but it has an essential singularity at t=�.
The branch point at t� it0 sets the time scale of the system’s
evolution while the branch point at t=� signifies that the
state reached by an unlocalized system is double valued; for
although the system can be prepared in a unique state at any
finite time, say t=0, it can evolve either forward or backward
and the state at the single point t=� depends on the direction
of evolution to this point. The essential singularity at t=�
signifies that the state reached by a localized system oscil-
lates without limit and is undefined at t=�. Since a three-
body system can have two-body bound states, Cct�t� also has
an essential singularity at t=�.

The path of integration on the right side of Eq. �1� is
along the positive real � axis; this path yields the physical
branch of the resolvent. Were we to choose a path along the
negative real � axis, we would obtain the unphysical branch
corresponding to time’s arrow pointing backward in all sub-
channels. We could �we do not� rotate the path of integration
into the upper right quadrant of the complex � plane, but we
would have to first project out the closed subchannels �24�
since they give rise to an essential singularity at �=� �the
essential singularity arising from the open subchannels is
damped out by the factor eiEt�.

Since time is a parameter, not a dynamical variable, the
properties that G�E� has with respect to its underlying time
are not specific to the Hamiltonian. Therefore the method we
develop below is very general. It does not depend on the
nature of H, aside from the requirement that H be invariant
under time reversal, nor does it depend on the way in which
H is represented. It is equally applicable to half- and full-
collisions when a real basis is employed. As a test, we ap-
plied it to singlet S-wave electron impact ionization of
atomic hydrogen, and we obtained results for the total ion-
ization cross section that are in reasonable agreement, over-
all, with the benchmark results of Bartlett and Stelbovics �9�.

We can eliminate, or rather render innocuous, the branch
point at �� i by making a conformal transformation that
maps one half of the complex � plane onto the unit disk 	u	
�1 and the other half onto the region 	u	�1 outside the
disk. Thus we divide the � plane into two half-planes by the
boundary Im � /Re �=tan �, where 0���� /2; see Fig. 1.
The mapping is

FIG. 1. The temporal correlation amplitude has a branch point
on the positive imaginary time axis that is paired with another one
at infinity. The correlation amplitude is free of singularities in any
finite region of the complex time plane below the line Im t /Re t
=tan �; this region can be conformally mapped onto a unit disk.
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u =
� + iei�

� − iei� , �4�

and its inverse is

� = − iei��1 + u

1 − u
� . �5�

Note, incidentally, that �→−� implies u→1 /u. The transfor-
mation from � to u places the finite branch point outside the
disk. The contour of integration on the right side of Eq. �1�,
i.e., the line along the real positive � axis, or more generally
a ray in the sector 0	arg���	�, is transformed to a path
from u=−1 to u=1 in the upper half of the disk; see Fig. 2.
If we were to seek the unphysical branch we would choose �
to be in the range −� /2���0; the line along the real nega-
tive � axis, or more generally a ray in the sector �+�
	arg���	�, would be transformed to a path from u=−1 to
u=1 in the lower half of the disk. Thus a contour in the
upper �lower� half of the unit disk in the u plane is associated
with the physical �an unphysical� branch. Once we have
fixed the branch to be the physical one we can extend the
range of � to 0����. The “physical” energy sheet is −�
�arg�E��2�−�. A resonance pole, at Eres say, lies on the
physical sheet if ��arg�Eres�.

The time-translation operator can be expanded in powers
of u by making use of the generating function for the asso-
ciated Laguerre polynomials Ln

�m��2z�, i.e.,

1

�1 − u�m+1exp� 2zu

u − 1
� = 

n=0

�

Ln
�m��2z�un. �6�

Setting m=1 the left side of Eq. �6� is a perfect derivative
with respect to u:

d

du
exp� 2zu

u − 1
� = − 2z

n=0

�

Ln
�1��2z�un. �7�

Integrating over u from 0 to an indefinite upper limit gives

exp� 2zu

u − 1
� = 1 − 2z

n=1

�
1

n
Ln−1

�1� �2z�un, �8�

and putting z= t�H, where t� is a complex unit of time de-
fined as

t� � t0ei�, �9�

we arrive at

U�t� = e−t�H�1 − 2t�H
n=1

�
1

n
Ln−1

�1� �2t�H�un� . �10�

This series converges for all 	u	�1. The prefactor e−t�H ap-
propriately diminishes the role of eigenvalues of H that are
much larger than 1 / t0 �noting that typically �
� /2�.

At this stage we can explain why we have chosen H to be
positive definite: at u=1, where t is infinite, there is both a
branch point and an essential singularity. The rate of conver-
gence of the power-series representation of U�t� for u inside
the unit disk but close to the essential singularity depends on
the behavior of U�t� at large t, which in turn depends on the
sector of the t plane in which t lies. We allow t to approach
infinity along our contour of integration and �assuming that
we exclude the closed subchannels� this contour can lie
within and on the boundaries of the sector 0�arg�t���.
Suppose that U�t� acts on an eigenket of H with an eigen-
value E, and that t approaches infinity within the allowed
sector, U�t� increases or decreases exponentially according to
whether E is positive or negative, respectively. Now, the rela-
tive error incurred from truncating a power-series expansion
of an exponential function is much smaller if the function is
an exponentially growing one than if it is an exponentially
decreasing one. Consequently, we shift the spectrum of H to
ensure that it has no negative eigenvalues.

We turn now to the branch point at u=1. We have already
selected the physical branch of the resolvent through our
choice of the phase of the unit of time t�, which ensures that
the contour of integration lies in the upper half of the unit
disk. Therefore the branch point at the end of the contour is
more of a technical nuisance than a feature that carries physi-
cal consequences. Indeed, in practice H must be represented
by a finite-dimensional matrix, so the maximum time interval
over which the evolution of the system can be described
adequately is characterized by the dimensionless time �25�

Tmax = 1/�t0�E� , �11�

where �E is the �positive� separation of the two eigenvalues
adjacent to E. �We assume that the eigenvalue spectrum is
sufficiently dense in the neighborhood of E that Tmax�1.�
Therefore it is consistent with practice to replace the upper
infinite limit on the time integral by a finite number T of
order Tmax; thus Eq. �1� becomes

1 − eit0ETU�t0T�
E − H

= − it0�
0

T

d� eit0E�U�t0�� . �12�

The regions �
Tmax and ��Tmax, respectively, contribute to
the off-shell �principal value� and on-shell �energy-

FIG. 2. One half of the � plane is mapped onto the unit disk
	u	�1. The physical branch of the resolvent is associated with an
integration contour in the � plane, which runs from 0 to � along the
positive real � axis or more generally along a ray in the sector
0	arg���	�. This contour is mapped onto a path in the u plane,
which runs from u=−1 to u=1 in the upper half of the unit disk.
The branch cut �zigzag line� lies outside the disk.
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conserving� parts of G�E�. Substituting the right side of Eq.
�10� for U�t0�� in Eq. �12� and integrating over � gives

1 − eit0ETU�t0T�
E − H

= − it�e−t�H�I0�2Et�,T−��

− 2t�H
n=1

�
1

n
In�2Et�,T−��Ln−1

�1� �2t�H�� ,

�13�

where

T� = Tei� �14�

and where the coefficient In�2z ,w�, which is a function of
the two variables z=Et� and w=T−�, is defined as the inte-
gral

In�2z,w� = e−i��
0

T

d� ei�ze−i���un �15�

=w�
0

1

ds ei�zw�s� sw + i

sw − i
�n

, �16�

where s=� /T. The integrals In�2z ,w� can be evaluated effi-
ciently by means of a recurrence relation developed in Sec.
III. The on-shell part of the series on the right side of Eq.
�13� converges after roughly �Et0�T2 terms are included.

Since we have moved the branch point at t� it0 outside
the unit disk, the off-shell part of G�E� is stable as T in-
creases, but the on-shell part fluctuates due to the proximity
of the branch point at t=�. However, we can obtain a defi-
nite limit either by Padé extrapolation of a sequence of
terms, each evaluated at different, equally spaced values of
T, or by smoothing out the fluctuations through temporal
averaging. When U�t0T� acts on a superposition of bound-
state eigenkets of H, the superposition oscillates out of phase
with eit0ET, and without limit, as T increases, so the combi-
nation eit0ETU�t0T� vanishes if it is averaged over a long time
interval of order Tmax. When U�t0T� acts on a normalizable
ket, which is orthogonal to the bound-state eigenkets of H, it
decreases along each spatial coordinate as 1 /T1/2 due to
wave packet spreading. Therefore if 	a
 and 	b
 are any two
normalizable kets, which may contain bound-state compo-
nents, the large-T average of �b	eit0ETU�t0T�	a
 vanishes.

It follows that if we average both sides of Eq. �13� over
large values of the upper limit T�Tmax, the term eit0ETU�t0T�
disappears and the left side averages to the resolvent G�E�.
Only the on-shell contribution to the resolvent is sensitive to
averaging—the off-shell contribution is independent of T if
T�1. We find that temporal averaging yields meaningful and
fairly stable matrix elements of the resolvent and is an alter-
native �not necessarily a better one� to spatial averaging,
which was used long ago �26,27� and has been advocated
again more recently �28� to deal with formally divergent in-
tegrals that appear in variational identities for three-body
scattering. Padé extrapolation, which effects an implicit av-
erage over time, is even more robust and will be taken up
elsewhere.

In the next section we derive various expressions for the
transition rate in terms of volume integrals of the resolvent.
In Sec. III we discuss the evaluation of the sum over n and
its coefficients In�2z ,T−��, which appear in Eq. �13�. In Sec.
IV we discuss the error incurred by truncating the expansion
of U�t� in powers of u on the right side of Eq. �10�. Since the
power-series representation of U�t� does not converge on the
edge 	u	=1 of the disk, it does not converge at either end
point of the contour of integration in the u plane. Therefore,
it fails to give the correct result U�0�=1 even though there is
no singularity at u=−1. Nevertheless, we see in Sec. IV that
we can reproduce the result U�0�=1 if we truncate the power
series after a large number of terms and average over this
number. In Sec. V we discuss variational principles for both
U�t� and G�E�. In Sec. VI we describe and present results of
our test application to singlet S-wave electron impact ioniza-
tion of atomic hydrogen. In Appendix A we compare the sum
over n on the right side of Eq. �13� with an analogous ex-
pansion of the resolvent in Chebyshev polynomials devel-
oped by Mandelshtam and Taylor �29�. In contrast to Eq.
�13�, which is based on the temporal development of the
system, the Chebyshev expansion is based on the spatial de-
velopment. In Appendix B we study several different sums of
Laguerre polynomials that arise in the formulation of our
approach. In Appendix C we describe a method for treating
potential scattering that is suitable when an analytic basis is
employed; this method is used to account for the distortion
of the incident plane wave in our application to electron
impact ionization of atomic hydrogen.

II. FLUX FORMULAS

We consider a system that consists of three structureless
particles, two of which are initially bound to one another. Let
Hin be the channel Hamiltonian for the in-channel �the en-
trance channel�; the perturbation in this channel is

Win � H − Hin. �17�

Let 	�in
 represent the initial unperturbed state of the system.
We have

Hin	�in
 = E	�in
 . �18�

It is useful to attach a superscript to the resolvent to distin-
guish it from its adjoint; the physical resolvent is G+�E�
=1 / �E−H� while G−�E�= �G+�E��†, where here E is under-
stood to be real.

A. Inclusive transition rate

The inclusive rate inc for transitions to all energetically
accessible states is proportional to the net asymptotic flux,
i.e.,

inc = i��in	�G+�E�Win�†�H − H†�G+�E�Win	�in
 . �19�

Using Green’s theorem the matrix element on the right side
of Eq. �19� can be rewritten as a surface integral over the
surface at infinity; for computational purposes, however, it is
more useful to express this matrix element as a volume inte-
gral �whose integrand vanishes at infinity�:
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inc = i��in	�G+�E�Win�†��E − H�† − �E − H��G+�E�Win	�in

�20�

=− 2 Im��in	��E − H�G+�E�Win�†G+�E�Win	�in
 �21�

=− 2 Im��in	WinG
+�E�Win	�in
 . �22�

To facilitate comparison with expressions that are developed
below it is instructive to rewrite Eq. �22� in a more familiar
form, in terms of the eigenket of H, say 	�in

�
, which repre-
sents the state that evolves forward from �+� or backward to
�−� the initial state. Since

	�in
�
 = 	�in
 + G��E�Win	�in
 , �23�

we have, noting that WinG
+�E�= �G−�E�Win�†, and observing

that since Win is Hermitian ��in	Win	�in
 is real and therefore
does not contribute to inc,

inc = − 2 Im��in	Win	�in
+ 
 �24�

=− 2 Im��in
− 	Win	�in
 . �25�

Equations �24� and �25� are the usual statements of the opti-
cal theorem for scattering.

B. Partial transition rate

The optical theorem does not give detailed information
about the scattering process, but the steps that we took to this
theorem also lead the way toward the partial rate for transi-
tions to a particular group of energetically accessible states.
Let P denote a projection operator, which projects onto the
in-channel or onto a group of subchannels within the in-
channel that includes the initial state, so that

P	�in
 = 	�in
 . �26�

We denote the complement of P by Q�1− P. We have

Q	�in
 = 0. �27�

It is convenient to isolate that part of H, say H0, which com-
mutes with P and therefore with Q:

H � H0 + W0, �28�

�P,H0� = 0, �29�

where the interaction W0 vanishes for asymptotically large
separations of the particles. Let Q denote the rate for tran-
sitions to those states that lie in Q space. Since the right side
of Eq. �19� can be expressed as a surface integral, its value is
determined entirely by the asymptotic behavior of
G+�E�Win	�in
 in position space. To extract Q we need only
let Q project onto G+�E�Win	�in
 at the surface; we have

Q = i��in	�G+�E�Win�†Q�H − H†�QG+�E�Win	�in
 .

�30�

Noting that H−H†=H0−H0
†, that Q commutes with H0, and

that Q2=Q, we can re-express Q as

Q = i��in	�G+�E�Win�†Q��E − H0�†

− �E − H0��QG+�E�Win	�in
 �31�

=− 2 Im��in	��E − H0�G+�E�Win�†QG+�E�Win	�in

�32�

=− 2 Im���in	WinQG+�E�Win	�in
 + ��in	

��W0G+�E�Win�†QG+�E�Win	�in
� �33�

=− 2 Im���in	WinQG+�E�Win	�in


+ ��in	WinG
−�E�W0QG+�E�Win	�in
� �34�

=− 2 Im��in	�Win − W0�QG+�E�Win	�in


− 2 Im��in	�1 + WinG
−�E��W0QG+�E�Win	�in
 , �35�

where in the last line we subtracted and added the same term
in order to facilitate the following simplification: noting that
Win−W0=H0−Hin we have

��in	�Win − W0�Q = ��in	�H0 − Hin�Q . �36�

Since Q and H0 commute we can move Q to the left of H0 on
the right side of Eq. �36�. Furthermore, since ��in	 is an
eigenbra of Hin we can move Q to the left of Hin. Recalling
Eq. �27� it follows that both ��in	H0Q and ��in	HinQ are null
kets. Hence the first term on the right side of Eq. �35� van-
ishes. Recalling that ��in	P= ��in	, writing W0Q= PW0Q
+QW0Q, and noting that since QW0Q is Hermitian it does
not contribute to Q, it follows that

Q = − 2 Im��in	�1 + WinG
−�E��PW0QG+�E�Win	�in


�37�

=− 2 Im��in
+ 	PW0QG+�E�Win	�in
 �38�

=− 2 Im��in
+ 	PW0Q	�in

+ 
 , �39�

where we used Eqs. �23� and �27� in the last step. Comparing
Eq. �39� for the partial rate with Eq. �24� for the inclusive
rate we see that in place of the perturbation Win we now have
PW0Q; in addition, the partial rate is bilinear rather than
linear in 	�in

+ 
. We cannot recover Eq. �24� by putting Q=1
in Eq. �39� since we have used Eqs. �26� and �27�. Taking the
complex conjugate of Eq. �39� gives the alternative expres-
sion

Q = 2 Im��in
+ 	QW0P	�in

+ 
 . �40�

We can obtain the rate for transitions to a subspace of Q
space by replacing Q, in the preceding expressions, by the
operator which projects onto that subspace. Note that while
Eq. �40� has the virtue of compactness, Eq. �37� displays the
resolvent explicitly and is therefore more convenient for
computational purposes.

Now we derive the partial rate, P, for transitions to P
space, and in doing so we confirm the law of conservation of
flux. Repeating the steps that led from Eq. �30� to Eq. �35�,
this time with Q replaced by P, we obtain
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P = − 2 Im��in	�Win − W0�PG+�E�Win	�in


− 2 Im��in	�1 + WinG
−�E��W0PG+�E�Win	�in
 ,

�41�

Using Eq. �36�, now with P in place of Q, we can use
the same argument as above to move P to the left of �Win
−W0� in the first term on the right side of Eq. �41�, where-
upon it can be replaced by the identity. Therefore, noting that
��in	�Win−W0�P	�in
 is real, the first term on the right side of
Eq. �41� is the same as −2 Im��in	�Win−W0�	�in

+ 
. The sec-
ond term is

− 2 Im��in
+ 	W0PG+�E�Win	�in


= − 2 Im��in
+ 	W0P	�in

+ 
 + 2 Im��in
+ 	W0	�in
 . �42�

It follows that

P = − 2 Im��in	Win	�in
+ 
 − 2 Im��in

+ 	QW0P	�in
+ 
 �43�

=inc − Q, �44�

where in the first step we noted that the imaginary parts of
��in

+ 	W0P	�in
+ 
 and ��in

+ 	QW0P	�in
+ 
 are the same, and in the

second step we used Eqs. �24� and �40�.

C. Distorted-wave formulation

We can incorporate some of the �non-Coulombic� distor-
tion of the initial state by using the distorted-wave formal-
ism. The strategy is to find a potential that reduces the
strength of the perturbation in the entrance channel yet is
sufficiently simple that the wave function for scattering from
this potential can be determined exactly. Here we choose a
“static” potential Wst, which cannot induce transitions out of
P space, i.e.,

PWstQ = 0. �45�

For example, we could choose Wst to be PWinP. The
distorted-wave perturbation in the entrance channel is

Wd � Win − Wst, �46�

and the distorted-wave channel Hamiltonian is

Hd � Hin + Wst. �47�

Introducing

Gd�E� � 1/�E − Hd� , �48�

the distorted initial state is represented by

	�d
�
 = 	�in
 + Gd

��E�Wst	�in
 . �49�

We can rewrite Eq. �23� as �30�

	�in
�
 = 	�d

�
 + G��E�Wd	�d
�
 �50�

and substitute the right side of Eq. �50� for 	�in
+ 
 into Eq.

�40�. Since Wst does not induce transitions out of P space,

Q	�d
�
 = 0, �51�

but up to now we have not used this property. If we do use it
we can go back to Eq. �37� and replace 	�in
 and Win by 	�d

+


and Wd, respectively: to see this we first use Eqs. �23� and
�50� to write

G��E�Win	�in
 = G��E�Wd	�d
�
 + 	�d

�
 − 	�in
 , �52�

��in	WinG
��E� = ��d

�	WdG��E� + ��d
�	 − ��in	 . �53�

Now we use Eqs. �52� and �53� to substitute for
G+�E�Win	�in
 and ��in	WinG

−�E� in Eq. �37�. We follow by
using Eqs. �27� and �51�, which yields the desired result:

Q = − 2 Im��d
+	�1 + WdG−�E��PW0QG+�E�Wd	�d

+
 ,

�54�

=2 Im��d
+	WdG−�E�QW0P�1 + G+�E�Wd�	�d

+
 , �55�

where the second line is the complex conjugate of the first.
The distorted-wave form of the inclusive rate follows by

using Eq. �52� to substitute for G+�E�Win	�in
 in Eq. �22� and
subsequently using Eq. �53� to substitute for ��in	WinG

+�E�;
after using Eq. �46� we arrive at

inc = − 2 Im��in	Wst	�d
+
 − 2 Im��d

−	Wd�1 + G+�E�Wd�	�d
+
 .

�56�

This is a restatement of the optical theorem within the
distorted-wave formalism and of course we have not used
any properties of Q in deriving it. The first term on the right
side of Eq. �56� is the rate for scattering from the static
potential alone.

D. Transition amplitude

Finally, we consider the transition amplitude rather than
the rate. Evaluation of the amplitude requires more informa-
tion about the final state than we have needed up to now. Let
	�out

� 
 be the eigenket of H, which represents the state that
evolves forward to �−� or backward from �+� the final state
of interest. The transition amplitude is

A = ��out
− 	�H† − H�G+�E�Win	�in
 . �57�

Since the asymptotic boundary condition on the wave func-
tion for a bound-continuum channel �in which two of the
particles are bound� is well known and relatively simple,
we focus on the breakup process. Therefore we choose Q to
project onto the breakup channel, i.e., onto the space occu-
pied by three particles at asymptotically large separations.
Eigenkets of H that are associated with different channels
are orthogonal. Hence the matrix element on the right side of
Eq. �57� contains no contribution from scattering to a bound-
continuum channel. If this matrix element is converted to
a surface integral, the contribution from the surface region
where two particles are near to one another, with the third far
away, washes out upon integration. This is the region on
which P projects, and therefore we can insert Q=1− P to the
right of ��out

− 	 without altering the value of the breakup am-
plitude:

A = ��out
− 	Q�H† − H�G+�E�Win	�in
 . �58�

We make this replacement so as not to incur a spurious con-
tribution to the breakup amplitude from scattering within a
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bound-continuum channel when we approximate 	�out
� 
.

Contamination of the continuum-continuum channel by
bound-continuum subchannels was highlighted by Bouri et
al. �3�, who took special care to avoid it in their study of
double photoionization of helium just above the breakup
threshold.

Since the right side of Eq. �58� can be expressed as a
surface integral, its value is determined entirely by the
asymptotic behavior of 	�out

� 
 in position space. With this in
mind we decompose the Hamiltonian as

H � Heff + Weff, �59�

where Heff is a simple effective Hamiltonian and we intro-
duce the ansatz 	�eff,out

� 
, which is an eigenket of Heff:

Heff	�eff,out
� 
 = E	�eff,out

� 
 . �60�

Ideally, we would require the effective perturbation Weff to
vanish faster than the inverse of any interparticle distance as
the particles separate to infinity, but if Coulomb tails are
present this requirement leads to numerically intractable ex-
pressions. Taking our cue from Peterkop �31� and Rudge and
Seaton �32,33�, we compromise by requiring only that Weff
vanishes faster than the inverse of each interparticle distance
as the particles move along classical straight-line asymp-
totes. Therefore we express Weff as a linear combination of
Coulomb potentials whose effective charges are chosen so
that Weff vanishes when the particles follow classical
straight-line motion. This is a physically reasonable con-
straint since three charged particles can reach dynamic equi-
librium most efficiently if they shield one another. In the case
where one particle is infinitely massive the effective charges
satisfy the well-known condition identified by Peterkop �31�
and by Rudge and Seaton �32,33�.

Thus we replace 	�out
� 
 by 	�eff,out

� 
 in Eq. �58�. The main
contribution to the equivalent surface integral comes from
the region about a point of stationary phase on the hypersur-
face �31–33�. Recalling that Q and H0 commute, Eq. �58�
becomes

A � ��eff,out
− 	Q�H† − H�G+�E�Win	�in
 �61�

=��eff,out
− 	��H0 − E�†Q + Q�E − H0��G+�E�Win	�in
 �62�

=��eff,out
− 	QWin	�in
 + ��eff,out

− 	��Weff − W0�Q + QW0�

�G+�E�Win	�in
 �63�

=��eff,out
− 	QWin	�in
 + ��eff,out

− 	�WeffQ + QW0P − PW0Q�

�G+�E�Win	�in
 , �64�

where in the last step we observed that QW0−W0Q=QW0P
− PW0Q. Now we must confront the consequence that results
from the failure of our ansatz 	�eff,out

� 
 to exactly satisfy the
correct asymptotic boundary condition. The effective pertur-
bation Weff vanishes only at the point of stationary phase on
the hypersurface, the point at which the particles follow clas-
sical straight-line motion, but it is the neighborhood of the
point of stationary phase, not just the point itself, which pro-
vides the dominant contribution to the surface integral. Con-

sequently, the resulting volume integral on the right side of
Eq. �64�, specifically the term ��eff,out

− 	WeffQG+�E�Win	�in
,
is formally divergent. However, this is primarily a technical
matter; since 	�eff,out

� 
 incorporates the essential physics a
physically meaningful value of ��eff,out

− 	WeffQG+�E�Win	�in

can be obtained either by spatial averaging �26–28�, or by
Padé resummation �34� over the basis, as was done for the
half-collision problem �20�. Using Eq. �52� to substitute for
G+�E�Win	�in
 in Eq. �64�, recalling Eqs. �27� and �51�, and
the adjoint of Eq. �36�, and noting that QWin	�d

+
=Q�Win
−Wst�P	�d

+
=QWd	�d
+
, we arrive at the distorted-wave form

of the breakup amplitude:

A = ��eff,out
− 	QWd	�d

+
 + ��eff,out
− 	�WeffQ + QW0P − PW0Q�

�G+�E�Wd	�d
+
 . �65�

The second �formally divergent� term on the right side of Eq.
�65� compensates for the error in the first term due to the
approximate nature of 	�eff,out

− 
. Now we turn to the evalua-
tion of the resolvent.

III. SERIES REPRESENTATION OF THE RESOLVENT

A. Coefficients of the series

In order to sum the series representation of the resolvent
efficiently it is necessary to develop some knowledge of the
properties of the coefficients In�2z ,w�. In this subsection we
examine the asymptotic behavior of In�2z ,w� with respect to
large values of the index n. In addition, we establish a recur-
rence relation for the coefficients, which is stable in the
backward direction and can be started from the known value
of In�2z ,w� at asymptotically large n.

To this end it is useful to change the integration variable
in Eq. �16� from s to � where

ws = tan � . �66�

The integral over the new variable is

In�2z,w� = �− 1�n�
0

�w

d� sec2 �eiz tan �−2in�, �67�

where the upper limit of integration is

�w � tan−1 w . �68�

Writing

In�2z,w� =
�− 1�n

iz
�

0

�w

d�e−2in�� d

d�
eiz tan �� , �69�

and repeatedly integrating by parts �by integrating the factor
e−2in�� yields, for 	z	 /n
1,

In�2z,w� � − i�− 1�n�
m=1

pm�z,0�
nm − e−2in�w 

m=1

pm�z,�w�
nm � ,

�70�

where
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pm�z,�� �
1

z
� 1

2i

d

d�
�m

eiz tan �. �71�

The first sum on the right side of Eq. �70� arises from the
lower end point 0 and is independent of w, while the second
sum arises from the upper end point �w and depends on w.

Since

2 cos2 �p1�z,�� = zp0�z,�� , �72�

the pm�z ,�� can be evaluated recursively, starting with
p0�z ,��=eiz tan � /z. Defining

qk��� � 2� 1

2i

d

d�
�k

cos2 � �73�

=�2 cos 2� , k = 0

cos 2� , k even � 2

i sin 2� , k odd � 1
� �74�

and using Leibniz’s rule for differentiation gives for m�0

2 cos2 �pm+1�z,�� = zpm�z,�� − 
k=0

m−1 �m

k
�qm−k���pk+1�z,�� .

�75�

If Im��w��0 we have 	e−2i�w	�1, in which case the prefac-
tor of the second sum �the w-dependent sum� on the right
side of Eq. �70� is exponentially small for large n. We can
gain insight into the behavior of pm�z ,0� as m increases by
approximating tan � by � in Eq. �71�; this shows that pm�z ,0�
grows with m as zm. For 	w	�1 we have

�w �
�

2
−

1

w
, 	w	 � 1 �76�

and by approximating tan � by 1 / � �
2 −�� in Eq. �71� we see

that pm�z ,�w� grows with m and w as �zw2�me−Im�ze−i��w.
Hence we require

n � 	z	 �77�

for the first sum �the w-independent one� on the right side of
Eq. �70� to converge rapidly with m, and we require

n � 	zw2	 �78�

for the second sum �the w-dependent one� to converge rap-
idly with m.

Integration by parts accounts only for the contributions
from the end points 0 and �w. There is another contribution
to the integral In�2z ,w�, which arises from a saddle point at
�=�0, where

cos2 �0 = z/�2n� . �79�

The saddle-point contribution is significant provided that the
path of steepest descent can be joined to the end points with-
out returning over the ridge. Hence we require that �0 lies to
the left of �w. Assuming that n� 	z	 we have

�0 � ��/2� − ��z/2n� , �80�

and recalling Eq. �76� we see that this condition amounts to
n
 	zw2	, the opposite of the condition implied by Eq. �78�.
Hence, putting z=Et� and w=T−� we find that if

n � nsad � �Et0�T2, �81�

and if n�Et0, the saddle-point contribution to In�2Et� ,T−��
is negligible, so the end point contributions dominate, while
if n
nsad the saddle-point contribution is most important. If
z and w are real and positive the saddle point becomes a
point of stationary phase �35� and using the method of sta-
tionary phase we find that if 	zw2	�n� 	z	,

In�2z,w� � �2�2n

z3 �1/4

ei�8zn+i�/4, �82�

a result that may be analytically continued to complex values
of z provided that the path of steepest descent can be joined
to the end points by paths that cross the “flatlands.” If
Im �z�0 the saddle-point contribution is exponentially
damped for large n by the factor e−Im �8zn. Although the right
side of Eq. �82� is explicitly independent of w, it is implicitly
dependent on w since it is invalid if n� 	zw2	.

The integrals In, each of which is the sum of the right
sides of Eqs. �70� and �82� for large n, can be evaluated
efficiently by backward recursion. To derive a recurrence re-
lation we start by using

�2 + e2i� + e−2i�� = 4 cos2 � �83�

in Eq. �14� to give

2In�2z,w� − In−1�2z,w� − In+1�2z,w�

= 4�− 1�n�
0

�w

d�eiz tan �−2in�. �84�

Integrating by parts on the right side of Eq. �84� yields

2In�2z,w� − In−1�2z,w� − In+1�2z,w�

= �− 1�n+1�2i

n
��1 − eizw−2in�w�

+ �− 1�n�2z

n
��

0

�w

d� sec2 �eiz tan �−2in�. �85�

Recognizing that the integral on the right side of Eq. �85� is
proportional to In we arrive at the inhomogeneous recursion
formula

nIn+1�2z,w� − 2�n − z�In�2z,w� + nIn−1�2z,w�

= 2i�− 1�n�1 − eizw−2in�w� , �86�

which is valid for n�0. In principle we can evaluate In by
forward recursion, starting with

I0�2z,w� =
i

z
�1 − eizw� , �87�
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I1�2z,w� = I0 + 2i exp�− z��E1�− z� − E1�− z − izw�� ,

�88�

where E1�z� is the exponential integral; but in practice the
result is numerically unstable at large n. However, backward
recursion is stable. Incidentally, Eq. �87� implies that the
correct solution to the recurrence relation is the “regular”
one, i.e., the one for which I−1�2z ,w� is finite, since if we
put n=0 in Eq. �86� and if I−1�2z ,w� is finite we recover Eq.
�87�.

Returning to the integral representation of In�2z ,w�, we
showed that for large n it can be expressed as the sum of the
two end point contributions and a saddle-point contribution.
The end point contributions are generated by the inhomoge-
neous term in the recursion formula. The lower-end point
contribution is generated by the w-independent part of the
inhomogeneous term, while the upper-end point contribution
is generated by the w-dependent part. A particular solution of
the inhomogeneous recurrence relation includes the end
point contributions, while a solution of the homogeneous re-
currence relation includes the saddle-point contribution. Any
linear combination of a particular solution and a solution of
the homogeneous equation is a solution of the inhomoge-
neous equation. The correct linear combination can be deter-
mined by starting the solution at n�nsad using the
asymptotic series for In�2z ,w� on the right side of Eq. �70�.
The w-dependent part of this asymptotic series, i.e., the sec-
ond series on the right side of Eq. �70�, falls off more rapidly
with increasing n than a solution of the homogeneous equa-
tion, so the correct solution is not contaminated by a solution
of the homogeneous equation.

Since the recurrence relation for In�2z ,w� depends on w
only through the inhomogeneous term the average over w of
In�2z ,w� can be found directly—it is the solution of the
recurrence relation that differs from Eq. �86� only through
the replacement of the inhomogeneous term by its w average.

B. Summation of the series

The off-shell contribution to the resolvent is independent
of T. This contribution follows from replacing each coeffi-
cient In�2Et� ,T−�� in the series representation on the right
side of Eq. �13� by its T-independent part, which for n=0 is
just �i /Et��. For n�Et0 we can use Eq. �70� to express the
T-independent part of In�2Et� ,T−�� in powers of 1 /n, as
−i�−1�nm=1

m0 pm�Et� ,0� /nm, where m0 is a finite positive in-
teger which we leave unspecified except to note that a value
of two or three suffices. To obtain a rough estimate, Soff�Et��
say, of the off-shell contribution to the resolvent we approxi-
mate In�2Et� ,T−�� in powers of 1 /n for all n�1; this gives

Soff�Et�� � e−t�H� 1

E
+ t��2t�H�

m=1

m0

pm�Et�,0�

�
n=1

�
�− 1�n

nm+1 Ln−1
�1� �2t�H�� , �89�

where we have interchanged the order of the sums over m
and n. Higher powers of 1 /n reflect the contributions of

higher derivatives with respect to � of U�t� in the region �
�0. In the high-energy limit the time scale shrinks to zero
�i.e., t��0� and we obtain the result Soff�Et���1 /E. Using
Eq. �B17� we can express the infinite sum on the right side of
Eq. �89� as a numerically tractable integral; we have

Soff�Et�� =
e−t�H

E
− t��2t�H�

m=1

m0 pm�Et�,0�
m!

��
0

�

dxe−xxm� e−t�H tanh�x/2�

�1 + e−x�2 � . �90�

The integrals over x are well suited to Gauss-Laguerre
quadrature.

The remainder of the right side of Eq. �13� contains
mostly the on-shell contribution; writing

1 − eit0ETU�t0T�
E − H

= Soff�Et�� + iSon�Et�,T−�� �91�

and using Eq. �89� we have

Son�Et�,T−�� � ie−t�Hei�Et0�T

E
− t��2t�H�

�
n=1

�
1

n
Jn�2Et�,T−��Ln−1

�1� �2t�H� , �92�

where Jn�2z ,w� is the modified coefficient

Jn�2z,w� � In�2z,w� + i�− 1�n
m=1

m0 pm�z,0�
nm , n � 1.

�93�

Since we have subtracted the first m0 terms in powers of 1 /n
the modified coefficient behaves for n in the range Et0
n
�nsad as

Jn�2z,w� = �2�2n

z3 �1/4

ei�8zn+i�/4 + O� 1

nm0+1� . �94�

We assume that nsad is sufficiently large that the term in
1 /nm0+1 is dwarfed by the saddle-point term over “most” of
the range Et0
n�nsad. This being the case, we can estimate
the on-shell contribution to the resolvent by approximating
Jn�2z ,w� by the saddle-point term in Eq. �92�. Noting that if
n� 	z	 and �8n	z	�1,

e−zLn
�m��2z� �

1

��22zn�1/4� n

2z
�m/2

cos��8nz −
�2m + 1��

4
� ,

�95�

we have

Son�Et�,T−�� � −
i

�2
�Ht�

2

E3 �1/4


n

1
�n

�ei�8nt���E−�H�

+ iei�8nt���E+�H�� , �96�

where the sum is over the range Et0
n�nsad, with the sum-
mand independent of T over this range. Evidently, the largest
contribution to this sum comes from those eigenvalues of H
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for which the oscillations of e−i�8nt�H are cancelled by the
oscillations of ei�8nt�E, a condition that expresses energy con-
servation.

Averaging both sides of Eq. �91� over T�Tmax, the left
side averages to the resolvent 1 / �E−H�. The value of Tmax
depends on the value of the energy spacing �E in the neigh-
borhood of E. However, there may be many open �energeti-
cally accessible� subchannels and the energy spacing may
differ from one partial spectrum �associated with a given
open subchannel� to another. Therefore it is convenient to
define �E to be the average energy separation per subchan-
nel. To evaluate �E we determine the eigenvalue spectrum
of the matrix representation H in the neighborhood of E and
we multiply the energy spacing by the number of open sub-
channels. If E lies above the breakup threshold, we include
in this number all continuum subchannels in which one elec-
tron has energy less than E /2.

The continuous spectrum of H is simulated by a discrete
spectrum when H is represented by a finite matrix and that
deficiency is exposed after a sufficient number of terms are
included in the series representation of the resolvent. Let 	E1

and 	E2
 be any two eigenkets of H with adjacent eigenvalues
E1 and E2 in the neighborhood of E. The separation of these
eigenvalues in the series representation of Son on the right
side of Eq. �92� becomes significant when n is sufficiently
large that the outgoing-wave �or ingoing-wave� components
of the eigenkets Ln−1

�1� �2t�H�	E1
 and Ln−1
�1� �2t�H�	E2
 accumu-

late phases that differ by more than about �. It is evident
from Eq. �95� that if n is large Ln−1

�1� �2t�x� oscillates rapidly
when x varies, as

sin��8nt0x cos
�

2
+

�

4
� .

Therefore the discreteness of the pseudocontinuum is ex-
posed when

�E� d

dE
�8nt0E�cos

�

2
� 1, �97�

i.e., when n�nmax where

nmax =
1

2
� sec2��/2�

Et0
�� E

�E
�2

. �98�

Ideally, we require nmax�nsad, which, since typically �
1,
is consistent with T�Tmax.

Finally, we observe that we can evaluate the far-off-shell
contribution by using the spectral decomposition. Let 	E
 be
an eigenket of �the matrix representation of� H which is nor-
malized to unity and has eigenvalue E. The far-off-shell con-
tribution is


E�Emax

	E
�E	
E − E

,

with �Emax−E�Tmax�1; eigenvalues larger than Emax do not
contribute significantly to the on-shell part of G�E�.

IV. TIME-TRANSLATION OPERATOR

In the previous section we saw that In�2Et� ,T−�� has a
part that decreases exponentially with increasing n1/2—this
part picks out the on-shell contribution to the series repre-
sentation of G�E�—and a part that falls off only as 1 /n with
increasing n—this part is associated with the off-shell con-
tribution. Despite the slow falloff with increasing n, the off-
shell contribution arising from terms n�1 is small since
consecutive terms in the power series in 1 /n are of opposite
sign resulting in partial cancellation.

This cancellation can be attributed to the failure of the
power-series representation of the time-translation operator
U�t� to converge to U�0�=1 when u=−1. Suppose that we
truncate the expansion of U�t� after N terms, which gives the
trial approximation

UN�t� = e−t�H�1 − 2t�H
n=1

N
1

n
Ln−1

�1� �2t�H�un� . �99�

Not surprisingly, UN�0��1; we have

UN�0� = e−t�H�1 − 2t�H
n=1

N
�− 1�n

n
Ln−1

�1� �2t�H�� .

�100�

We can re-express the right side of Eq. �100� in a form that
displays its deviation from the identity by using

e−t�H
n=1

�
�− 1�n

n
Ln−1

�1� �2t�H� = −
1

�2t�H�
�1 − e−t�H� ,

�101�

a result that follows after some minor rearrangement by put-
ting u=−1 and z= t�H in Eq. �8�. Writing the sum over N
terms in Eq. �100� as the difference of two infinite sums, one
starting at n=1, the other at n=N+1, we obtain

UN�0� = 1 + �2t�H�e−t�H 
n=N+1

�
�− 1�n

n
Ln−1

�1� �2t�H� .

�102�

The infinite sum on the right side of Eq. �102� is analyzed in
some detail in Appendix B, where it is shown that


n=N+1

�
�− 1�n

n
Ln−1

�1� �2t�H�

� −
�− 1�N

4N
�2LN+1

�1� �2t�H� + et�H�N − LN+2
�0� �2t�H���

�103�
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for large N. Recalling that H is positive definite, we see from
Eq. �95� that if 0���� the Laguerre polynomial
Ln

�1��2t�H� increases exponentially with increasing �n, as

esin��/2��8nHt0.

Hence, if 0����, the right side of Eq. �103� diverges with
increasing N. If �=0 the right side of Eq. �103� remains
finite as N increases, but it oscillates without limit, as
�−1�N. However, the average over large N of �−1�N vanishes
as 1 /N with increasing N. It follows that even when ��0
the large-N average of the right side of Eq. �103� vanishes
provided that N does not increase beyond the range where
	sin�� /2��8NHt0	�1. Noting that we need not consider ei-
genvalues of H larger than Emax, we see that the average of
UN�0� is approximately 1 if we average over large N subject
to the restriction

N �
1

8�Emaxt0�sin2��/2�
. �104�

Besides improving convergence, averaging over N renders
the modification of the coefficients In�2z ,w� unnecessary
since for large n the difference of In�2z ,w� and Jn�2z ,w�, on
the right side of Eq. �93�, vanishes upon averaging. However,
in our test calculations we chose to modify the coefficients
rather than average over N.

It is useful to evaluate the error �H− i d
dt �UN�t� in the trial

approximation UN�t�. To do so we express the time deriva-
tive in terms of u as

d

dt
=

i

2t�

�1 − u�2 d

du
. �105�

Noting that L0
�1��x�=1 and L1

�1��x�=2−x, we have

i
d

dt
UN�t� = e−t�HH

n=1

N

Ln−1
�1� �2t�H�un−1�1 − u�2 �106�

=e−t�HH�1 − �2t�H�u − LN
�1��2t�H�uN

+ LN−1
�1� �2t�H�uN+1� + e−t�HH

n=2

N

�Ln
�1��2t�H�

− 2Ln−1
�1� �2t�H� + Ln−2

�1� �2t�H��un �107�

=e−t�HH�1 − LN
�1��2t�H�uN + LN−1

�1� �2t�H�uN+1�

− e−t�HH�2t�H�
n=1

N
1

n
Ln−1

�1� �2t�H�un �108�

=HUN�t� − e−t�HH�LN
�1��2t�H�uN

− LN−1
�1� �2t�H�uN+1� . �109�

In the last step but one we used the recurrence relation

Ln
�1��2z� − 2Ln−1

�1� �2z� + Ln−2
�1� �2z� = − 2�z/n�Ln−1

�1� �2z� .

�110�

It follows that

�H − i
d

dt
�UN�t� = e−t�H�LN

�1��2t�H� − LN−1
�1� �2t�H�u�uN.

�111�

Although Ln
�1��2t�H� increases as esin��/2��8nHt0 with increas-

ing n, the factor un decreases more rapidly, as en ln u, pro-
vided that 	u	�1. Therefore the right side of Eq. �111� van-
ishes with increasing N for all finite nonzero t. When t
is very large �u�1� or very small �u�−1� we have 1�u
� �2i�ei� /���1. At the largest allowed value of �, which is
of order T, we have ln u�2iei� /T, and therefore the right
side of Eq. �111� is small if N�2 /T�sin � is large compared to
�8NEmaxt0, i.e., if

N � �Emaxt0

2
��T sec

�

2
�2

. �112�

When � is positive but very small ln u� i�−2i� /ei�, and
therefore the right side of Eq. �111� is small if

N � �Emaxt0�/�2. �113�

This last inequality cannot be satisfied as � approaches zero
and this is consistent with the fact that UN�0��1 for finite N.
However, since uN oscillates with N as �−1�N when u�−1,
the right side of Eq. �111� vanishes when averaged over N,
provided that Eq. �104� is satisfied. Hence, aside from ob-
serving that we must have

T � ��Emaxt0�/N , �114�

we can ignore Eq. �113�.
We conclude that the large-N average of UN�t� approaches

U�t� as N increases subject to the constraints imposed by
Eqs. �104�, �112�, and �114�. Combining Eqs. �104� and
�112� gives

tan
�

2



1

2T�Et0�
�115�

while combining Eqs. �98� and �104� gives

tan
�

2
�

1

2
�� E

Emax
���E

E
� . �116�

Together, Eqs. �115� and �116� imply that

T 
 Tmax. �117�

V. VARIATIONAL PRINCIPLES

In the previous section we derived various inequalities
pertaining to the number N of terms in UN�t�. For a given
number of terms, we can attempt to improve the accuracy of
our approximation to U�t� by employing a variational prin-
ciple. If Utr�t� is any trial approximation to U�t� the integral
equation
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U�t�Utr�0� = Utr�t� − i�
0

t

dt�U�t − t���H − i
d

dt�
�Utr�t��

�118�

may be readily verified by integrating by parts the term in the
time derivative, noting that U�0�=1 and that H is Hermitian
�on a space of square-integrable functions�. Since the inte-
grand is of first order in the error in Utr�t�, the net error
incurred by approximating U�t− t�� is of second order.

Let us choose our trial approximation to U�t� to be

Utr�t� = UN
−1�0�UN�t� , �119�

where UN�t� was introduced in Eq. �99�. A better trial ap-

proximation is Ūtr�t�= ŪN
−1�0�ŪN�t� where the overbar indi-

cates the large-N average. However, it is straightforward to
generalize the analysis below to include large-N averaging
and for the sake of clarity we work with the simpler trial
approximation, Eq. �119�. Writing U�t− t��=U�t�U�−t�� and
using Eq. �111�, noting that Utr�0�=1, we can rewrite Eq.
�118� as

U�t� = Utr�t� − iU�t�e−t�HUN
−1�0��

0

t

dt�U�− t���LN
�1��2t�H�

− LN−1
�1� �2t�H�u��u�N. �120�

Approximating U�t� on the right side of Eq. �120� by Utr�t�,
writing U�−t��=eiHt�, and defining �−���t / t0�e−i�, we obtain

U�t� � �1 − it�e−t�HUN
−1�0��IN�2Ht�,�−��LN

�1��2t�H�

− IN+1�2Ht�,�−��LN−1
�1� �2t�H���Utr�t� , �121�

with an error that is of second order in the error of Utr�t�.
To obtain a variational expression for the resolvent it is

expedient to return to Eq. �118�. Let us multiply both sides of
Eq. �118� by −it0ei�t0�E� and integrate over �= t / t0 from 0 to
T. Introducing the trial resolvent

Gtr�E� � − it0�
0

T

d�ei�t0E��Utr�t0�� �122�

we obtain

G�E� = Gtr�E� − t0
2�

0

T

d��
0

�

d��ei�t0E��U�t − t��

��H − i
d

dt�
�Utr�t�� �123�

with it understood that T is large and is to be averaged over
so terms in ei�t0E�TU�T� can be discarded. In the first step
below we interchange the variables � and ��, and subse-
quently reorder the sequence of integration, while in the sec-
ond step we make the change of variables ��→��+�:

�
0

T

d��
0

�

d��ei�t0E��U�t − t���H − i
d

dt�
�Utr�t��

= �
0

T

d��
�

T

d��ei�t0E���U�t� − t��H − i
d

dt
�Utr�t�

�124�

=�
0

T

d�ei�t0E���
0

T−�

d��ei�t0E���U�t���H − i
d

dt
�Utr�t� .

�125�

Combining Eqs. �111�, �123�, and �125� gives

G�E� = Gtr�E�

− t0
2e−t�HUN

−1�0��
0

T

d�ei�t0E���
0

T−�

d��ei�t0E���U�t��

��LN
�1��2t�H� − LN−1

�1� �2t�H�u�uN. �126�

Thus we have to evaluate integrals of the form

�
0

T

d�ei�t0E��un�
0

T−�

d��ei�t0E���U�t�� .

It can be shown that these integrals satisfy a recurrence re-
lation similar to the one satisfied by the In but with a differ-
ent inhomogeneous term. We obtain a variational approxima-
tion to G�E� by replacing U�t�� by Utr�t� on the right side of
Eq. �126�.

For sufficiently large T only the range 0	��
T contrib-
utes to the integral over �� on the right side of Eq. �125�. If
we substitute T for the upper limit T−� on this integral, the
two integrals factorize, and the one over �� is just �i / t0�G�E�,
which becomes �i / t0�Gtr�E� if we replace U�t�� by Utr�t��.
Using this result in Eq. �123� gives

G�E� � Gtr�E� − it0Gtr�E��
0

T

d�ei�t0E���H − i
d

dt
�Utr�t� .

�127�

Integrating by parts on the right side of Eq. �127�, discarding
the term in ei�t0E�TUtr�T�, we arrive at a well-known varia-
tional principle �28,36� for the resolvent:

G�E� � 2Gtr�E� − Gtr�E��E − H�Gtr�E� . �128�

VI. TEST APPLICATION

As a test of the formalism developed above, we have
applied it to 1S-wave electron impact ionization of a hydro-
gen atom initially in its ground state. We assumed the
nucleus, whose atomic number is Z=1, to be infinitely mas-
sive and at rest. We chose the static potential to be the inter-
action experienced by the incident electron �charge −e� when
averaged over the ground-state motion of the bound electron.
This well-known potential is, with a0 the Bohr radius,
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Wst�r� = −
Ze2

a0
�1 +

a0

Zr
�e−2Zr/a0, �129�

where we excluded the term −�Z−1�e2 /r, which vanishes
since Z=1. If r12 denotes the separation of the two electrons,
the interaction W0 is

W0�r12� =
e2

r12
, �130�

and if r�1 and r�2 locate the bound and incident electrons, 1
and 2, respectively, relative to the nucleus, at distances r1
and r2, the perturbation in the distorted-wave entrance chan-
nel is

Wd�r1,r2,r12� =
e2

r12
−

Ze2

r2
+

Ze2

a0
�1 +

a0

Zr2
�e−2Zr2/a0.

�131�

Evidently Wd�r1 ,r2 ,r12� is finite at r2=0 �leaving aside the
exceptional case when r1 also vanishes�. This is a notable
feature because elastic scattering from a Coulomb singularity
involves substantial virtual energy transfer, which must be
built into the description of the ionization process. Conse-
quently, we solve the static-potential-scattering part of the
problem exactly, or essentially so, a task that is easy to ac-
complish using any one of a number of methods; we used the
method described in Appendix C, which is highly efficient
when a discrete analytic basis is employed.

We represented the 1S-wave Hamiltonian H of the com-
plete system �electron plus hydrogen atom� on a real discrete
basis, symmetrized with respect to the electrons, and com-
posed of the functions

Snl
� �r1�Sn�l

� �r2�Yl,l
�0,0��r̂1, r̂2� + 1 ↔ 2,

where Snl
� �r� is the radial Sturmian function

Snl
� �r� = ���/n��n − l�2l+1�2�r�l+1Ln−l−1

2l+1 �2�r�e−�r,

�132�

normalized so that �0
�dr�Snl

� �r��2=1, and where the angular
function Yl,l

�0,0��r̂1 , r̂2� is the coupling of two spherical har-
monics to give an eigenstate of the total angular momentum
operator with zero eigenvalue. The inverse length scale of
the basis, �, was chosen to increase with the incident elec-
tron momentum; the higher this momentum, the smaller the
reaction volume and the larger the “optimum” value of �. We
included values of l in the range 0	 l	3. We limited the
ordinal numbers n− l−1 and n�− l−1 of the radial functions
to the range 1	n�− l	n− l	40; thus our entire basis con-
sisted of at most 3280 functions of r�1 and r�2. Although it is
unnecessary to diagonalize the entire matrix representation
of the Hamiltonian we did so since a 3280�3280 real sym-
metric matrix can be diagonalized without great effort. For
the static-potential-scattering problem �see Appendix C� we
calculated the distortion of the incident plane wave by using
a basis composed of the functions Sn0

� �r� where, typically,
1	n	70.

We calculated �37� the inclusive rate for scattering using
Eq. �56� together with the variational principle, Eq. �128�. In

Fig. 3 we show the inclusive cross section �the inclusive rate
divided by the incident electron flux� over a range of ener-
gies above the breakup threshold. The inclusive cross section
decreases smoothly and monotonically with increasing en-
ergy but flattens out substantially at higher impact energies
and remains of the order of the geometric cross section over
the entire energy range considered. We show results obtained
using a maximum ordinal number of either 29 or 39 �a total
basis size of 1860 or 3280, respectively� and the good agree-
ment between the two sets of results gives confidence in their
accuracy.

In this section we refer to energies relative to the thresh-
old for complete breakup of the system �electron plus hydro-
gen atom�. We take this threshold to be 0 eV, so the lowest
possible energy of the system is about −0.527 a.u., corre-
sponding to the only bound state of H−. Since the Hamil-
tonian H is represented on a discrete basis all of its eigen-
values are discrete, and with the exception of the lowest
eigenvalue, they simulate continuous spectra. Recall that 	E

denotes an eigenket of �the matrix representation of� H,
which is normalized to unity and has eigenvalue E. The op-
erator P, which we introduced in Sec. II, projects onto the
bound-bound and bound-continuum channels, i.e., onto the
entire subspace in which any one electron is in any superpo-
sition of hydrogenic bound states. The expectation value
�E	P	E
 lies in the interval �0,1� and gives insight into the
character of 	E
. The closer is �E	P	E
 to unity, the more
closely does 	E
 describe an eigenstate belonging to either
the bound-bound channel, in which both electrons are bound,
or the bound-continuum channel, in which one electron re-
mains bound while the other is free. Conversely, the closer is
�E	P	E
 to zero, the more closely does 	E
 describe an eigen-
state belonging to the continuum-continuum channel, in
which both electrons are free. In Fig. 4 we show the expec-
tation value of P over a range of energies extending from
about −0.527 to 3.0 a.u. Not surprisingly, this expectation
value is �very close to� unity at energies below 0 eV, the
complete breakup threshold, and it drops abruptly just above

FIG. 3. �Color online� Inclusive cross section for 1S-wave elec-
tron scattering from a hydrogen atom over a range of impact ener-
gies above the threshold �13.6 eV� for breakup. Solid curve: present
results, basis size 3280. Open triangles: present results, basis size
1860.
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this threshold, where the bound-continuum and continuum-
continuum channels are strongly mixed.

The projection operator P can be expressed in terms of
projection operators P1 and P2, where Pi projects onto the
subspace of the full two-electron space in which electron i is
bound to the nucleus; we have �38�

P = P1 + P2 − P1P2. �133�

We can write P1= �11−q1� � 12, where 1i is the identity op-
erator for the ith electron and where qi projects onto the
continuum states of the hydrogen atom whose electron is the
ith one. Substituting �11−q1� � 12 and �11−q1� � 12, respec-
tively, for P1 and P2 in Eq. �133� gives

P = 1 − q1 � q2, �134�

where 1=11 � 12. The complement of P is

Q = q1 � q2. �135�

If 	ki
 represents a continuum state of a hydrogen atom
whose electron is the ith one we have �with normalization on
the momentum scale�

qi = �
0

�

dki	ki
�ki	 . �136�

Note that the product 	k1
 � 	k2
 does not correctly represent
two electrons in the continuum, even at asymptotically large
distances, since it does not take into account the long-range
electron-electron interaction. Nevertheless, the integral over
k1 and k2 obtained by combining Eqs. �135� and �136� does
correctly describe the projection onto the entire double con-
tinuum; this follows from closure. The position-space con-
tinuum wave function is �dropping the subscript i for the
moment�

�r�	k
 = Cl�2kr�l+1eikr
1F1�l + 1 − i�,2l + 2;− 2ikr�Ylm�r̂� ,

�137�

where Ylm�r̂� is a spherical harmonic, 1F1� . . . � is a confluent
hypergeometric function, �=Ze2 /k, and, up to an irrelevant
phase factor,

Cl =� 2

�

	�l + 1 − i��	e���/2�

2�2l + 2�
. �138�

The radial and angular integrals that are involved in the con-
struction of the matrix representations of P and Q can be
expressed in closed form. Only the integral over ki—as in
Eq. �136�—needs to be evaluated numerically. It is expedient
to change variables from ki to x=tan−1�ki /��, so Eq. �136�
becomes

qi = ��
0

�/2

dx sec2 x	ki
�ki	 . �139�

We performed the integration over x using Simpson’s rule.
The radial Sturmian functions overlap both the bound-

and continuum-state subspaces spanned by the eigenstates of
the hydrogen atom. Since Snl

� �r� is normalized to unity the
expectation value �nl�	q	nl�
 of q �=q1 or q2� with respect to
Snl

� �r� also lies in the interval �0,1� and is a measure of that
proportion of a Sturmian function which lies in the con-
tinuum. From Fig. 5 we see that as the ordinal number n
−1 increases the proportion of Sn0

� �r� in the continuum in-
creases rapidly, and is about 80% when n�25, but this pro-
portion levels off and increases only very slowly as n in-
creases beyond about 40. This indicates that the benefit of
increasing the size of a Sturmian basis beyond an ordinal
number of roughly 40 is likely to be modest, at least for the
description of a scattering process.

System

o
f

P

FIG. 4. �Color online� Expectation value of the two-electron
projection operator—as in Eq. �133�—which projects onto the 1S
bound-bound- and bound-continuum channels of H− vs the un-
shifted eigenvalue spectrum. We smoothed the curve by averaging
the expectation value over the tiny energy interval 0.02 atomic units
�a.u.�. We used a basis with size 3280 and length scale �=0.7.
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FIG. 5. Expectation value, with respect to the radial basis func-
tion Sn0

� �r�, of the one-electron projection operator—as in Eq.
�136�—which projects onto the l=0 continuum states of the hydro-
gen atom vs the ordinal number n−1 of the basis, for �=0.7 a.u.
�thin line� and �=1.3 a.u. �thick line�.
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In Fig. 6 we show the total cross section for ionization
over the same range of energies considered for the inclusive
cross section. We calculated the ionization rate by using Eq.
�55� together with the variational principle, Eq. �128�. Again
we show results obtained using a basis size of either 1860
�triangles� or 3280 �circles�. The two sets of results agree
well at energies above about 40 eV, but the agreement begins
to deteriorate as the energy drops below 40 eV. We also show
the results �stars� of Bartlett and Stelbovics �9,39�, which to
our knowledge are the most accurate currently available. At
energies above about 25 eV, where the cross section reaches
its maximum, the results we obtained with the larger basis
agree well with those of Bartlett and Stelbovics, but at ener-
gies below where the cross section peaks our results fall too
rapidly as the energy drops toward threshold. Our basis is
composed of spatially compact functions, which fall off ex-
ponentially at large distances, so we would need to include
an extremely large number of such basis functions to achieve
convergence for energies below about 20 eV, where ioniza-
tion occurs over a long time interval and the electrons travel
far before the process is complete.

Our calculations were performed on a standard desktop
with 2 Gb of memory. The execution time was less than 10
min per impact energy. Most of this time was used to com-
pletely diagonalize the Hamiltonian matrix; we diagonalized
this matrix at each impact energy since the appropriate value
of the length scale of the basis �the most important param-
eter� varies roughly inversely with the impact momentum.
The primary source of error lies in the basis.
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APPENDIX A: CHEBYSHEV EXPANSION

Mandelshtam and Taylor �29� derived an expansion of the
resolvent in Chebyshev polynomials in the Hamiltonian.
They showed that �40�

G�E� = − i2t0 csc �
n=0

�

�2 − �n0�e−in�Tn�2Ht0� , �A1�

where Tn�2Ht0� is a Chebyshev polynomial of degree n. In
Eq. �A1� the parameters t0, �, and the shift � in the spectrum
of H have definite values, i.e., if Hmax and Hmin, respectively,
are the maximum and minimum eigenvalues of the matrix
that approximately represents H, we have �40�

t0 = 1/�Hmax − Hmin� , �A2�

� = arccos�2�E − H�t0� − i� , �A3�

� = − �Hmax + Hmin�/2, �A4�

where in position space � is a real positive function of the
spatial coordinates which grows with distance. In order to
make an appropriate comparison between our approach and
the Chebyshev expansion of the resolvent, we put T�� in
Eq. �13�, or, rather, we add a tiny positive imaginary part, �
say, to E, so that the left side of Eq. �13� reduces to the
resolvent 1 / �E−H� for �T�1:

G�E� = − it�e−t�H

��I0�2Et�� − 2t�H
n=1

�
1

n
In�2Et��Ln−1

�1� �2t�H�� ,

�A5�

where, changing back to the variable �=Ts in Eq. �14�, let-
ting T→�, and rotating the integration contour through the
angle �,

In�2z� = �
0

�

d�eiz�� � + i

� − i
�n

. �A6�

A closer comparison can be made after observing that
zLn−1�z� /n can be analytically continued to n=0 by express-
ing the Laguerre polynomial as a confluent hypergeometric
function in the continuous variable n; we find that
zLn−1�z� /n→ez−1 as n→0. Hence we arrive at

G�E� = it��t�H�e−t�H

��
n=0

� �2 −
et�H

sinh t�H
�n0�1

n
In�2Et��Ln−1

�1� �2t�H�� .

�A7�

Of course, neither Eq. �A5� nor Eq. �A7� are of practical use
as they stand because, having taken the limit T→�, the ex-
pansions are not convergent due to the branch point at infi-
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FIG. 6. �Color online� Cross section for ionization of a ground-
state hydrogen atom by 1S-wave electron impact. Stars: data from
Bartlett and Stelbovics �9,39�. Open triangles: present results, basis
size 1860. Open circles: present results, basis size 3280. The same
energy abscissa were used to plot all three sets of data.
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nite time. However, it is evident that the Chebyshev expan-
sion of the resolvent, Eq. �A1�, is the analog of the Laguerre
expansion described by Eq. �A7�; the Chebyshev expansion
emerges from consideration of the spatial behavior of the
physical branch, whereas the Laguerre expansion emerges
from consideration of the temporal behavior. As shown by
Mandelshtam and Taylor �29�, the spatial function � amounts
to the inclusion of a complex absorbing optical potential in
H. The coefficients e−in� in Eq. �A1� contain information
about the branch, as do the coefficients In�2Et�� in Eq. �A7�.

The Chebyshev expansion has been used with consider-
able success in numerous applications �41�. Its primary dis-
advantage is that the operator e−� is difficult to evaluate un-
less � is diagonalized in position space.

APPENDIX B: EVALUATION OF nLn
(1)(2z)un Õnm

The sum n=0
N Ln

�1��2z�un formally converges in the limit
N→� for all u inside the unit disk. The infinite sum does not
exist at u=1 but the limit N→� has a meaning at all other
points in the u plane, both on and outside the circumference
of the unit disk, as follows from the generating function. The
finite sum can be cast in a form suitable for computation by
using the contour-integral representation

Ln
�1��2z� =

1

2�i
� dve−2zv�1 + v

v
�n+1

, �B1�

where the contour encloses the origin v=0 in the counter-
clockwise sense. Interchanging sum and integral, and evalu-
ating the resulting geometric series, gives


n=0

N

Ln
�1��2z�un =

1

2�iu
� dve−2zv� y − yN+2

1 − y
� , �B2�

where

y = u�1 + v�/v . �B3�

In the special case where u=1 we have y / �1−y�=−�1+v�
and the right side of Eq. �B2� is an integral representation of
LN

�2��2z�, so we obtain the well-known result n=0
N Ln

�1��2z�
=LN

�2��2z�. In general, we cannot evaluate the integral on the
right side of Eq. �B2� exactly. To proceed, we expand the
contour of integration in order that 	y	�1 along the entire
contour, which is possible as long as 	u	�1. Thus the con-
tour now encloses both v=0 and the point v=u / �1−u� at
which y=1. Since yN+2 vanishes in the limit N→� we have


n=0

�

Ln
�1��2z�un =

1

2�iu
� dve−2zv� y

1 − y
� . �B4�

The integrand on the right side of Eq. �B4� is nonsingular
save for a pole at y=1; the integral can be evaluated using
Cauchy’s residue theorem, which, as expected, yields the
generating function on the left side of Eq. �6� for m=1. It
follows that the finite sum is the difference of the infinite
sum and


n=N+1

�

Ln
�1��2z�un=

1

2�iu
� dve−2zv� yN+2

1 − y
� �B5�

=
1

2�iu�1 − u�
e−2zu/1−u� dve−2z�v−u/1−u�

�� vyN+2

v −
u

1 − u
� , �B6�

where in the second step we wrote 1 / �1−y�= �v / �1−u�� / �v
−u / �1−u�� and we rearranged the integrand in anticipation
of differentiating with respect to z, so as to eliminate the
term v−u / �1−u� in the denominator, thereby simplifying the
integral. Proceeding accordingly, we have

1

2�i

d

dz
� dve−2z�v−u/1−u�� vyN+2

v −
u

1 − u
�

= − 2
1

2�i
e2zu/1−u� dve−2zvvyN+2 �B7�

=
1

2�i
e2zu/1−u d

dz
� dve−2zvyN+2 �B8�

=e2zu/1−uuN+2 d

dz
LN+1

�1� �2z� , �B9�

where in the last step we used Eq. �B1�. The integral on the
left side of Eq. �B7� can be evaluated at z=0 by expanding
the contour of integration to a circle of arbitrarily large ra-
dius, along which

vyN+2

v −
u

1 − u

� uN+2 +
uN+2

v
�N + 2 +

u

1 − u
� . �B10�

The integrand has a pole at v=0 and the integral can be
immediately evaluated using Cauchy’s residue theorem:

1

2�i
� dv� vyN+2

v −
u

1 − u
� = uN+2�N + 2 +

u

1 − u
� . �B11�

Consequently, we arrive at the result


n=N+1

�

Ln
�1��2z�un =

uN+1

1 − u
e−2zu/1−u�N + 2 +

u

1 − u

+ �
0

z

dz�e2z�u/1−u d

dz�
LN+1

�1� �2z��� �B12�
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=
uN+1

1 − u
e−2zu/1−u� u

1 − u
+ e2zu/1−uLN+1

�1� �2z�

−
2u

1 − u
�

0

z

dz�e2z�u/1−uLN+1
�1� �2z��� ,

�B13�

where we integrated by parts and used LN+1
�1� �0�=N+2.

Assume now that u lies in the neighborhood of −1. There-
fore e2z�u/1−u�e−z�, and since LN+1

�2� �2z�� oscillates rapidly
with z when N� 	z	 the main contribution to the integral over
z� comes from the lower end point at z�=0. Hence, provided
that N� 	z	 we can put e2z�u/1−u�1 to give, for the integral
over z�,

�
0

z

dz�LN+1
�1� �2z�� =

1

2
�N + 2 − LN+2

�0� �2z�� . �B14�

It follows that


n=N+1

�

Ln
�1��2z�un � −

uN

4
�2LN+1

�1� �2z� + ez�N − LN+2
�0� �2z��� ,

u � − 1. �B15�

We know from Eq. �95� that Ln
�m��2z� increases exponentially

with increasing �N if z is complex. However, if 	u	�1 the
factor uN decreases exponentially with increasing N, and
hence the right side of Eq. �B15� vanishes in the limit N
→� for all z. On the other hand, when u=−1 the right side
of Eq. �B15� does not vanish as N increases, even if z is real.
Integrating both sides of Eq. �B15� over u gives


n=N

�

Ln−1
�1� �2z�

un

n
�

uN

4N
�2LN+1

�1� �2z� + ez�N − LN+2
�0� �2z��� ,

u � − 1. �B16�

If 	u	�1 the right side of Eq. �B16� vanishes in the limit N
→� for all z. When u=−1 the right side of Eq. �B15� does
not vanish as N increases, but if we average over large N,
and if z is real, it does vanish since the factor �−1�N oscil-
lates.

In Sec. III we used the result


n=1

�
e−ina

nm Ln−1
�1� �z� =

1

m!
�

0

�

dxxm e−x−ia

�1 − e−x−ia�2e−�e−x−ia/1−e−x−ia�z.

�B17�

To prove this we use Eq. �B1� together with

1

nm =
1

m!
�

0

�

dxxme−nx, �B18�

to write, for arbitrary a,


n=1

�
e−ina

nm Ln−1
�1� �z� =

1

2�im!n=1

� �
0

�

dxxme−n�x+ia�

�� dve−zv�1 + v
v

�n

�B19�

=
1

2�im!
�

0

�

dxxm� dve−zv

�� v
�1 − e−x−ia�v − e−x−ia − 1� , �B20�

where in the second step we interchanged the order of sum-
mation and integration and summed the resulting geometric
series. Using Cauchy’s residue theorem to evaluate the con-
tour integral gives Eq. �B17�.

APPENDIX C: POTENTIAL SCATTERING

The s-wave elastic scattering of a particle of mass � and
energy Ek�k2 / �2�� from a potential V�r� is governed by the
radial Schrödinger equation

� 1

2�

d2

dr2 − V�r� + Ek�s�r� = 0. �C1�

Assuming that rV�r� vanishes for r�� �i.e., no Coulomb
tail�,

s�r� = sin kr + tan ��1 − e−�r�cos kr + ��r� , �C2�

where ��r� is a function of r, which vanishes at r=0 and has
the same characteristic range as V�r� and where � is a con-
stant whose value can be sensibly chosen to be the inverse of
the range of V�r�. The prefactor �1−e−�r� cuts off the irregu-
lar free-particle solution cos kr at r=0. The phase shift � is
related to the wave function at the origin through the “cusp
condition”

d

dr
�� s�r�

r
��

r=0
= �V�r�s�r�	r=0. �C3�

If �rV�r� 	r=0=C the cusp condition becomes

d

dr
�� ��r�

r
��

r=0
= C� ��r�

r
�

r=0
+ Ck + ��C +

�

2
�tan � .

�C4�

Substituting the right side of Eq. �C2� into Eq. �C1� yields

� 1

2�

d2

dr2 − V�r� + Ek���r�

− ���E� − V�r��cos kr +
k�

�
sin kr�e−�r

+ V�r�cos kr�tan � = V�r�sin kr , �C5�

where E���2 / �2��. Equations �C4� and �C5� are a pair of
coupled linear equations for ��r� and tan �, and they can be
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solved readily, and to very high accuracy, by expanding ��r�
on a discrete basis �42�. Note that the forward- and
backward-evolving distorted wave functions in the entrance
channel, which satisfy the boundary condition incorporated

in the integral equation, Eq. �49�, are e�i� cos �s�r�. If V�r�
were to have a Coulomb tail we would have to modify Eq.
�C2� by replacing sin kr and cos kr, respectively, by regular
and irregular Coulomb wave functions.
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