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Analytic description of atomic interaction at ultracold temperatures: The case of a single channel
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We present analytic descriptions of atomic interaction at ultracold temperatures using both single-channel
and multichannel quantum-defect theories. In the case of a single channel, addressed in this paper, the expan-
sion of Gao [Phys. Rev. A 58, 4222 (1998)] is generalized to higher orders for angular momentum /=2 to give
a more complete description of ultracold scattering, including an analytic description of ultracold shape reso-
nances of arbitrary /. We also introduce a generalized scattering length that is well defined and useful for all
partial waves to replace the traditional definition that fails for /=2 due to the long-range van der Waals
interaction. The results are used in a companion paper to derive analytic descriptions of atomic interaction
around a magnetic Feshbach resonance of arbitrary angular momentum /.
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I. INTRODUCTION

One of the key factors that has made cold-atom physics
such a thriving field has been the tunability of atomic inter-
action via Feshbach, especially magnetic Feshbach reso-
nances [1-3]. While the s-wave Feshbach resonances have
received most of the attention for many years, the same con-
cept is of course equally applicable to any other nonzero
partial waves. A number of such resonances have been ob-
served experimentally [3-8], including a recent observation
of a Feshbach resonance of /=8 [9]. Before we can under-
stand questions such as what happens to a few atom or a
many-atom quantum system, when a p-wave or a d-wave
Feshbach resonance is tuned around the threshold, we need
first to understand the corresponding two-atom system,
namely, how to describe atom-atom scattering and atom-
atom bound state with a Feshbach resonance of angular mo-
mentum [ around the threshold. This is the subject of this and
a companion study.

Recall that for the s wave, a magnetic Feshbach resonance
can be conveniently described by [10]

ABl=0 ) (1)
—0 .

—o(B) =ap,—0| 1 —
a.(B) abgl_o< B - By,

Here a,_, represents the s-wave scattering length, which is
tunable by the magnetic field B around a Feshbach reso-
nance, @y is a background scattering length, Ag._, is a
measure of the width of the resonance, and B, is the mag-
netic field at which a,_y=%, corresponding to having a qua-
sibound s state right at the threshold. Once the scattering
length is determined, the scattering properties above the
threshold, or the binding energy of an atom pair with large
and positive scattering lengths, can be determined—at least
to a degree [2,3]—from the effective-range theory (ERT)
[11-13], which, for positive energies, corresponds to the ex-
pansion
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where r,; is called the effective range.

The situation for / # 0 is considerably more complex due
to the long-range van der Waals interaction —C¢/r° between
atoms. First, we have the obvious problem that the scattering
length is not defined for /=2 [14,15], meaning that the en-
ergy dependence of the scattering phase shift will necessarily
differ from that implied by Eq. (2). Second, a Feshbach reso-
nance of /# 0, when slightly above the threshold, is in fact a
Feshbach/shape resonance, the atoms in such a state see the
angular-momentum barrier just like they would in a single-
channel shape resonance state. When such a Feshbach reso-
nance is tuned from above to below the threshold, its width,
due to the presence of the angular-momentum barrier, can be
expected to become increasingly narrow and approaches zero
when it crosses the threshold to become a true bound state.
Any complete theory for a Feshbach resonance of /# 0 has
to be able to describe this increasingly rapid energy variation
as it approaches the threshold.

It is thus not surprising that the key to understanding Fes-
hbach resonances of [ # 0, to be presented in a companion
paper, turns out to be the understanding of single-channel
shape resonances at ultracold energies—or equivalently—the
threshold behaviors of single-channel shape resonances,
which is addressed in detail in this work. We point out that
this is a nontrivial problem that to the best of our knowledge
has not been done except for the p-wave description in Ref.
[15]. Part of the difficulty can be attributed to the breakdown
of the semiclassical approximation around the threshold
[16-25], which implies, in particular, that the tunneling am-
plitude or probability through the angular-momentum barrier
[25] cannot be obtained semiclassically.

Our analytic description of ultracold shape resonances is
based on the small-energy expansion of the quantum-defect
theory (QDT) for —1/7° type of interactions [15,25,26]. It is
presented here in a general analytic framework for ultracold
atomic interaction that we call the QDT expansion, which is
applicable with or without the presence of ultracold shape
resonances. The presentation is organized as follows. In Sec.
II, we generalize the single-channel QDT expansion of Ref.

©2009 The American Physical Society


http://dx.doi.org/10.1103/PhysRevA.80.012702

BO GAO

TABLE I. Sample scale parameters for A+A type of systems
where A is an alkali-metal atom. The Bg=(2uCq/h%)* is the
length scale. The sp=(A2/2u)(1/B)? is the corresponding energy
scale. It is given both in units of uK and in units of MHz. s
=h/sg is the corresponding time scale. All are determined by the
Cg coefficient and atomic masses.

Ce Be Splkg sglh St
Atom (a.u.) (a.u.) (1K) (MHz) (ns)
OLi 139339 6252 7368 153.5 1.037
PNa  1556° 89.86  933.1 19.44 8.186
g 3897° 129.8 257.3 5.360 29.69
8Rb  4707° 164.3 75.58 1575  101.1
Bes 6860° 201.9 31.97 0.6662 238.9

%From Ref. [30].
From Ref. [31].
‘From Refs. [32,33].
9From Ref. [34].

[15] to higher orders for /=2 to give us a more complete
description of atom-atom scattering around the threshold, in-
cluding an analytic description of the threshold behaviors of
single-channel shape resonances. In Sec. III, we present fur-
ther understanding of ultracold shape resonances by extract-
ing from the QDT expansion analytic formulas for their po-
sition, width, and background. In Sec. IV, we derive from the
QDT expansion a generalized effective-range expansion,
from which we introduce the concepts of a generalized scat-
tering length and a generalized effective range that are well
defined for all angular momenta /. In Sec. V, we summarize
the QDT expansions derived previously in Ref. [27], for the
binding energies of the least-bound molecular state of arbi-
trary angular momentum /, using the standardized notations
of Ref. [25] that we adopt here. We also present in this sec-
tion a few intermediate results that will be useful in studying
magnetic Feshbach resonances of arbitrary /. Further com-
ments and remarks on the theory are presented in Sec. VI,
with conclusions given in Sec. VII. The Appendix presents
analytic results of generalized scattering lengths and other
QDT parameters, for arbitrary /, for two types of model po-
tentials, a hard sphere with an attractive tail (HST) of the
type of —C¢/r%, and the Lennard-Jones (LJ) potential of the
type of LI(6,10).

The analytic description of atomic interaction around a
magnetic Feshbach resonance of arbitrary /, which is neces-
sarily multichannel in nature [1-3], is developed in a com-
panion paper. It will be accomplished through first, a rigor-
ous reduction of the underlying multichannel problem, as
described by the multichannel quantum-defect theory
(MQDT) for —1/7° type of interactions [28], to an effective
single-channel problem, and a subsequent application of the
results of this work.

II. QDT EXPANSION FOR SINGLE-CHANNEL
SCATTERING

In this section, we derive and discuss the QDT expansion
for single-channel scattering. It differs considerably from the
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ERT [11-13], which assumes that k¥**! cot &, is both an ana-
lytic and a slowly varying function of energy around the
threshold and can therefore can be approximated by the first
few terms in its energy expansion. The QDT expansion
makes no such assumptions. The only quantities expanded
are the universal functions of a scaled energy that are asso-
ciated with the long-range potential [25]. There is no as-
sumption about how k**! cot &, or tan § may vary with en-
ergy. It is partly for this reason that the QDT expansion can
give analytic description of an ultracold shape resonance,
which has a rapid energy dependence that would have
required—at least—partial summation over all orders of en-
ergy in more standard approaches. The QDT expansion is
also more than a small-energy expansion. It is simulta-
neously a large-/ expansion, in the sense that for any fixed
energy, there is a sufficiently large / beyond which it be-
comes applicable. As a related consequence, the energy
range over which the QDT expansion is applicable increases
rapidly for larger /.

While the derivation of the QDT expansion is somewhat
tedious, the end result will be very simple. It is given by a
single analytic formula applicable to all angular momentum /
and regardless of whether there is, or is not, an ultracold
shape resonance. To make the derivation easier to follow, we
first rewrite, in Sec. I A, the QDT for single-channel scat-
tering [15,25,26] in a form that makes its subsequent expan-
sion presented and discussed in Sec. II B fully transparent.

A. QDT for single-channel scattering

For a single-channel problem with long-range —Cq/ 7% in-
teraction, the scattering above the threshold is described rig-
orously in the QDT by the following equation for the K
matrix [15,25,26]:

Kj=tan &= (ZLK = Zo)(Z5, — Z0,K) . (3)

Here K“(e,l) is a short-range K matrix that depends weakly
on both the energy € and the angular momentum / [25]. The
Z:, are elements of the Z° matrix for the —1/7° type of po-
tentials labeled here using the standardized notation of Ref.
[25]. They are given explicitly by

ijs =A,Z{[1 - (- l)lMeS, tan (v — vp) Jsin(7v/2)X,
+[1+ (- I)ZMGSZ tan (v — vp) Jcos(mv/2)Y},  (4)

Z.= A,Z{[tan m(v—vy) - (- l)lMssl]sin(TrV/Z)X,
+[tan (v - vp) + (- l)lesl]COS(WV/Z)Yl}, (5)

ZZ,S = A,Z{[l + (- l)lMEx,tan (v - vy)cos(mv/2)X;
—[1-(- I)IMES, tan (v — vy) Isin(7wv/2)Y},  (6)

Zy :AIZ{[tan m(v—vy) + (- 1)1M5Xl]cos(7rv/2)X,
—[tan w(v—vp) — (- 1)IM€j_l]Sil’l(7TV/2)Yl}, (7)
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where
Gesl(v)cos (v - 1)

\E(Xl2 +Y])sin v

=

vo=121+1)/4, MESFGESI(—V)/GESI(V), with the characteristic
exponent v, and functions X;, Y;, and Gey being defined in
Ref. [29]. They are all universal functions of a scaled energy,

€, = €lsg, (8)

where sp=(h%/2u)(1/B¢)?* is the energy scale corresponding
to the length scale Bs=(2uC¢/%%)"* that is associated with
the —C¢/r® potential. For the purpose of providing orders of
magnitudes, these scales—and also the related time
scale—sr=#/sg are tabulated in Table I for selected alkali-
metal dimers. They are all determined by the Cg coefficient
and the reduced mass u.

Equation (3) gives an exact description of a single-
channel atomic scattering in terms of a set of universal func-
tions determined solely by the long-range interaction. All the
short-range physics are encapsulated in K°(e,l), which is
slowly varying in both € and [ around the threshold [25].

Instead of the K parameter, the short-range atomic inter-
action in any partial wave can also be described using alter-
native parameters such as the quantum-defect u¢ or the pa-
rameter cho [25]. They are all related but have different
utilities for different purposes. For this work, which focuses
on the ultracold regime around the threshold, the most con-
venient parameter is K. It is defined as the short-range K
matrix associated with the £ and g° reference pair of Ref.
[25], and is related, for —1/r% type of potentials, to the K°
and u‘ by

K¢(€,1) — tan(7ryy/2)
1 + tan(7vy/2)K(e,1)’

K e = )

=tan[ 7u‘(e,1) — lm/4]. (10)

With this definition, K{°(e=0)=0 corresponds to having a
bound or quasibound state of angular momentum [ right at
the threshold, a small and positive KfO(O) corresponds to
having a bound state of [ close to the threshold, and a small
and negative K;(0) corresponds to having a shape resonance
of angular momentum [ close to the threshold [27,35,36].
This property of K{°, which was called x; in Refs. [27,36]
and is related to the K| of Ref. [15] by K{’=—K?, allows it to
be used as an expansion parameter when there is a state close
to the threshold [27]. As will become clear later in the paper,
ch0 is also the short-range parameter that has the simplest
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relation to the scattering lengths and the generalized scatter-
ing lengths.
Defining 6, by

sin 6,=Y,(X] +Y])™"2, (11)

cos 6= X,(X? + Y?)~12, (12)

the elements of the Z¢ matrix can be further written as

. 1
Z, :BZZ|:Si1’1<5’7TV+ 9,) -(- l)lMexltan (v — 1)

1
Xsin(ETrv— 01)}, (13)
z (1 I
Z;.= Bj| tan m(v — 1)sin 5771/+ 0] - (- l)MES,
(1
><sm<57'rv— 0,)}, (14)
z 1 I
Z,,=Bj| cos i 6]+ (= 1)'M tan 7(v - )
1
Xcos(awv—@)], (15)
z 1 1
Zy. = By| tan 7(v - vp)cos 5771/+ 0, +(—1)MES,
1
Xcos(imf— 01)}, (16)

where
GEYI(V)COS m(v—1p)
N \,E(Xl2 + Y 2sin v’

Substituting Egs. (13)-(16) into Eq. (3) and using Kfo(e) as
the short-range parameter, we can rewrite the QDT equation
for the K matrix as

B; (17)

Kl =tan 5[
=—tan[7(v— )]
A (e 1 - tan*[ (v — vp)] (18)
S T AR an[m(v - v)]

where ks=651/2=k,36, and

(- 1)'M, sin 7TV0:| [1+(- I)ZKfO]{l +tan 6, tan[ 7(v — )/ 2]} - [(- 1)' = Kfo]{tan 0, — tan[ (v — vy)/2]}
K,CO —tan 6, — tan[ w(v — v)/2] - KZCO tan 6, tan[ w(v — v)/2] ’

gls(es) = |: k2[+1
s

(19)
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This is still an exact expression for K;, and it has been writ-
ten in a way to make its QDT expansion fully transparent.

B. QDT expansion

For small energies around the threshold, or for arbitrary
energy but sufficiently large /, the quantities in Eq. (18) can
be represented by expansions [27] that derive straightfor-
wardly from the analytic solution for the —1/r° type of po-
tential [29],

- _ 3 4
T e e 0
1
tan 6,=— mq+ 0(63), (21)

1+ (= 'K}’ = [(= 1) = K16, = m(v = wp)/2] + O(K?)
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! ™ ! e
2427 sin(7wg) [T(v) T (v, + D

2

Mesl:(_ 1)

4
x{l +2(v—vy)ln|e,| - [(— Dimr+8In2+—

[$)
] A [T
F20) (=) e )
16 1
_(ﬁ—4V_(w—lVUb—®}é}
+ O[] *(Inle,)?], (22)

where v,=(2[+1)/4, as defined earlier, v,=2v,=[+1/2, and
(x) is the digamma function [37].

Combining these expansions with Egs. (18) and (19)
shows that the K matrix has the following structure:

tan &= — 7(v - vy) — a k™!

where

B 712
W= AT (12 + 4T (1 +3/2)

v

T 222 + USRI+ 1) 11T

(24)

is what we call as the scaled mean scattering length for an-
gular momentum /. It is a generalization of the s-wave mean
scattering length of Gribakin and Flambaum [19] to p [27]
and higher partial waves. More explicitly,

7= 04779888 (25)
TN e ’
I(1/4)T
Gy = WUDE 1162277, (26)
36

For larger [, it decreases rapidly and can be either computed
directly or obtained from a,,_, and a,,_; using the recurrence
relation

— _ ! a.
5142 = [21+5)(21+3)(21 + 1)]2%[’

(27)

which gives, e.g., ay_,=a-y/225. Together, they represent a
set of universal numbers determined solely by the long-range
potential. The corresponding mean scattering length, with
scale included, is defined as 51:551,8?”.

Equation (23), if kept to the order of &, gives the follow-
ing result for the s wave:

K~ 6,— m(v—vp)12 + O(K°)

[1+0(K Ink)]+0(Y,  (23)

1+ K~ (1= KO (562 + 55k7)

0 1,2, w4
K" = 3k + 35k;

4 , 2(22 4
X[ 1=—Zk;Ink;+-—|—+In2-vy]k/|,
15 15\ 5

T,
tan 5[20 = Eké - Clsl:()ks

(28)

where y=0.577 215 664 9... is the Euler’s constant [37]. Re-
sults of even higher orders are possible. An s-wave result to
the order of kf was given in Ref. [15]. Similar results can be
written down for other partial waves.

For the range of energies of interest in cold-atom physics,
this level of complexity is actually unnecessary, especially
for higher partial waves. For simplicity and easier applica-
tion, we will use the following approximation of Eq. (23) for
all :

tan & =~ K% + k1P, (29)
where

Kﬁ’” ~-m(v-1,)
_ 3 2
- 2[+5Q21+3)2I+1D)(2I-1)(21=-3) °¢

(30)

is a term that could have been derived from the Born ap-
proximation (see, e.g., Ref. [38]), and

KPP ~ - A (e)k2! (31)

describes the deviation from the Born term. Here,
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~ g oy 1+K§00[ :|

Axl(ex) asl|:( 1) +K;-0_ HI—W(V—VO)/Z B (32)
I P ) [ R Ve i }
_a“’{( D+ (20+3)21 - DK + ¢, + wie |’ (33)

can be regarded as a scaled energy-dependent generalized

scattering length. Both expressions for gs,(es) are useful for
different purposes. In Eq. (33), w; is an [-dependent constant
defined by

37

YIS 21+ 5) 20+ 1)(2i-3)

(34)

Equation (32), while less explicit compared to Eq. (33), is
more convenient for a number of conceptual purposes. Here,
m(v—1,) is given by Eq. (30), and 6, is given by Eq. (21), or
more explicitly by

1

ﬂlz—mey (35)

Together, Egs. (29)—(33) give a single analytic formula for a
low-energy atomic scattering that we call as the QDT expan-
sion. It is applicable to all /, with or without the presence of
ultracold shape resonances. It has the following additional
characteristics. (a) The QDT expansion remains applicable
no matter how rapidly the K:’(e) parameter may depend on
energy. In arriving at Egs. (29)—(33), the only quantities that
are expanded are the universal functions associated with the
long-range potential. There is no assumption about the val-
ues of K{°(e) or how it may depend on energy. While this
feature of the QDT expansion is not important for true
single-channel cases, for which the energy dependence of
Kfo is almost always negligible [15,26], it will become cru-
cial when we apply it to effective single-channel problems
that are derived from intrinsically multichannel ones, for
which the energy dependence of K;'O is generally important.
(b) The energy range over which the QDT expansion is ap-
plicable increase rapidly with [, roughly as /°. This is consis-
tent with the fact that the QDT expansion is simultaneously a
large [ expansion [27]. For any energy, there is a sufficiently
large / beyond which it becomes applicable. The only condi-
tion for the applicability of the QDT expansion is €,<< €,
where €, is the scaled critical energy beyond which the
characteristic exponent v becomes complex [29]. Values of
€, for the first 12 partial waves are listed in Table II. For
large [, they correspond roughly to the scaled height of the
angular-momentum barrier given for —1/7° type of potentials
by H,=(2/3*?)[1(1+1)]*"%. As will be discussed in more de-
tail elsewhere, the critical energy is also the energy around
which the behavior of the system goes from being quantum
to being semiclassical [23,25]. Thus, the QDT expansion can
also be regarded as a quantum expansion, applicable over a
quantum region of energies where the quantum reflection
probability is close to 1 [29].

Figures 1 and 2 illustrate the QDT expansion for p and d
waves, respectively, using cases that have a shape resonance
in the threshold region. Since our interest here is in the case
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TABLE II. Critical scaled energies €, for different angular mo-
mentum /. Beyond ¢, the characteristic exponent v for the —1/7%
solutions [29] moves off the real axis and becomes complex.

l Escl l €scl

0 1.544707 6 94.82401
1 2.358067 7 212.3067
2 6.891073 8 206.8228
3 25.29322 9 406.8301
4 33.17273 10 383.5433
5 89.85261 11 687.4041

of a single channel, cho is taken to be a constant [15,26],
K°=K{%(€=0), which is related in a simple way to the scat-
tering length by Eq. (48) or Eq. (52), to be discussed in more
details later. Note that the QDT expansion is applicable re-
gardless of how narrow the shape resonances may be. In fact,
it is more accurate for narrower resonances which are neces-
sarily located at smaller energies, as illustrated in Fig. 2. For
higher partial waves, the results of the QDT expansion are no
longer distinguishable from the exact QDT results computed
using Eq. (3), in the range of energies shown in Figs. 1 and
2. Such results are easily calculated from the analytic for-
mula and are therefore not shown.

Figure 1 is also used to illustrate the limitation of the ERT
[11-13]. In the figure, the ERT results are computed from

[see Eq. (2)]
k3 cot 6[:1 =—- 1/a,=1. (36)

Note that since the effective range is not defined for the p
wave due to the van der Waals interaction [14,15], it is in-
correct to add an effective-range term to Eq. (36). The
lowest-order correction to the right-hand side of Eq. (36) is

o
=]

Exact QDT
————— QDT Expansion 1
-- ERT

N
o

@W

=]
T
I

n

o
T
I

o
T
\
I

Partial Cross Section ( nB62 )

o©°
o
o L
LS}
<
IS
=}
o
o
=3}
o

FIG. 1. (Color online) p-wave partial cross sections for
a_y/@-;==20 (corresponding to K°, ~-0.0526). Results of the
QDT expansion (dashed line) are compared to the exact QDT re-
sults computed from Eq. (3) (solid line) and the results of ERT
(dash-dotted line).
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o
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T
I

— K7=-001
——— K=-0.02
—e-e KY=-0.03 E
——————— K=-0.04

—— K=-0.04 Exact

80

60 [ T

20 [0

Partial Cross Section ( nB62 )

FIG. 2. (Color online) d-wave shape resonances as described by
the QDT expansion for different values of K,ng The exact QDT
results computed from Eq. (3) are only shown for Ki,=—0.04 as
they become indistinguishable from those of QDT expansion for
smaller |K;32| For higher partial waves, the QDT expansions are
more accurate and applicable over a greater range of scaled energies
than shown here for the d wave.

on the order of k [see Egs. (29)—(33) or Ref. [15]], not on the
order of k* as implied by the ERT. Figure 1 clearly illustrates
the failure of ERT, which misses the p-wave shape resonance
completely. The consequence of such a failure for two atoms
in a trap has been illustrated elsewhere [39]. Careful readers
should note that the ERT description of p-wave interaction is
still sometimes incorrectly used in the literature. This is un-
fortunate, considering that a correct description, at least in
the case of a single channel, has been available for some time
[15].

Among all partial waves, the QDT expansion for the s
wave has the smallest range of applicability because the criti-
cal scaled energy given in Table II is smallest for /=0. For
the s wave, the most stringent test of the expansion is for
a;-o=0. It corresponds to a case where the lowest-order con-
tribution —a,_pk to tan &, goes to zero, and we are directly
testing the higher-order terms. As will be discussed in more
detail in Sec. 1V, this is also the case where the effective-
range expansion, even in its generalized form of Sec. IV,
fails completely. Figure 3 illustrates the accuracy of the QDT
expansion for this worst-case scenario. It shows that the sim-
pler QDT expansion that we are recommending here is ac-
curate for roughly €,<<0.1. From Table I, it is clear that this
range of scaled energies already covers all energies of inter-
est in cold-atom physics. The QDT expansion is more accu-
rate and applicable over a greater range of energies in all
other cases and for all other partial waves.

For the s and p partial waves, our results here are consis-
tent with those of Ref. [15], except they are now written in
simpler forms that are also better for physical interpretation.
For [=2, the KD term, which is on the order of kf“' under
nonresonant conditions of |KIC0| being on the order of 1 or
greater, is normally negligible, as was done in Ref. [15]. In
doing so, however, we missed in our previous work [15] the
analytic description of low-energy shape resonances for [
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0.020

Exact QDT
"""" QDT Expansion
- Higher Order Exp.

0.015 -

0.010 [ % E

0.005 - B

0.000 Il Il Il Il Il
0.00 0.05 0.10 0.15 0.20 0.25 0.30

€s

Partial Cross Section ( TEB62 )

FIG. 3. (Color online) s-wave partial cross sections for a;.=0,
representing the worst-case scenario for the QDT expansion. The
results of the recommended QDT expansion (dashed line) are com-
pared to the exact QDT results from Eq. (3) (solid line) and the
results of a higher-order expansion given by Eq. (28) (dash-dotted
line).

=2 and an opportunity to define the generalized scattering
length and the generalized effective range. These subjects are
addressed in the next two sections, respectively.

III. THRESHOLD BEHAVIOR OF SHAPE RESONANCES

The QDT expansion of Egs. (29)—(33) is applicable
whether or not there is a shape resonance in the threshold
region. When such a resonance does exist, which occurs for
[=1 and a small and negative KCO, namely, for Kf0<0 and
|K°| <1, further conceptual understanding can be achieved
by extracting from the QDT expansion the standard param-
eters characterizing a resonance, namely, its position, width,
and background (see, e.g., Ref. [40]).

The position of a shape resonance in the threshold region
can be determined from the root of the denominator in Eq.

(31,
0+ m(v— VO)/Z:KICO. (37)
It has a solution only for a small and negative K<, for which

it can be solve perturbatively to give the scaled resonance
position as

€~ — (21+3)(21 = DKL1 +wy(21+3)(21 - K],
(38)

in which w; is defined earlier by Eq. (34). Around the shape
resonance, the term KgD )=—gs,(es)kfl+l can be written as

1 %
K~ Kjgi(e) - 5 (39)

s sl
with the scaled width 7y, given by
¥y = 2021+ 3)(21 - D]a,(- K%

3m2+3)(21-1)
421+ 1D)(21=-3) 1 |

(40)
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_2(21+3)(21 - Day(ey) """
1+ ZWZGSZ

; (41)

and the contribution of K}D ) to the background Kg,l;,)( €,) given

by
— 32 312
Kl(;Dl)—l ~_ Sasl (Es — €y ) _ (5_77 _ 1)5]&/2’
8= 1-Ze,\ €€y 14 .
(42)
— 5/2 2

p) ___2lay (Es - &) ) (43)

bg1:2 1 + %ed ES _ Esl bl
Kjgl=z = 0. (44)

Corresponding to the width of Egs. (40) and (41), there is a
well-defined lifetime (see, e.g., Ref. [40]),

T = TaST= (1/7sl)ST’ (45)

where s;=%/sp is the time scale associated with the length
scale B¢, with sample values for alkali-metal atoms given in
Table I, and 7=1;/s7=1/7, is the scaled lifetime.
Equations (40) and (41) show that the width of a shape
resonance goes to zero as it approaches the threshold, below
which it becomes a true bound state. The corresponding life-
time goes to infinity. Equation (41) further shows that the
scaled width and therefore the scaled lifetime, when viewed
as a function of the scaled resonance position, follows a uni-
versal behavior that is uniquely determined by the long-
range interaction. In other words, while the resonance posi-
tion itself, as given by Eq. (38), depends on the short-range
parameter KCO, the functional form of the scaled width or
lifetime versus the scaled resonance position is independent
of it. This universal behavior is illustrated in Fig. 4 for the
first few partial waves. It also illustrates that the lifetime of a
shape resonance can change by many orders of magnitudes,
from a microscopic scale of s (see Table I) to a macroscopic

1

K= 6,+0(k})
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FIG. 4. (Color online) Universal relation between the scaled
lifetime and the scaled position of a single-channel shape reso-
nance, as given by Eqs. (41) and (45), for —1/7° type of long-range
potentials. The lifetime can change by many orders of magnitude
for a small change in the resonance position.

scale of seconds or longer, as the shape resonance ap-
proaches the threshold. The existence of such a potentially
macroscopic time scale [9] is one of the key differences be-
tween the coupling of atoms in /# 0 and /=0 partial waves.

IV. GENERALIZED SCATTERING LENGTH
AND GENERALIZED EFFECTIVE RANGE

The QDT expansion [Egs. (29)—-(33)] already suggests
that one may be able to define a generalized scattering length
for an arbitrary /. This, and the definition of a generalized
effective range for an arbitrary /, can be done in a way that
more closely resembles the standard ERT [11-13], as fol-
lows.

Defining 5;3) =—m(v—-1,), we have from Egs. (18)—(22),

e[ 1)

g

In the case of a single channel, the energy dependence of cho
is completely negligible [15,26]. A further expansion of the
denominator in Eq. (46) gives the following generalized
effective-range expansion:

I 1
R ot 5" == 2+ STk + O In ), (4)
a

with the generalized scattering length a; given by

L+ (= 'K’ = [(- 1)) = K°16,+ O(K?)

[1+ 0Kk In k)] + O(K?). (46)

5z=5{(— '+ (48)

1
Ke=0) ]’
where 5,=(7s,,8§l+1 is the mean scattering length for angular
momentum [/ that we have defined earlier (with scale in-
cluded). The generalized effective range 7,; is given by

__ 2a,8 Y (7
7, = (21+3)(21—1)6712{1+[( ' =(@/a)]}. (49)

For quantum systems with a long-range —1/7° type of inter-
action, Eq. (47) defines the generalized scattering length and
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effective range for an arbitrary /. It coincides with standard
definitions of scattering lengths and effective ranges when-
ever they are well defined in the standard theory [11-14].
Namely, a;=a, for /=0 and 1 and 7,;=r,, for /=0. Similar to
the standard theory, a; has a dimension of gl”, and 7,; has a
dimension of ,Bgz”l. The generalized scattering length is also
related to A (e€,) by @=A,(e,=0)B2"".

With this definition of generalized scattering length, hav-
ing a bound or quasibound state right at the threshold—
characterized in terms of the cho parameter by
K:°(e=0)=0—always corresponds to @ =2, for any /. Simi-
larly, having a shape resonance close to the threshold char-
acterized by a small and negative Kfo corresponds to having
a large and negative generalized scattering length; having a
bound state close to the threshold characterized by a small
and positive Kfo corresponds to having a large and positive
generalized scattering length. Such similarities to the s-wave
interaction make the generalized scattering length an easy
parameter to understand, without having to know the QDT
behind it. As examples of the generalized scattering lengths
for arbitrary /, we present, in the Appendix, their analytic
results for two classes of model potentials with —1/7° type of
asymptotic behaviors.

We point out that the main utilities of the generalized
effective-range expansion [Eq. (47)] are (a) to define the gen-
eralized scattering length as an alternative parameter for de-
scribing low-energy atomic interactions, (b) to make a con-
nection between the QDT expansion and the ERT to the
degree possible, and (c) to simplify the understanding of the
QDT expansion for peoples who are not completely comfort-
able with QDT formulations. It is not meant to be a replace-
ment for the QDT expansion. As far as accuracy is con-
cerned, the QDT expansion is always more accurate. This
loss of accuracy in the generalized ERT occurred in expand-
ing the denominator of Eq. (46), whose full representation
would have required an infinite number of terms in the stan-
dard ERT type of expansions.

The procedure of expanding the denominator has more
severe consequences in the special case of a;=0, for which
;=% from Eq. (49), and the effective-range expansion, even
in its generalized form here, becomes meaningless. In com-
parison, the QDT expansion remains applicable and gives,
for @=0 [corresponding to K{*=—(~1)"],

KD ~ 2ak" (50)
L@+ 1) = (= 1)K = (= Dkt

This result also implies that @;=0 changes the threshold be-
havior of K;=tan &, for /[<2. For @;#0 (and a,# =), it is
clear from the QDT expansion that the threshold behavior for
[<2 is determined by the K;D ) term that behaves as KgD )~
—ak*"*!. The threshold behavior for /=2 is dominated by the
Born term, which behaves as kf. For a,=0, Eq. (50) means
that the threshold behavior for the s wave changes from
tan Oy~ —d;—ok to tan 5,=0~—2c_13‘,=0k3/3. The threshold be-
havior for the p wave changes from tan §,_; ~—a,_;k> to be-
ing dominated by the Born term tan ., ~—7ka/ 35.
Another special case for which the threshold behavior
may be modified is the case of @=(K=0), corresponding
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to having a bound or quasibound state right at the threshold.
The QDT expansion gives for this special case,

D _ (21 +3)(21 - Dagk ~

! (- Dlage™'. (51)

1+wik?
It means, in particular, that the threshold behavior for tan &
is modified for /=2 for having a bound or quasibound state
right at the threshold. Specifically, it is changed from tan &
~—ak**!, for cases of @# (and @ #0), to tan &~ —(2/
+3)(21-1)ayk*~" for @=». The threshold behaviors for
>2 remain dominated by the Born term (~k?) even with a
bound state right at the threshold. We note that the general-
ized effective-range expansion would have given

7= —2BY[(21 +3)(2l - 1)a]
and
tan & = &% — (21 +3)(21 - 1)a k>

for @;=0°, corresponding to the lowest-order term in Eq. (51).

As a further comment on the generalized effective-range
expansion, we note that in arriving at Eq. (49) for the effec-
tive range, we have assumed that the energy dependence of
K¢ is negligible. This means that Eq. (49) is, strictly speak-
ing, a single-channel result that will need to be modified for
effective single-channel problems where the energy depen-
dence of ch0 is generally important (to be discussed in detail
in the companion paper). With this limitation in mind, Eq.
(49) does imply that in the case of a single channel, for
which the energy dependence of cho is negligible, the gen-
eralized effective range is not an independent parameter but
can be determined from the generalized scattering length. It
further implies that the generalized effective range has the
property of 7,,>0 for /=0 and 7,;<0 for /=1, again rigor-
ous only for true single-channel problems.

All QDT expansion results of previous two subsections,
which were parametrized using KICO, can be written in terms
of a; using Eq. (48), or equivalently,

1

K%e=0)= ——.
r(e=0) ala - (- 1)

(52)
We do not give these expressions explicitly, in part to again
emphasize the following subtle but important point. The ex-
pressions in terms of cho are more generally applicable be-
cause they make no assumption about the energy dependence
of K?O. The corresponding expressions in terms of a; auto-
matically assumes the weak energy dependence of K;’O since
in effect we are using K,CO(6=0) at other energies. This
subtlety is not an issue for true single-channel problems but
becomes one for effective single-channel problems derived
from multichannel cases (see the companion paper), for
which the equations in terms of K}"O remain applicable but
generally not those in terms of a;.

V. QDT EXPANSION FOR BOUND-STATE ENERGY

The bound spectrum of a two-body single-channel system
with —1/7° type of long-range interaction is given rigorously
by the solutions of [15,25,26],
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Xi(e) =K(e). (53)
where
tan 6, + tan(7v/2)(1 + MESI)/(I - Mesl)
" 1—tan 6, tan(mu/2)(1 + M_)/(1 - M)

Xi (&)

is a universal function of €, that depends only on the expo-
nent of the long-range interaction and on the angular mo-
mentum /.

For deriving the QDT expansion for the energy of the
least-bound state that is close to the threshold, it is again
more convenient to rewrite Eq. (53) in terms of the K pa-
rameter, as

xXi'(e) =K ’(e), (55)
where

X (€,) — tan(7ryy/2)

X (e,) = (56)

1 + tan(7uy/2) X! (€,)
Using expansions of v, 6, and M, as given by Egs.
(20)—(22), we have, for sufficiently small energies or suffi-
ciently large [,

O+ (v — 19)/2 + Ay Ky — g0k, b

Xi2o(e) = - = . (57)
I = dgok, — ag-ok, 0,

. O+ m(v—1y)/2 —ay- Kf,
Xi(e) =~ = S (58)
1 —ag - K

X;gz(es) = O+ 7(v—vp)/2. (59)

Here k,=(—¢,)""? and 6, and 7(v—1,) are given by Egs. (35)
and (30), respectively.

Having a bound state of angular momentum / close to the
threshold corresponds to having a small and positive Kfo.
The energy of such a state can be obtained by solving Eq.
(55) perturbatively using expansions given by Eqgs.
(57)—(59). This has been done in Ref. [27]. We summarize
the results here using the standardized notation (x; of Ref.
[27] is renamed Kfo), for the sake of completeness and easy
reference.

For the s wave, we obtained

1 : .
€50 =~ aZ_(K;So)Z[l + &K% + 82(Ki2)* 1+ OL(Ki2)° ],
sl=0
(60)
where €, is the [-wave bound-state energy scaled according
to Eq. (8), and g,=2[1/(3a’_))-1]1=0.917919 5, and g,
=(5/4)g1-2~-0.946 779 8.
For the p wave, we obtained
€y=1 == SKI L+ (K2 + K2 1+ O((KE) ™),
(61)
where ,=5%%a,_,~1299 466, and h,=3h}/2-57/14
~1.410919.

For [=2, the energy of the least-bound molecular state is
given by Eq. (38), namely, the same equation that gives the
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position of the shape resonance above the threshold. This
comes from the fact that Eq. (55), with x;° given by Eq. (59),
is the same as Eq. (37), which determines the shape reso-
nance positions. The only difference is that while K;'O is
small and negative for a shape resonance close to the thresh-
old, it is small and positive for a bound state close to the
threshold.

In cases of true single-channel problems, these equations
can again be written in terms of the generalized scattering
length using Eq. (52). The corresponding equations for the s
and p waves can be found in Ref. [27]. We skip writing down
these equations explicitly to again emphasize the greater ap-
plicability of the equations in terms of K{. Namely, unlike
the equations in terms of the scattering length or generalized
scattering length, which assume the energy independence of
Kfo, the equations in terms of Kfo are—strictly speaking—
applicable even when Kfo itself depends on energy. The only
subtlety here is that when the right-hand sides of equations
such as Egs. (60) and (61) become energy dependent, they
need to be solved again to obtain the bound-state energies.

The results presented in this section have been verified in
Ref. [27] through comparisons with the exact QDT results
obtained by solving Eq. (53) or Eq. (55) numerically. The
result for the s wave [Eq. (60)] has also been verified by
Derevianko et al. [41] and by Julienne and Chin [42] through
independent numerical calculations. In summary, the formula
for the s-wave bound-state energy is applicable for a,
>2a,, corresponding—approximately—to a;.>f or
|€,0| <4. The formulas for other partial waves are appli-
cable over a greater range of bound-state energies [27]. The
intermediate equations, including the expansions of the Xfo
function as given by Egs. (57)-(59), and Eq. (55), which is
applicable regardless of the energy variations of Kfo, will be
useful in developing the analytic description of magnetic
Feshbach resonance of arbitrary / to be presented in a com-
panion paper.

VI. DISCUSSIONS

We make here some miscellaneous comments on various
aspects of the theory, which, while not essential, may be
helpful in the understanding of this and related theories.

(a) The QDT expansion breaks naturally into two terms: a
Born term K§B ) and a deviation from the Born term K}D ). This
separation of K;=tan ¢§; is also convenient for a number of
other applications including, e.g., the understanding of angu-
lar distribution (see, e.g., Refs. [43,44]). There are other
separations of K;=tan &, possible. For example, it can be
separated into a background term and an interference term,
as suggested in Ref. [25]. One can show, however, that these
two types of separations are the same for /> 2, as is reflected
in the fact that the KED ) term has negligible contribution to
the background for [>2 [see Egs. (39) and (44)].

(b) Unlike the cases of s and p partial waves, the gener-
alized scattering length for /=2 has little effect on scattering
cross sections around the threshold, except in determining
the location of the shape resonance—and if there is one—the
cross sections around it.

(c) For true single-channel problems, having an ultracold
shape resonance can only happen by accident. In this sense,
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the most important applications of a theory for ultracold
shape resonance are not to the true single-channel problems
but to the effective single-channel problems associated with
Feshbach resonances, for which there will be at least one
state in the threshold region as the Feshbach resonance is
tuned around it. It is for this reason that we kept stressing the
formulas that remain applicable when Kfo becomes energy
dependent, which is the single most important difference be-
tween an effective single-channel problem for a Feshbach
resonance and a true single-channel problem.

It is for the same reason that we did not emphasize the
relationship of cho for different /. For a true single-channel
problem, the Kj'o parameters for different / are not indepen-
dent but are related to each other through Eq. (9), in which
K* is approximately independent of / [26]. As a result, the
Kfo for the first few partial wave can all be determined from,
e.g., the s-wave scattering length. This simple relationship
between different / breaks down for the effective single-
channel problems for Feshbach resonances. For such intrin-
sically multichannel problems, the cho parameters for differ-
ent [ are still related, as the underlying short-range K matrix
is still approximately / independent. Their values for differ-
ent / can still be computed from, e.g., the singlet and the
triplet s-wave scattering lengths for alkali-metal atoms [28].
Their relationship, however, becomes more complicated than
Eq. (9) and less transparent.

(d) While we have no intention of promoting one param-
eter over the other, as they all have different utilities, we
hope this work again illustrates that the scattering length, or
the generalized scattering length, is not the only parameter,
or necessarily the best parameter for characterizing an atomic
interaction at low temperatures. While many of our results,
such as those for resonance positions and binding energies,
can be written in terms of the scattering length or the gener-
alized scattering length, such equations are more complex
than those in terms of Kfo and have more restricted applica-
bility to the case of single channel. Furthermore, it should be
clear that in the scattering length representation, what is im-
portant is not the scattering length itself but the dimension-
less ratio a;/aj, as is also recognized by Chin er al. [3] for the
s wave.

(e) We point out that there are a number of other success-
ful QDT formulations of atomic interaction that are concep-
tually similar to ours in many aspects but based on numerical
reference functions [18,45-49]. Without incorporating at
least some ingredients of an analytic solution, numerical so-
lutions generally run into difficulty for very large scattering
lengths, namely, when there is a state very close to the
threshold. This is true for the s wave [50] and more so for
higher partial waves.

VII. CONCLUSIONS

In conclusion, we have presented an analytic description
of atomic interactions at ultracold temperatures for the case
of single channel. In particular, a QDT expansion for scatter-
ing has been developed that is applicable to all angular mo-
mentum /, with or without the presence of ultracold shape
resonances. Using the QDT expansion, we have developed a
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fully analytic characterization of ultracold shape resonances
in terms of its position, width, and background. We have also
introduced a generalized scattering length that can be used as
an alternative parameter to characterize atomic interaction at
low temperatures and discussed the changes in threshold be-
haviors in the special cases of zero and infinite generalized
scattering lengths. The analytic formulas derived make it
possible for an accurate description of an atomic interaction
in the ultracold regime without having to know the details of
the QDT or resort to numerical calculations.

The generalities of the results of this work will further
manifest themselves in a companion work on atomic inter-
action around a magnetic Feshbach resonance, which is nec-
essarily multichannel in nature [ 1-3]. We will show that such
a multichannel problem can be rigorously reduced to an ef-
fective single-channel problem, to which most of our results
here remain applicable. The key difference will be that the
effective Kfo parameter becomes energy dependent. It is this
energy dependence that leads to deviations from the single-
channel universal behaviors that correspond to the results
here specialized to an energy-independent K,CO.
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APPENDIX: ANALYTIC RESULTS OF Kfo AND
GENERALIZED SCATTERING LENGTHS
FOR TWO TYPE OF MODEL POTENTIALS

In a previous work [51], we have derived, for two classes
of model potentials, the analytic results of K(e=0,[) and the
number of bound states N, for an arbitrary /. One class de-
noted by HSTn is of the type of a hard sphere with an at-
tractive tail (HST),

o0
v =1 Al
HsTa(7) {—Cn/r”, (A1)
The other denoted by Lln is of the type of Lennard Jones

Li(n,2n-2),

Vun(}’) =- Cn/l’n + Czn_z/rzn_z, (A2)

which corresponds, in particular, to a LJ(6,10) potential for
n=6.

For HSTn potentials, we have shown that the K param-
eter at zero energy is given by [51]

J, (yo)cos(mry/2) = Y, (yo)sin(mvy/2)
0 0

K%STn(O9l) == . 5

J, (yo)sin(mvp/2) + Y,,O(yo)cos(wvo/Z)

(A3)

where vo=(2[+1)/(n-2), J and Y are the Bessel functions
[37], and y,=[2/(n-2)1(B,/ry)" 2%, in which g,
=(2uC,/hH)""2 is the length scale associated with the
C,/r" type of potentials.

For LJn potentials, we have derived [51]
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132(0.0) = tan(mvy/2)[ 1 + hy(z)J[1 = hy(z9) T, (A4)
where zo=(8,/B2,-2)"*/[2(n-2)] and
Losin m(zg+ 1/2 — vy/2)(zg + 1/2 = 1y/2)

h =2z,0 .
A2 = s 12 4 my )T (ot 124 12)

(AS)

Substituting these results into Eq. (9), We obtain
K;‘O(Ez O) == ‘IVO(yO)/YVO(yO)’ (A6)

for HSTn potentials, and
sin(7vy)h

Kfo(e= 0)= ( 0) z(Zo) (A7)

1 - cos(mvy)h/(zp)”

for LIn potentials. Both results are applicable for arbitrary n
and /.

Specializing to the case of n=6, these results combined
with QDT for n=6 [15,25,26] provide an accurate descrip-
tion of the scattering and bound-state properties for these
model potentials over a wide range of energies around the
threshold. They also give us the analytic results of the gen-
eralized scattering length for an arbitrary I. From Eq. (48),
we have, for n=6,
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5] = al[(_ 1)1 - YVO(yO)/JVO(yO)]’ (AS)

for HST6 potential, where vy=(2[+1)/4 and yy=(B4/ry)*/2,
and

a;

“ sin(7v) () ' (49)
for LJ6 potential, where zy=(8¢/B10)*/8. The generalized
effective range can be derived from these results using Eq.
(49). If one specializes Eq. (A8) to /=0, one recovers, for the
HST6 potential, the result of Gribakin and Flambaum [19]
for the s wave.

The analytic results of this appendix are useful for design-
ing model potentials to investigate universal properties not
only in two body [36,51] but also in few-body and many-
body quantum systems [51-53]. They can also be used to
check the accuracies of various numerical techniques and
methods. Last but not the least, they give an explicit illustra-
tion of one of the important properties of K° and related
parameters, i.e., K°(€,[), and therefore KICO(6=0) and @, are
meromorphic functions of /, namely, they are analytic func-
tions of [/ with only simple poles [25].
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