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The dynamics of the O2
− ion in a constant electric field is modeled in terms of a complex spectral decom-

position of the energy Green’s function for this open system. The survival probability of the excess electron in
the presence of the constant field and the photodetachment rate of the electron in the presence of a radiation
field are computed.
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I. INTRODUCTION

The mechanisms leading to the formation of metastable
states and decay processes in molecular systems are elusive
because of the complexity of the molecular dynamics that
give rise to those decay processes. These mechanisms are
important because they govern the dynamics of chemical re-
actions and the dynamics of molecular scattering processes.

The formation of metastable states in atomic systems is
more accessible and considerable work has been done, in
particular, on understanding the destabilizing effects of con-
stant external fields on atomic systems. The effect of con-
stant external electric fields on the photodetachment of
atomic ions is particularly striking and has been studied both
experimentally �1–4� and theoretically �5–9�. In the presence
of a constant external electric field the photodetachment rate,
as a function of frequency of an applied monochromatic ra-
diation field, exhibits oscillatory behavior above the thresh-
old for photodetachment and a nonvanishing value below the
threshold for photodetachment. Experiment and theoretical
predictions are in good agreement. The oscillations are at-
tributed to the interference between the emitted electron
wave traveling toward and reflected from the potential wall
caused by the presence of the constant electric field.

Until now, not much attention has been given to the pho-
todetachment rate of molecular ions in the presence of a
constant electric field. The effect of vibration on the photo-
detachment of the excess electron in O2

− has been studied in
the absence of a constant electric field �10�.

In this paper we consider a model that can describe the
decay and photodetachment of the excess electron in the O2

−

ion in the presence of a constant electric field. We assume
that the electric field is directed along the axis of the mol-
ecule, and we describe the attractive interaction between the
electron and the oxygen atoms in terms of delta-function
attractive potential wells �delta potentials�. This model of
O2

− is a generalization of work by Ludviksson �11� and by
Nickel and Reichl �12�. Ludviksson showed that singularities
of the energy Green’s function for a particle in a delta poten-
tial and constant force field could be found analytically in
some parameter ranges. Nickel and Reichl used Ludviks-
son’s model to develop a complex spectral decomposition of
the energy Green’s function and used the complex spectral
decomposition to compute the survival probability of the

particle. Emmanouilidou and Reichl later �9� used this spec-
tral decomposition to compute Wigner delay times for an
electron scattering from an H atom in the presence of a con-
stant electric field and the photodetachment rate of the excess
electron in H− in the presence of a monochromatic radiation
field.

In subsequent sections, we use a generalization of the
Ludviksson model to compute the survival probability for
the excess electron in the O2

− ion in the presence of a con-
stant electric field directed along the axis of the molecule.
We also compute the photodetachment rate when a radiation
field is applied to this system. It is important to note that for
this study we neglect the vibrational modes of O2

− and focus
only on the effect of the new metastable states induced by
the constant field. Experimental measurements have been
made for the photodetachment rate in the absence of a con-
stant field and it is found that vibrations lead to additional
peaks as the radiation field frequency becomes commensu-
rate with the vibration frequency �10�. In a subsequent sec-
tion we will discuss how the constant electric field can con-
tribute to our computed photodetachment rates.

We begin in Sec. II by deriving the model Hamiltonian for
O2

− in a constant electric field. In Sec. III, we derive and
analyze the energy Green’s function for this molecular sys-
tem, and in Sec. IV, we show the complex pole structure of
the energy Green’s function and the behavior of the residues
of the poles. In Sec. V, we construct complex eigenstates and
compute the survival probability of the excess electron in
O2

− for the system with one bound state. In Sec. VI, we
compute the photodetachment rate of the excess electron in
the presence of a radiation field. In Sec. VII, we extend the
survival probability and photodetachment rate analysis for
the system with two bound states. In Sec. VIII, we make
concluding remarks.

II. HAMILTONIAN

When a constant electric field is applied parallel to
the axis of the O2

− ion, the dynamics of the excess electron
in the ion can be modeled as a one-dimensional system
within which the attractive force between the excess electron
and each O atom is approximated by an attractive delta po-
tential. The Hamiltonian for the excess electron can be writ-
ten as
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H = −
�2

2m

d2

dx2 − Fx + V1��x − x1� + V2��x − x2� , �1�

where � is Planck’s constant, m is the mass of the excess
electron, and F is the strength of the constant electric field.
The delta potentials are located at x=x1 and x=x2 �the loca-
tion of the O atoms�, and Vj �j=1,2� is the strength of the
delta potential at x=xj and is negative.

We can write the Hamiltonian in terms of dimensionless
units. If we define the unit of length to be the Bohr radius
a0=0.529 18 Å and the unit of energy to be �0� �2

2ma0
2 , then

we can define dimensionless variables as follows

H �
H
�0

, � �
x

a0
, � j �

xj

a0
, d �

�x2 − x1�
a0

,

� j �
Vj

�0a0
, b �

Fa0

�0
, �2�

where j=1,2. In terms of these dimensionless variables, the
dimensionless Hamiltonian takes the form

H = −
d2

d�2 − b� + �1��� − �1� + �2��� − �2� . �3�

A schematic diagram of the potential energy in this model is
shown in Fig. 1�a� for �1=0 and �2=d.

There are two parameters we must consider when using
our model to describe the O2

− ion: the internuclear distance
d between the two O atoms and the electron affinity of
the molecule. If we set b=0 and �1=�2=� in Eq. �3�,
then we have a model for O2

− in the absence of the elec-
tric field, if d and � are chosen correctly. As shown in
Gasiorowicz �13�, Eq. �3� with b=0 and �1=�2=� has
two bound states �one symmetric and one antisymmetric�
when 2 / ����d, and only one bound state �symmetric�
when 2 / ����d. For the symmetric bound state, the delta-
function strength and the bound-state energy Eb are related
by the equation, −2��Eb� /�=1+exp�−��Eb�d� �13�. The
spacing between the O atoms is x2−x1=1.207 52 Å �14�,
which is d=2.281 88 in dimensionless units. The electron
affinity of O2 is Eaf f =0.45 eV, or in dimensionless units
Eaf f� =0.033 07. If we equate the electron affinity to the
bound-state energy of the symmetric state, then −2�Eaf f� /�

=1+exp�−�Eaf f� d� and we obtain �=−0.219 067. In Fig.
1�b�, we plot the wave function of the excess electron sym-
metric bound state 	0��� for O2

− with b=0. We will use this
state in later sections.

We also need to set the value for the constant electric field
strength F. We will use the experimental value used in
Stewart et al. �2�, F /q=1.43
105 V /cm, where q is the
electron charge, for their experiment on the H− ion. This
gives b=0.000 055 618 1 for the dimensionless field
strength.

III. ENERGY GREEN’S FUNCTION

We compute the retarded �G+� and advanced �G−� energy
Green’s functions G��� ,�� ;E�= ����E−H� i��−1���	 in a
manner similar to that used in �9,11,12� although our result
will be more complicated. First, we divide the Hamiltonian
into an unperturbed part H0=− d2

d�2 −b� and a perturbation

V���=+�1���−�1�+�2���−�2�. We will use the notation

G��,��;z� = 
G+��,��;z� , if Im�z� � 0,

G−��,��;z� , if Im�z� � 0.
� �4�

The energy Green’s function for the unperturbed system,
G0

��� ,�� ;E�= ����E−H0� i��−1���	, is given by

G0
���,��;z� = �−



b
Ci�− b�� −

z

b2�Ai− b� −
z

b2� , if � � ��,

−


b
Ai− b�� −

z

b2�Ci�− b� −
z

b2� , if � � ��,� �5�

FIG. 1. �a� Schematic diagram for the potential-energy field seen
by the excess electron. One delta function is located at �=0, and the
other is located at �=d. �b� The single bound state of the excess
electron for F=0. With �=−0.219 067 and d=2.281 88, the energy
of this bound state is E�=−0.033 074 4, which is the �dimension-
less� electron affinity of the excess electron in O2

−.
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where Ci��z��Bi�z�� iAi�z�, and is basically the same as
that used in �9,12� except for a modification in the argument
of the Airy functions, Ai and Ci�, due to our different defi-
nition of the dimensionless parameters.

The Green’s function G�� ,�� ;z� is given by the equation

G��,��;z� = G0��,��;z� +� d��G0��,��;z�V����G���,��;z�

= G0��,��;z� + �
n=1

2

�nG0��,�n;z�G��n,��;z� . �6�

If we set �=�m �m=1,2� in Eq. �6� and introduce the follow-
ing matrices

g � g1

g2 � � G��1,��;z�
G��2,��;z� �, g0 � g0

1

g0
2 � � G0��1,��;z�

G0��2,��;z� � ,

U � U11 U12

U21 U22� � �1G0��1,�1;z� �2G0��1,�2;z�
�1G0��2,�1;z� �2G0��2,�2;z�

� ,

�7�

then Eq. �6� can be expressed in matrix form as g=g0+Ug.
We solve for g and obtain

g = �I − U�−1g0

= 1 − U11 − U12

− U21 1 − U22�−1

g0

=
1

�1 − U11��1 − U22� − U12U211 − U22 U12

U21 1 − U11�g0
1

g0
2 � .

�8�

After some algebra, we can finally write the retarded �+� and
advanced �−� energy Green’s functions G��� ,�� ;z� in the
form

G���,��;z� = G0
���,��;z� +

1

 1

�1
− G0

���1,�1;z�� 1

�2
− G0

���2,�2;z�� − �G0
���1,�2;z��2


�G0
���,�1;z� 1

�2
− G0

���2,�2;z��G0
���1,��;z� + G0

���,�1;z�G0
���1,�2;z�G0

���2,��;z�

+ G0
���,�2;z�G0

���2,�1;z�G0
���1,��;z� + G0

���,�2;z� 1

�1
− G0

���1,�1;z��G0
���2,��;z�� , �9�

where we have used the symmetry property, G0
���1 ,�2 ;z�

=G0
���2 ,�1 ;z�.

IV. COMPLEX POLES

The energy Green’s functions G��� ,�� ;z�, as a function
of z, have a cut along the entire real axis �z=E�. The retarded
�advanced� Green’s function G+�� ,�� ;z� �G−�� ,�� ;z�� is ana-
lytic in the upper �lower� half z plane. When we analytically
continue G+�� ,�� ;z� �G−�� ,�� ;z�� to the lower �upper� half
plane, it may have simple poles. The poles can be found
from the condition that the denominator of the second term
of Eq. �9� becomes zero. If the locations of the poles in the
complex z plane are denoted by zn, then

 1

�1
− G0

���1,�1;zn�� 1

�2
− G0

���2,�2;zn��
− �G0

���1,�2;zn��2 = 0. �10�

For G+�� ,�� ;z� �G−�� ,�� ;z��, the poles are located at z=zn in
the lower �upper� half z plane. Equation �10� must be solved
numerically.

The poles of G+�� ,�� ;z� are plotted in Fig. 2 for values
of d and � describing O2

−, and for two different values
of the constant external field F /q=1.43
105 V /cm and

F /q=7.15
105 V /cm. In both figures, the single pole lo-
cated very close to the negative real axis can be associated to
the bound state of O2

−. In the presence of the external con-
stant field, the bound state can tunnel into the continuum and
its associated pole energy �the “bound-state” pole� has a
small imaginary part, and a real part whose value is close to
that of the bound-state energy of the field-free molecule. As
we increase the strength of the electric field, this pole moves
toward more negative energies, and the difference between
the pole’s real part and the bound-state energy increases.

The poles along the positive real axis have very small
imaginary part and will be called “triangle” poles. They cor-
respond to quasibound states that are created by the triangu-
lar potential formed to the left of �=0 by the electric field
potential energy and the delta function located at �=0. One
can check this by calculating the discrete eigenenergies of
the triangular well potential composed of a linear field and
an infinite wall located at �=0, and comparing them with real
part of the triangle poles. The values are very close. When
we increase the strength of the constant electric field, the gap
between each triangle pole becomes bigger. This is expected
because, as the slope of the electric potential energy is steep-
ened, the discrete energies in the corresponding triangular
well potential will move apart. There is also a line of poles
that extends into the lower half plane in the third quadrant.
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These poles do not have an obvious physical origin although
they would not exist if the delta functions were not present.

V. SURVIVAL PROBABILITY

Given Eq. �9� for the retarded energy Green’s func-
tion G+�� ,�� ;z�, we can now compute the residue of the

pole at z=zn. It is defined Res�G+�� ,�� ;z��z=zn
=limz→zn

�z
−zn�G+�� ,�� ;z�. Since G0

+�� ,�� ;z� is analytic in the entire
complex plane, the contribution to Res�G+�� ,�� ;z��z=zn

from
the first term on the right-hand side vanishes. The contribu-
tion from the denominator in the second term in Eq. �9� can
be found by L’Hospital’s rule and is given by

lim
z→zn

�z − zn�

 1

�1
− G0

+��1,�1;z�� 1

�2
− G0

+��2,�2;z�� − �G0
+��1,�2;z��2

, �11�

= lim
z→zn

1

�

�z
�� 1

�1
− G0

+��1,�1;z�� 1

�2
− G0

+��2,�2;z�� − �G0
+��1,�2;z��2��

z=zn

. �12�

In order to simplify the notation, we define the following
quantities an� 1

�1
−G0

+��1 ,�1 ;zn�, bn� 1
�2

−G0
+��2 ,�2 ;zn�,

cn�G0
+��1 ,�2 ;zn�, and dn� �

�z �� 1
�1

−G0
+��1 ,�1 ;z��� 1

�2

−G0
+��2 ,�2 ;z��− �G0

+��1 ,�2 ;z��2� �z=zn
Then the residue can be

written as

Res�G+��,��;z��z=zn
=

1

dn
N��,��;zn� , �13�

where

N��,��;zn� � �G0
+��,�1;zn�bnG0

+��1,��;zn�

+ G0
+��,�1;zn�cnG0

+��2,��;zn�

+ G0
+��,�2;zn�cnG0

+��1,��;zn�

+ G0
+��,�2;zn�anG0

+��2,��;zn�� . �14�

From the property of the residue Res�G+�� ,�� ;z��z=zn
=�zn

����zn
���� �11,12� and using Eq. �13�, we can write

�zn
����zn

���� =
1

dn
N��,��;zn� . �15�

Therefore, using �zn
�0��zn

�0�= 1
dn

N�0,0 ;zn�,

�zn
��� =

1

�zn
�0�

1

dn
N��,0;zn� = �  1

dnN�0,0;zn��
1/2

N��,0;zn� .

�16�

The function �zn
��� �whose square is the diagonal element of

the residue of the Green’s function pole at complex energy
zn� satisfies the equation, H�zn

���=zn�zn
���. For this reason,

these functions are called “complex eigenfunctions” in the
sense that they have complex eigenvalues. However, they
are not square integrable so they do not belong to the
Hilbert space of possible physical states �see �12� for more
discussion�.

Now we can compute the survival probability for the ex-
cess electron, in the presence of the constant electric field,
when it is initially in the ground state 	0 �see Fig. 1�b��. The
survival probability is defined as �A�t��2, where A�t�
= �	0 �	�t�	 is the survival probability amplitude and �	�t�	 is
the state of the excess electron at time t given that it was in
the state �	0	 at time t=0. The survival probability amplitude
takes the form �see Appendix�

A�t� = �
n

e−iznt�n�̃n
�, �17�

where t is understood as the dimensionless time, and �n and
�̃n

� are overlap integrals defined as �12�

�n = �
−�

�

d�	0
�����zn

��� ,

�̃n
� = �

−�

�

d��zn
���	0��� . �18�

Thus, the degree of overlap between the functions �zn
��� and

the initial condition 	0��� determines the extent to which
each Green’s function pole contributes to the evolution of the
survival probability amplitude. For this reason, it is useful to
compute the spatial structure of some of the complex eigen-
functions �zn

��� numerically from Eq. �16�. The real part of
the complex eigenfunctions are shown in Fig. 3 for F /q
=1.43
105 V /cm. We can see that the complex eigenstate
corresponding to the “bound-state” pole resembles the bound
state 	0��� of O2

−. Using Eq. �17�, we can obtain the survival
probability numerically.

The survival probability, as a function of time, is plotted
in Fig. 4 for external field strength F /q=1.43
105 V /cm
and F /q=7.15
105 V /cm. In both cases, the decay is ex-
ponential. This can be explained as follows. In comparing
the initial state �	0	 in Fig. 1�b� and the complex eigenstate
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in Fig. 3 for F /q=1.43
105 V /cm, we see that there is a
large overlap between the initial state and the complex eigen-
state associated with the bound-state pole. It is similar for the
F /q=7.15
105 V /cm case. Thus, the bound-state pole will
dominate the time evolution of the survival probability. We
can check this by calculating the survival probability coming
only from the dominant pole. The survival probability is
P�t�= �A�t��2�exp�−2�t�, where � is the imaginary part of
the complex energy for the dominant pole. The width 2� is
proportional to the inverse lifetime or decay rate for the ex-
cess electron. The lifetimes of the electron calculated from
the imaginary parts of the complex energies for the dominant
poles are about 0.047 and 0.0024 s, which agree well with
the decay rates shown in Figs. 4�a� and 4�b�, respectively. As
we increase the strength of the linear field, the magnitude of
the imaginary part becomes bigger, and consequently the
lifetime becomes shorter.

VI. PHOTODETACHMENT RATE

We now compute the photodetachment rate for the excess
electron in the presence of the constant electric field with
strength F and a radiation field with frequency �. The
Hamiltonian can be written as

H�x� = −
�2

2m

d2

dx2 − Fx + V1��x − x1� + V2��x − x2�

+ Eqx cos��t� , �19�

where E is the electric field associated with the radiation
field, which was chosen so that Eq is one percent of F. If we
introduce the dimensionless parameters

E� �
a0

�0
Eq, �� �

�

�0
�, and t� �

�0

�
t , �20�

then the total Hamiltonian becomes dimensionless and can
be written as

FIG. 2. Poles of the retarded energy Green’s function
G+��1 ,�2 ;z� for �=−0.219 067, d=2.281 88, and �a� F /q=1.43

105 V /cm and �b� F /q=7.15
105 V /cm. The bound-state pole
has �dimensionless� complex energy �a� z=E− i�=−0.033 139
−5.185
10−16i and �b� z=E− i�=−0.033 416−1.0137
10−14i.

FIG. 3. Real part of com-
plex eigenfunctions for �
=−0.219 067, d=2.281 88, and
F /q=1.43
105 V /cm. The
number above each plot is the real
part of the complex pole corre-
sponding to that function. �a� cor-
responds to the bound-state pole.
�b� and �c� correspond to short-
lived poles in the third quadrant.
�d�–�f� correspond to triangle
poles.

FIG. 4. The survival probability for the initial state shown in
Fig. 1�b� with parameters �=−0.219 067, d=2.281 88, and �a�
F /q=1.43
105 V /cm and �b� F /q=7.15
105 V /cm.
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H��� = −
d2

d�2 − b� + �1��� − �1� + �2��� − �2�

+ E�� cos���t�� . �21�

The dimensionless photodetachment rate W� is �see Appen-
dix�

W� = −
E�2

2
Im��

n

�n

E0 � �� − zn
� , �22�

where E0 is understood as dimensionless energy of the initial
state, �� is dimensionless energy of the radiation field, zn are
dimensionless complex poles, and

�n = ��
−�

�

d�	0�����zn
����2

. �23�

We can calculate the photodetachment rate numerically using
Eq. �22�. Figures 5�a� and 5�b� show the photodetachment
rate of the excess electron, as a function of radiation field
frequency for constant electric field strengths F /q=1.43

105 V /cm and F /q=7.15
105 V /cm, respectively. As
the strength of the linear field increases, the location of the
first peak moves toward higher frequencies, and the gap be-
tween each peak becomes wider. We also see a lowering of
the threshold of the photodetachment rate, which is 0.45 eV
for O2

−. The threshold lowering is more evident as the
strength of the linear field becomes stronger. The peaks in
photodetachment occur at the frequencies when the external
field energy coincides with the energy difference between
quasibound states.

Oscillatory behavior in photodetachment for atomic sys-
tems in the presence of a constant external electric field has

been ascribed to the interference between the emitted elec-
tron wave traveling toward, and reflected from, the potential
barrier created by the constant electric field �4�. Due to the
lack of experimental data for the molecular ion photodetach-
ment rate with the constant electric field, we could not com-
pare our results with the experiment. However, agreement
between the theory and the experiment has been verified for
the atomic negative ion �H−� under the constant electric field
�9�. In �4�, an approximate calculation that omitted the con-
tribution of the atomic potential to the final state of the elec-
tron �but included the effect of the constant field� gave very
good agreement between the location and shape of the peaks
in the photodetachment rate. The photodetachment peaks in
�4� were much broader and lower than those obtained in an
exact calculation by �9� using a delta-function potential al-
though the location of the peaks agree. We believe that the
reason for the sharper peaks obtained using delta potentials is
the following. The delta potential creates a sharp demarca-
tion of the region between the atomic potential and the po-
tential barrier created by the constant field. Thus, quasibound
states created by constructive interference of the emitted
electron wave in the region of the triangle potential are
sharper and longer lived than those created by a broader
atomic potential, and this in turn gives rise to sharper peaks
in the photodetachment rate. The use of the delta-function
potential has the advantage that the calculation of the loca-
tion of the quasibound states and, therefore, the photodetach-
ment rate peaks is relatively simple.

It is interesting to note that vibrational transition peaks, in
addition to electronic transition peaks, have been observed in
the photodetachment rate for O2

− when no linear field is
present �10�. We expect that vibrations would add additional
peaks to our computed photodetachment rate, in addition to
the peaks that are specifically a result of the constant field.

VII. TWO BOUND STATES

If we increase the distance between the two delta func-
tions, two bound states can be formed in the model system
�when b=0�, although the model will no longer describe O2

−.
This gives rise to two bound-state poles �when b�0� near
the negative real axis. As an example, we change the strength
of the delta function so that the ground-state energy of the
unperturbed system is always the same as the electron affin-
ity of the oxygen molecule. At about four times of the origi-
nal spacing, the second bound-state pole starts to emerge,
and when we further increase the spacing of the two delta
functions, the two bound-state poles move closer together. In
Fig. 6, we show the pole structure when the spacing between
delta functions is d=13.6913, which is six times that of O2

−.
If we choose as our initial state, the symmetric bound state of
the b=0 system when the spacing between delta functions
is six times that of O2

−, the survival probability decays
with an exponential envelope but also has small scale oscil-
lations. This is shown in Figs. 7�a� and 7�b�. The dominant
contribution to the overlap integral in Eq. �18� comes from
two quasibound states with complex energies z1=E1− i�1
=−0.035 317−4.3448
10−14i and z2=E2− i�2=−0.022 601
−3.5897
10−8i. Then the survival amplitude can be written
as

FIG. 5. Photodetachment rate �dimensionless� as a function of
radiation field frequency for �a� F /q=1.43
105 V /cm and �b�
F /q=7.15
105 V /cm.
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A�t� = �
n

e−iznt�n�̃n
� � e−iz1t�1�̃1

� + e−iz2t�2�̃2
�. �24�

Thus, the survival probability is

P�t� = �A�t��2

= �e−iE1te−�1t�1�̃1
� + e−iE2te−�2t�2�̃2

��2

= e−2�1t��1�2��̃1
��2 + e−2�2t��2�2��̃2

��2

+ 2 Re�ei�E2−E1�te−��1+�2�t�1�̃1
��2

��̃2�

= e−2�1t��1�2��̃1
��2 + e−2�2t��2�2��̃2

��2

+ 2e−��1+�2�tR cos��E2 − E1�t + �� , �25�

where

R = ��1�̃1
��2

��̃2�,� = arg��1�̃1
��2

��̃2� . �26�

Therefore, the survival probability will show oscillatory de-
cay if several poles contribute to the survival amplitude. The
period of the small oscillation in Fig. 7�b� is about 2.39

10−14 s and the overall decay lifetime in Fig. 7�a� is about
0.000 557 s. We can also check the lifetime of the small
oscillation in the inset of Fig. 7�a�, which is determined
by �1+�2. In our case �2 is much greater than �1 so �2
dominates the lifetime of oscillation, which is about
1.35
10−9 s.

The photodetachment rate shows similar behavior to the
case with only one bound-state pole but has peaks at differ-
ent values and also different spacing between peaks in Fig. 8.
It is worthwhile to note the appearance of an additional peak
near 0.1425 eV due to the transition between two bound-state
poles.

VIII. CONCLUSIONS

The dynamics of the diatomic molecular negative ion,
O2

−, was studied using the complex spectral decomposition
of the energy Green’s function. Two delta potentials were
used to model the atomic potentials at each O atom in this
system. The strength of the delta potentials was determined
from the O2

− electron affinity �0.45 eV� and the distance
between the delta functions was chosen from the internuclear
distance of the diatomic molecule, 1.207 52 Å. Complex
poles of the energy Green’s function were computed and
used to obtain the survival probability and the photodetach-
ment rate. The survival probability of the excess electron in
the presence of linear electric field shows exponential decay.
The stronger the electric field, the faster the decay. Oscilla-
tory behavior in the decay process is observed when the ini-
tial state has large overlap with the residue of two poles of
the Green’s function. As we change the frequency of the
external field, the photodetachment rate shows the peaks
where the frequency corresponds to the spacing of the real
parts of the complex poles. As the strength of the linear field
increases, the location of the first peak moves toward higher
frequencies, and the gap between each peak becomes wider.
Also, as we increase the linear field strength, we observe the
lowering of the threshold of the photodetachment rate. These
effects should be observable in an experiment. As explained

FIG. 6. Complex poles for F /q=7.15
105 V /cm, �
=−0.335 878, and d=13.6913. By increasing the spacing of the two
delta functions, two bound-state poles can be formed.

FIG. 7. Survival probability for �=−0.335 878, d=13.6913,
and F /q=7.15
105 V /cm. �a� The exponential envelope �long-
time scale�. �b� Small scale oscillations �short-time scale�.

FIG. 8. The photodetachment rate �dimensionless� for
�=−0.335 878, d=13.6913, and F /q=7.15
105 V /cm.
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earlier, we expect that the use of the delta functions to model
the atomic potentials will give rise to sharper photodetach-
ment peaks than those observed in experiment because the
actual atomic potential creates a more diffuse triangle poten-
tial for quasibound-state formation than does the delta poten-
tial. However, ease with which the exact calculations can be
done using the delta potentials justifies the use of the delta
functions and the accurate predictions for the location of the
photodetachment peaks make this approach very useful.
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APPENDIX

The formula for the survival probability can be derived as
follows �12�. The wave function at time t�t�0� can be ex-
pressed in terms of the retarded energy Green’s function as

	�x,t� = i��
−�

�

dx�GR�x,x�;t,0�	0�x��

= i��
−�

�

dx� 1

2�
�

−�+i�

�+i�

dzG�x,x�;z�e−i�z/��t�	0�x�� .

�27�

Using contour integral, the integral in the parenthesis can be
shown to be a sum of the residues at the poles in the lower
half plane. Because the residue at the pole is �11�

Res�G�x,x�;z�e−i�z/��t��z=�n
= ��n

�x���n
�x��e−i��n/��t,

�28�

the wave function at time t is

	�x,t� = i��
−�

�

dx� 1

i�
�

n

��n
�x���n

�x��e−i��n/��t�	0�x��

= �
n

e−i��n/��t��n
�x��

−�

�

dx���n
�x��	0�x�� , �29�

where we used �n for the complex poles, which have the
dimension of energy in order to distinguish them from the
dimensionless complex poles, zn=�n /�0. Thus the probability
amplitude is

A�t� = �	0�	�t�	

= �
−�

�

dx�	0�x	�x�	�t�	 = �
−�

�

dx	0
��x�	�x,t�

= �
−�

�

dx	0
��x��

n

e−i��n/��t��n
�x��

−�

�

dx���n
�x��	0�x���

= �
n

e−i��n/��t�
−�

�

dx	0
��x���n

�x��
−�

�

dx���n
�x��	0�x��

= �
n

e−i��n/��t�n�̃n
� = �

n

e−iznt��n�̃n
�, �30�

where t�= ��0 /��t is dimensionless time, and �n and �̃n
� are

defined as

�n = �
−�

�

dx	0
��x���n

�x� = �
−�

�

d�	0
�����zn

��� , �31�

�̃n
� = �

−�

�

dx��n
�x�	0�x� = �

−�

�

d��zn
���	0��� . �32�

The photodetachment rate W can be found as �9�

W =
2

�
Eq

2
�2

�
−�

�

dE��E���E�x�	0	�2��E − E0 � ���

=
2

�
Eq

2
�2

�
−�

�

dx�
−�

�

dx��	0�x	x�x��	0	x�
1

− 2i
�

n

��x���n
	��̃�n

��x�	

E0 � �� − �n
−

�x��̃�n
�	���n

�x�	

E0 � �� − �n
�
�

= −
E2q2

2�
Im��

−�

�

dx�
−�

�

dx�	0�x�x	0�x��x��
n

��n
�x���n

�x��

E0 � �� − �n
� = −

�0

�

E�2

2
Im��

n

�n

�E0/�0� � ���/�0� − zn
� , �33�

where �n and zn are defined as above, and

�n =  1

a0
�

−�

�

dx	0�x�x��n
�x��2

= ��
−�

�

d�	0�����zn
����2

.

�34�

Thus, dimensionless photodetachment rate W� is

W� =  �0

�
�−1

W = −
E�2

2
Im��

n

�n

�E0/�0� � ���/�0� − zn
� .

�35�
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