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We develop a theoretical method within the framework of relativistic many-body theory to accurately treat
correlation corrections in atoms with few valence electrons. This method combines the all-order approach
currently used in precision calculations of properties of monovalent atoms with the configuration-interaction
approach that is applicable for many-electron systems. The method is applied to Mg, Ca, Sr, Zn, Cd, Ba, and
Hg to evaluate ionization energies and low-lying energy levels.
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I. INTRODUCTION

The development of the relativistic all-order method,
where all single and double excitations of the Dirac-Hartree-
Fock wave function are included to all orders of perturbation
theory, led to accurate predictions for energies, transition am-
plitudes, hyperfine constants, polarizabilities, C3 and C6 co-
efficients, isotope shifts, and other properties of monovalent
atoms, as well as the calculation of parity-violating ampli-
tudes in Cs, Fr, and Ra+ �1–6�. This method was also used to
calculate magic wavelengths �7� as well as black-body radia-
tion shifts �8� and quadrupole moments �9� that are of inter-
est to atomic-clock research. The all-order method is de-
signed to treat core-core and core-valence correlations with
high accuracy. It is one of the most accurate methods cur-
rently being used in the atomic structure calculation. How-
ever, its applications so far have been limited to monovalent
systems. Readers are referred to Ref. �3� and references
therein for a review of this method and its applications.

Precision calculations for atoms with several valence
electrons require an accurate treatment of the very strong
valence-valence correlation; a perturbative approach leads to
significant difficulties. The complexity of the all-order for-
malism for matrix elements also increases drastically as the
number of valence electrons increases; for example, the ex-
pression for all-order matrix elements in divalent systems
contains several hundred terms instead of the 20 terms in the
corresponding monovalent expression. Therefore, we found
it impractical to develop a direct extension of the all-order
approach to more complex systems, both due to the large
valence-valence correlation corrections and the very large
number of terms noted above in the matrix element formulas.

A more promising method for the study of atomic
properties of more complicated systems that combined

configuration-interaction �CI� and many-body perturbation
theory �MBPT� was developed in Ref. �10�. The CI
+MBPT method was applied to the calculation of atomic
properties of various systems in a number of works �see
�11–20� and references therein� and to the calculation of
parity-violating amplitudes in Tl and Yb �21,22�. The
strengths of the configuration-interaction method are broad
applicability and all-order treatment of the valence-valence
correlation corrections. However, the precision of the CI
method is generally drastically limited for large systems by
the number of the configurations that can be included. As a
result, core excitations are neglected or only a small number
of them is included, leading to a significant loss of accuracy
for heavier systems. The CI+MBPT approach allows one to
incorporate core excitations in the CI method by constructing
an effective Hamiltonian Heff that incorporates certain
perturbation-theory terms. The CI method is then applied to
the modified Heff to obtain improved energies and wave
functions.

Because of the rapid increase in the number of terms of
the MBPT expansion, the CI+MBPT approach becomes im-
practical already in the third order of MBPT. For that reason,
the CI+MBPT approach is usually restricted to the second
order. Some higher-order corrections can be accounted for by
introducing screening coefficients to second-order diagrams.
These screening coefficients can be found either by averag-
ing two-electron second-order diagrams or by semiempirical
fitting of experimental energies. The second-order expression
for one-body correction to the Hamiltonian is corrected by
the all-order chains of such terms in some works �see, for
example, Ref. �23��. In 2004, a modification of the effective
Hamiltonian using the all-order pair equations was proposed
and tested on a “toy” four-electron model �24�. An efficient
method of including core-valence correlations into the CI
calculations was presented by Dzuba and Flambaum in �14�.
The CI Hamiltonian for N valence electrons was calculated
using orbitals in the complete VN potential �the mean field*msafrono@udel.edu; http://www.udel.edu/~msafrono
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produced by all electrons�; the one- and two-body correc-
tions to the effective Hamiltonian were obtained by using the
many-body perturbation theory with dominating classes of
diagrams included to all orders.

In the present work, we combine the all-order method,
currently used in precision calculations of properties of
monovalent atoms, with the CI approach. In the CI � all-
order approach, core excitations are incorporated in the CI
method by constructing an effective Hamiltonian using fully
converged all-order excitation coefficients. Therefore, the
core-core and core-valence sectors of the correlation correc-
tions for systems with few valence electrons will be treated
with the same accuracy as in the all-order approach for
monovalent atoms. Then, the CI method is used to treat
valence-valence correlations. This method is expected to
yield accurate wave functions for subsequent calculations of
atomic properties such as lifetimes, polarizabilities, hyper-
fine constants, parity-violating amplitudes, etc. The present
work is motivated by the urgent need for precision calcula-
tions of atomic properties of heavy atoms with few valence
electrons for applications such as atomic-clock research,
quantum information, study of fundamental symmetries,
searches for variation of the fundamental constants, and tests
of high-precision experimental methods. The development of
the CI � all-order method is also aimed at filling the long-
standing gap between the accuracy of theoretical and experi-
mental parity-violation studies in systems with few valence
electrons. Atomic properties of various atoms and ions are
also of interest for astrophysics applications.

Our method is generally applicable, i.e., not restricted to
the specific type of the system. We test the present approach
on the calculation of the energy levels of Mg, Ca, Sr, Cd, Zn,
Ba, and Hg to demonstrate a significant improvement in
comparison with CI � second-order MBPT values. We also
discuss calculations of transition matrix elements and polar-
izabilities.

We provide a brief description of the all-order and CI
+MBPT formalisms in Secs. II and III, respectively. The CI
� all-order approach is described in Sec. IV. Finally, we
present results for removal energies in divalent systems cal-
culated using the CI � all-order approach and discuss per-
spectives for further applications and development.

II. RELATIVISTIC ALL-ORDER METHOD
FOR MONOVALENT SYSTEMS

Our point of departure is the relativistic no-pair Hamil-
tonian H=H0+VI obtained from QED by �25�

H0 = �
i

�i:ai
†ai: , �1�

VI =
1

2�
ijkl

vijkl:ai
†aj

†alak: + �
ij

�VHF − U�ij:ai
†aj: . �2�

Here, vijkl are two-particle matrix elements of the Coulomb
interaction gijkl, or Coulomb + Breit interaction gijkl+bijkl,
and VHF=�a�viaja−viaaj� is the frozen-core Dirac-Fock po-
tential. The summation index a in VHF ranges over states in

the closed core. The quantity �i in Eq. �1� is the eigenvalue of
the Dirac equation h�r��i�r�=�i�i�r�, where

h�r� = c� · p + �mc2 −
Z

r
+ U�r� . �3�

In our previous all-order calculations of monovalent atoms,
we took U to be frozen-core VN−1 potential U=VHF. Such a
choice greatly simplifies the calculations since the second
term in Eq. �2� vanishes in this case. In this work, we use the
same type of potential �VN−2 for divalent systems�, but dif-
ferent potentials may be used in the future.

In the coupled-cluster method, the exact many-body wave
function is represented in the form �26�

��� = exp�S����0�� , �4�

where ���0�� is the lowest-order atomic state vector. The op-
erator S for an N-electron atom consists of “cluster” contri-
butions from one-electron, two-electron, …, N-electron exci-
tations of the lowest-order state vector ���0��: S=S1+S2
+ ¯+SN.

The all-order method described in detail in Refs. �1,2� is a
linearized version of the coupled-cluster method, where all
nonlinear terms in the expansion of the exponential are omit-
ted; the all-order wave function takes the form

��� = �1 + S1 + S2 + S3 + ¯ + SN	���0�� . �5�

Restricting the sum in Eq. �5� to single, double, and valence
triple excitations yields the following expansion for the state
vector of a monovalent atom in state v:

��v� = 
1 + �
ma

�maam
† aa +

1

2 �
mnab

�mnabam
† an

†abaa +

+ �
m�v

�mvam
† av + �

mna

�mnvaam
† an

†aaav

+
1

6 �
mnrab

�mnrvabam
† an

†ar
†abaaav���v

�0�� , �6�

where the indices m, n, and r range over all possible virtual
states while indices a and b range over all occupied core
states. The lowest-order wave function ��v

�0�� is

��v
�0�� = av

†��C� , �7�

where ��C� is the lowest-order frozen-core wave function.
The quantities �ma and �mv are single-excitation coefficients
for core and valence electrons; �mnab and �mnva are core and
valence double-excitation coefficients, respectively; �mnrvab
are the valence triple excitation coefficients. In the single-
double �SD� implementation of the all-order method, only
single and double excitations are included. In the �single,
double, and partial triple� SDpT variant of the all-order
method, valence triple excitations are included perturba-
tively, as described in Ref. �2�.

To derive equations for the excitation coefficients, the
state vector ��v� is substituted into the many-body
Schrödinger equation H��v�=E��v� and terms on the left-

SAFRONOVA et al. PHYSICAL REVIEW A 80, 012516 �2009�

012516-2



and right-hand sides are matched based on the number and
type of operators they contain, leading to the equations for
the excitation coefficients given in �2�.

We note that all nonlinear terms at the single-double level
have been added in the formulation of the all-order method
in Ref. �27�. This version of the all-order method is equiva-
lent to the coupled-cluster single-double method for a finite
basis set. It was shown in Refs. �28,29� that both nonlinear
terms and complete valence triple excitations must be in-
cluded to improve the accuracy of the linearized coupled-
cluster SD method. In the present work, we use linearized
SD variant of the all-order method since the SD method
already leads to excellent results for a large number of the
atomic properties and is computationally efficient.

The resulting SD all-order equations for valence excita-
tion coefficients are

��v − �m + �Ev��mv = �
bn

g̃mbvn�nb + �
bnr

gmbnr�̃nrvb

− �
bcn

gbcvn�̃mnbc, �8�

��vb − �mn + �Ev��mnvb

= gmnvb + �
cd

gcdvb�mncd + �
rs

gmnrs�rsvb

+ 
�
r

gmnrb�rv −�
c

gcnvb�mc + �
rc

g̃cnrb�̃mrvc� + 
 v ↔ b

m ↔ n
� ,

�9�

where �Ev is the valence correlation energy �Ev=Ev−�v,
�ij =�i+� j, and �̃mnvb=�mnvb−�nmvb. The correlation correc-
tion to the energy of the state v is given in terms of the
excitation coefficients by

�Ev = �
ma

g̃vavm�ma + �
mab

gabvm�̃mvab + �
mna

gvbmn�̃mnvb. �10�

Equations for core excitation coefficients �ma and �mnab are
obtained from the above equations by replacing the valence
index v by a core index a and removing �Ev from the left-
hand side of the equations. We note that the right-hand side
of the valence energy equation is identical to the right-hand
side of the equation for �mv with m=v. Equations for the
correlation energy and all excitation coefficients are solved
iteratively. Every iteration picks up correlation terms corre-
sponding to the next-higher order of perturbation theory until
the correlation energy converges to sufficient numerical ac-
curacy. Therefore, the all-order approach includes dominant
MBPT terms to all orders.

Matrix elements for any one-body operator Z=�ijzijai
†aj

are obtained within the framework of the all-order method as

Zwv =
��w�Z��v�

��v��v���w��w�
, �11�

where ��v� and ��w� are given by the expansion �6�. In the
SD approximation, the resulting expression for the numera-
tor of Eq. �11� consists of the sum of the Dirac-Fock �DF�
matrix element zwv and 20 other terms that are linear or qua-

dratic functions of the excitation coefficients. The advantage
of this approach is that the expression in Eq. �11� does not
depend on the nature of the operator Z, only on its rank and
parity. Therefore, matrix elements of any one-body operator
may be calculated with the same general code.

The complexity of the all-order formalism for matrix ele-
ments increases drastically with the number of valence elec-
trons. We have derived the expression for all-order matrix
elements in divalent systems; it contains several hundred
terms instead of the 20 terms in the corresponding monova-
lent expression. Therefore, it is impractical to extend the all-
order method to the case of more complicated atoms in its
present implementation directly, i.e., to start a single-double
expansion from the divalent lowest-order wave function con-
taining aw

† av
†��C�. Such an approach also leads to “intruder

state” problems well known in the perturbation expansions
based on the Rayleigh-Schrödinger implementation of the
MBPT.

We note that the relativistic couple-cluster method has
been successfully applied to the calculation of the energies
and electron affinities in systems with few electrons �see
Refs. �30–34� and references therein�. It is rather difficult to
apply this method for calculation of other atomic properties
such as transition matrix elements. However, using the finite
field technique one can use this method, for example, to cal-
culate quadrupole hyperfine constants in such a heavy atoms
as Au �35�.

III. CI+MBPT METHOD

A combination of the CI method and perturbation theory
was developed in Ref. �10�. It was based on the Dirac-Fock
code �36� and CI code �37�. This approach has been later
applied to the calculation of atomic properties of various
systems in a number of works �see �11–18� and references
therein�. In Refs. �21,22�, the CI+MBPT method was used to
calculate PNC amplitudes in Tl and Yb, respectively �in the
latter case, the nuclear-spin-dependent amplitude was calcu-
lated�.

In the CI method, the many-electron wave function is
obtained as a linear combination of all distinct states of a
given angular momentum J and parity �16�,

�J = �
i

ci�i, �12�

in other words, a linear combination of Slater determinants
of proper symmetry from a model subspace �10�.

Energies and wave functions of low-lying states are deter-
mined by diagonalizing an effective Hamiltonian,

Heff = H1 + H2, �13�

where H1 represents the one-body part of the Hamiltonian,
and H2 represents the two-body part �Coulomb or Coulomb
+ Breit matrix elements vijkl�. We use Coulomb matrix ele-
ments gijkl in the present work. The resulting wave functions
are used to calculate matrix elements and other properties
such as polarizabilities, parity-violating amplitude, etc. The
precision of the configuration-interaction method is drasti-
cally limited for large systems by the number of the configu-
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rations that can be included. Consequently, core excitations
are entirely omitted or only a small number is included, lead-
ing to a significant loss of accuracy for heavy atoms.

The CI+MBPT approach allows one to incorporate core
excitations in the CI method by including certain higher-
order terms in an effective Hamiltonian �13�. The CI method
is then applied as usual with the modified Heff to obtain
improved energies and wave functions. Somewhat different
versions of the CI+MBPT method exist; here, we describe
the approach used in the present work and follow the desig-
nations of Ref. �23�.

In the CI+MBPT approach, the one-body part H1 is
modified to include the correlation potential 	1 that accounts
for part of the core-valence correlations,

H1 → H1 + 	1. �14�

Either the second-order expression 	1
�2� or all-order chains of

such terms can be used �see, for example, Ref. �23��. The
latter approach corresponds to replacing Dirac-Fock orbitals
by Brueckner orbitals. The second-order matrix elements
�	1

�2��yx are given by

�	1
�2��yx = �

mab

gmyabg̃mxab

�ab − �xm + �̃y − �y

+ �
mna

gmnxag̃mnya

�̃y + �a − �mn

.

�15�

We use the same designations as in Sec. II; indices from the
middle of the alphabet m and n range over all possible virtual
states while indices a and b range over all occupied core
states. The one-particle energies �i are written together as
�ij =�i+� j for brevity. The summation over index i implies
the sum over the quantum numbers ni
imi.

The CI+MBPT approach is based on the Brillouin-
Wigner variant of MBPT rather than the Rayleigh-
Schrödinger variant. Use of the Rayleigh-Schrödinger MBPT
for systems with more than one valence electron leads to a
nonsymmetric effective Hamiltonian and to the problem of
intruder states. In the Brillouin-Wigner variant, the effective
Hamiltonian is symmetric and accidentally small denomina-
tors do not arise; however, 	1 and 	2 became energy depen-
dent. Specifically, the one-body correction 	1 depends on the
energy �̃y �see Eq. �15��. Ideally, the energy �̃y should be
calculated from the particular eigenvalue of the effective
Hamiltonian �13�. In practice, we use several approaches.
The simplest and the most practical one is to set the energy
�̃y to the Dirac-Fock energy of the lowest orbital for the
particular partial wave. For example, we use �̃ns=�3s for all
ns orbitals of Mg system. This approximation usually works
reasonably well for atomic states belonging to the lowest
configurations of a given symmetry. Another approach is to
set the energy of all orbitals for a particular partial wave to a
certain value; one value is specified for each partial wave.
This approach allows one to generate better atomic wave
functions for subsequent evaluation of the atomic properties
by selecting the values of �̃ so final energy eigenstates are
tuned to the experimental values. We have also developed a
more elaborate method that involves calculating derivatives
of the 	1 and 	2 with respect to �̃ that allows to adjust the
effective Hamiltonian as suggested in �10�. Our implementa-

tion of the CI � all-order method permits us to use any of
these strategies.

Performing analytical sums over all magnetic quantum
numbers yields the expression

�	1
�2��yx = − �

mab
�
K

1

�K��jy�
XK�myab�ZK�mxab�

�ab − �xm + �̃y − �y

+ �
mna

�
K

1

�K��jy�
XK�mnxa�ZK�mnya�

�̃y + �a − �mn

, �16�

where K is multipolarity restricted by conventional triangular
rules, �K�=2K+1, and the summations over all lower-case
indexes i now designate sums over ni and 
i. We use similar
designations for the sums listed below to avoid explicitly
writing out all quantum numbers in all sums. The quantity
XK�mnab� is

XK�mnab� = �− 1�K�
m�CK�
a��
n�CK�
b�RK�mnab� ,

�17�

where RK�mnab� are �relativistic� Slater integrals and
�
m�CK�
a� are reduced matrix elements of a normalized
spherical harmonics. ZK�mnab� is given by

ZK�mnab� = XK�mnab� + �
K�

�K�� jm ja K

jn jb K�
�XK��mnba� .

�18�

The two-body Coulomb interaction term H2 is modified
by including the two-body part of the core-valence interac-
tion that represents screening of the Coulomb interaction by
valence electrons,

H2 → H2 + 	2, �19�

where 	2 is calculated in the second-order MBPT in CI
+MBPT approach. The second-order matrix elements
�	2

�2��mnvw are given by

�	2
�2��mnvw = �

cd

gvwcdgmncd

�cd − �mn + �̃v − �v + �̃w − �w

+ 
�
rc

g̃wrncg̃mrvc

�̃v + �c − �mr + �̃w − �w

+ �m ⇔ n

v ⇔ w
�� .

�20�

Performing an angular reduction leads to

�	2
�2��K�mnvw�

= �
cd

�
LK�

�K�� jm jv K

L K� jc
�� jn jw K

L K� jd
�

�
XL�vwcd�XK��cdmn�

�cd − �mn + �̃v − �v + �̃w − �w

− �
rc

�− 1� jw+jn+K

�K�
ZK�wrnc�ZK�mrvc�

�̃v + �c − �mr + �̃w − �w

− �
rc

�− 1� jv+jm+K

�K�
ZK�vrmc�ZK�nrwc�

�̃w + �c − �nr + �̃v − �v
. �21�
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MBPT corrections associated with terms 	1 in Eq. �14� and
	2 in Eq. �19� typically grow with nuclear charge Z leading
to a deterioration of the accuracy of the CI � second-order
MBPT results for heavier more complicated systems. The
order-by-order extension of this method does not look prom-
ising for two reasons. First, the complexity of the MBPT
expansion for systems with more than one valence electron
already makes third-order calculations impractical. Second,
the convergence of the MBPT series is not well studied, but
it is known that the third order is often less accurate than the
second order. This is why it was so important to develop an
all-order extension of the MBPT method for monovalent sys-
tems.

IV. CI � ALL-ORDER METHOD

In the CI � all-order approach, corrections to the effec-
tive Hamiltonian 	1 and 	2 are calculated using the all-order
method, in which the effective Hamiltonian contains domi-
nant core and core-valence correlation corrections to all or-
ders, as discussed in Sec. II. The core-core and core-valence
sectors of the correlation corrections for systems with few
valence electrons are treated in the all-order method with the
same accuracy as in the all-order approach for the monova-
lent systems. The CI method is then used to evaluate
valence-valence correlations.

First, we express the all-order equations �8�–�10� in terms
of matrix elements of 	1 and 	2 and explicitly include the

energy dependence. We also need to add an all-order equa-
tion for the excitation coefficients �mnvw to obtain 	2. This
equation is equivalent to Eq. �9� with core index b replaced
by valence index w.

	1 and 	2 are essentially the all-order excitation coeffi-
cients �mv and �mnvw,

	ma = �ma��a − �m� ,

	mnab = �mnab��ab − �mn� ,

	mnva = �mnva��̃v + �a − �mn� ,

	mv � �	1�mv = �mv��̃v − �m� ,

	mnvw � �	2�mnvw = �mnvw��̃v + �̃w − �mn� .

The quantities 	ma, 	mnab, and 	mnva are used in the all-
order iteration procedure but do not explicitly appear in the
effective Hamiltonian. The core equations for �ma and �mnab
are not modified from the original all-order monovalent
code. The excitation coefficients �ma and �mnab are simply
multiplied by the appropriate energy differences to obtain the
terms 	ma and 	mnab needed by other programs. Rewriting
the other all-order equations in terms of 	 and removing
terms that will be otherwise double counted by the CI part of
the calculations, we obtain the following set of equations:

	mv � �	1�mv = �
nb

g̃mbvn	nb

�bn + �̃v − �v
− �

bcn

g̃bcvn	mnbc

�bc − �mn + �̃v − �v
+ �

bnr

g̃mbnr	nrvb

�̃v + �b − �nr

, �22�

	mnvb = gmnvb + �
cd

gcdvb	mncd

�cd − �mn + �̃v − �v
+ �

rs

gmnrs	rsvb

�̃v + �b − �rs

− �
c

gcnvb	mc

�c − �m + �̃v − �v
+ �

r

gmnvr	rb

�b − �r + �̃v − �v

− �
c

gmcvb	nc

�c − �n + �̃v − �v
+ �

cr

g̃cnrb	mrvc

�̃v + �c − �mr

− �
cr

gcnrb	rmvc

�̃v + �c − �mr

− �
cr

gmcrb	rnvc

�̃v + �c − �nr

+ �
cr

g̃mcvr	rncb

�cb − �nr + �̃v − �v
− �

cr

gmcvr	nrcb

�cb − �nr + �̃v − �v
− �

cr

gcnvr	mrcb

�cb − �mr + �̃v − �v
, �23�

	mnvw � �	2�mnvw = �
cd

gcdvw	mncd

�cd − �mn + �̃v − �v + �̃w − �w

− �
c

gcnvw	mc

�c − �m + �̃v − �v + �̃w − �w

− �
c

gmcvw	nc

�c − �n + �̃v − �v + �̃w − �w

+ �
cr

g̃cnrw	mrvc

�̃v + �c − �mr + �̃w − �w

− �
cr

gcnrw	rmvc

�̃v + �c − �mr + �̃w − �w

− �
cr

gmcrw	rnvc

�̃v + �c − �nr + �̃w − �w

+ �
cr

g̃mcvr	rncw

�c + �̃w − �nr + �̃v − �v
− �

cr

gmcvr	rnwc

�c + �̃w − �nr + �̃v − �v
− �

cr

gcnvr	rmwc

�c + �̃w − �mr + �̃v − �v
. �24�
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The energy denominators are now explicitly written out and
the energy dependence is introduced following the prescrip-
tion of the CI � second-order MBPT approach. Putting �̃v
=�v yields the original all-order equations �8� and �9� for
monovalent systems up to �Ev terms on the left-hand side.
The term containing �rv is removed from Eq. �23� since it is
included in the CI calculation. Equation �24� for 	mnvw does
not have terms that would corresponds to the first, third, and
fifth terms of Eq. �23� for 	mnva since these terms are ac-
counted for by the CI as well. Therefore, no iteration is re-
quired in the last equation since 	mnvw does not appear on its
right-hand side; the last equation needs to be evaluated only
once after all other equations have converged. The last equa-
tion is also significantly faster to evaluate than similar equa-
tions for 	mnab and 	mnva since it does not contain the term
with four indexes over the virtual orbitals �term 3 in Eq.
�23��. We note that this is the only equation that is not
present in any form in the all-order code for monovalent
systems.

Below, we outline a step-by-step application of the CI �
all-order method.

Step 1: a finite basis set is generated in a spherical cavity
of radius R. All calculations are carried out with same basis
set. The second-order MBPT is used to generate �	1

�2��vw and
�	2

�2��mnvw, where m ,n ,v ,w are any basis set functions.
Highly excited orbitals can be omitted without loss of accu-
racy. A subset of the basis set orbitals is selected for which
all-order values of �	1�vw and �	2�mnvw are to be obtained. In
our calculation, this set includes the first three ns, np1/2,
np3/2, nd3/2, and nd5/2 states for each system. We found that
the inclusion of the additional orbitals did not significantly
change the results and treating the remaining corrections to
the effective Hamiltonian in the second order should be suf-
ficiently accurate. This issue is addressed in more detail in
the next section.

Step 2: the all-order core �ma and �mnab excitation coeffi-
cients are obtained by the iterative solution of the corre-
sponding equations in the appropriate potential �for example,
VN−2 for divalent systems� in the same way as for monova-
lent systems. The core correlation energy is used as a con-
vergence parameter and is generally required to converge to
10−5 relative accuracy. The core excitation coefficients are
multiplied by the appropriate denominators as described
above to obtain 	ma and 	mnab after the iterations are com-
plete.

Step 3: the core quantities 	ma and 	mnab are used to
obtain 	mv and 	mnva, again by an iteration procedure, for a
large number of excited m ,n, and v orbitals. The valence
correlation energy for the state v is used as a convergence
parameter. These steps are carried out in exactly the same
way as our present monovalent all-order calculations with
the omission of the valence-valence diagrams as described
above. The iterations of excitation coefficients result in the
summation of the relevant classes of MBPT terms to all or-
ders. We note that the term 	mv gives the all-order correction
to the one-body part of the effective Hamiltonian.

Step 4: the all-order expression for �	2�mnvw corrections to
the effective Hamiltonian is calculated using Eq. �24� with
previously stored fully converged values of 	ma, 	mnab, and
	mnvb.

Step 5: CI calculations are carried out to generate accurate
wave functions with the effective Hamiltonian constructed
using 	1 and 	2 obtained in the previous steps.

Step 6: the resulting wave functions are used to obtain
various matrix elements and derived quantities such as PNC
amplitudes. In the current CI+MBPT approach �16�, matrix
elements are calculated by replacing “bare” matrix elements
by the “dressed” matrix elements using the random-phase
approximations �RPA�. In this work, we use the same ap-
proach. This issue will be further discussed in the next sec-
tion.

The method described above treats electronic correlation
in systems with several valence electrons in a significantly
more complete way than the CI+MBPT approach owing to
the inclusion of the additional classes of MBPT terms in 	1
and addition of all-order �rather than second-order� correc-
tion in 	2. We note that our present all-order code is capable
of efficiently evaluating the large number of the core-valence
all-order excitation coefficients needed for the implementa-
tion of the CI � all-order approach.

V. RESULTS AND DISCUSSIONS

We compare the results of our CI, CI+MBPT, and CI �
all-order ab initio calculations for the two-electron binding
energies of Mg, Ca, Zn, Sr, Cd, Ba, and Hg with experiment
in Table I. Results for the energies of Mg, Ca, Cd, and Ba
counted from the ground state are compared with experiment
in Table II. The same designations are used in both tables.
The energy values are given in cm−1. Relative differences of
our results with experiment are given in the last three col-
umns of Tables I and II to illustrate the accuracy of each
approach.

The same parameters and basis set are used in all three
calculations for each system. The finite basis set of 245 or-
bitals that include l=0, . . . ,5 partial waves is formed in the
spherical cavity with a 50 a.u. radius. The CI calculation
includes only valence shell excitations as described above,
i.e., CI calculation is carried out in the same way for all three
cases. All summations over the excited states in the second-
order and the all-order calculations are always carried out
over the entire basis set.

A sufficiently large number of the effective Hamiltonian
matrix elements is modified in the CI � second-order MBPT
calculation. There is no need to include corrections to the
entire Hamiltonian as the corrections from the remaining
terms are negligible as described below. The CI � all-order
calculations include the replacement of the most important
	1 and 	2 terms by their all-order values. The remaining
corrections from the effective Hamiltonian retain their
second-order values as described above. We find that it is
sufficient to carry out all-order calculations for the first three
ns, np1/2, np3/2, nd3/2, and nd5/2 states and modify the corre-
sponding 	1 and 	2. For example, indexes m ,n ,v ,w in
�	1�mv and �	2�mnvw in Ca calculation include 4s, 5s, 6s,
4p1/2, 5p1/2, 6p1/2, 4p3/2, 5p3/2, 6p3/2, 3d3/2, 4d3/2, 5d3/2,
3d5/2, 4d5/2, and 5d5/2 states. To test that the above number of
the corrected Hamiltonian matrix elements is sufficient, we
have carried out the following test in Ca:
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�1� the number of second-order 	1 and 	2 matrix ele-
ments included was increased from 535 to 878 and from
4 879 832 to 19 236 743, respectively;

�2� the number of second-order 	1 and 	2 matrix ele-
ments replaced by all-order values was increased from 168 to
305 and from 592 634 to 2 898 122, respectively, by includ-
ing the 7s, 7p1/2, 7p3/2, 6d3/2, 6d5/2, 4f5/2, 4f7/2, 5f5/2, and
5f7/2 states into the m ,n ,v ,w index set.

The ionization potential and most of the Ca levels that we
considered shifted by less than 1 cm−1. The largest changes
observed for the 4s3d levels were still very small, 0.1%. This
was expected since the nd levels are known to be the most
affected by the partial-wave restrictions. We note that the
energies �̃v and �̃w in Eqs. �22�–�24� were set in the present
calculation to the corresponding Dirac-Fock values for the
lowest state for each partial wave. The second-order calcula-
tions were carried out in the same way. Therefore, the results
listed in Tables I and II are completely ab initio.

We find that the all-order ionization potential results are in
significantly better agreement with experiment in compari-
son with the CI+MBPT values even in the case of Mg,
where the agreement with experiment is already excellent in
the CI+MBPT approach. We also find almost no deteriora-
tion in the accuracy of the two-electron binding energies
from Ca to Hg; the all-order method reduces the differences
with experiment by about a factor of 3 in comparison with
the second-order data. Similar improvements are observed
for most of the excited states listed in Table II with the ex-
ception of 5d6s states of Ba. The accuracy of the SD all-
order approach is expected to be lower for Ba since the SD
method omits certain parts of the third-order energy correc-
tion associated with valence triple excitations �last term in
Eq. �6��. This contribution was found to increase signifi-
cantly for heavier alkalis �2�. The problem is corrected in the
SD all-order method by explicitly adding the missing part of
the third-order correction. Within our approach, this issue
may be treated in an ab initio way by adding the valence
triple excitation terms perturbatively to the all-order as was
done for the monovalent systems in Ref. �2� and removing
terms that are accounted for by the CI. We note that a factor
of 3 improvement in the relative differences with experiment
is still observed for the 6s 6p energies calculated with the
all-order method.

We observe that essentially all of the states in Ba listed in
Table II are shifted by the same relative amount in the all-
order approach, unlike the case of CI+MBPT. In this case, it
is possible to carry out another calculation with different �̃v
and �̃w resulting in final energies in very close agreement
with experiment in order to get an improved representation
of the wave functions for subsequent evaluation of atomic
properties. The results of such a calculation for Ba are given
in Table III. The one-particle �̃ energies for ns and np orbit-
als in this calculation are set to �̃ns=−0.48 a.u. and �̃np1/2,3/2
=−0.40 a.u., the energies for the other partial waves are set
to the Dirac-Fock values for the lowest orbital just as in the
previous calculation. The results of this calculation are in
excellent agreement with experiment. Moreover, the
��3D1-3P0� energy difference, which is very difficult to ac-
curately calculate agrees with experiment to 11 cm−1.

Our calculations have yielded accurate wave functions for
subsequent evaluation of the atomic properties. Matrix ele-
ments of one-body operators such as E1, E2, hyperfine, par-
ity violation, etc., are evaluated in the framework of the CI
+MBPT approach in the RPA approximation �10� �as de-
scribed in step 6 of the previous section�, sometimes with
subsequent addition of the dominant normalization and struc-
ture radiation terms. In the CI � all-order method, we can
use exactly the same method to evaluate matrix elements.
Our preliminary calculations of the 3P0 polarizability values
for Ca and Sr indicate better agreement of the CI � all-order
ab initio results with recommended values from Ref. �38� in
comparison with the CI+MBPT approach. The complete
implementation of the all-order approach would require an
addition of the all-order corrections to the matrix elements
beyond the modification of the wave function that is the
subject of the present paper. This approach will implicitly
include dominant normalization, structure radiation, and
other corrections to all orders. In further work, we plan to
replace the RPA matrix elements by all-order counterparts
that are linear or quadratic functions of the excitation coef-
ficients �2�. The terms that are accounted by the CI will have
to be removed to avoid double counting. The ability to con-
duct calculations in various approximations will also allow
one to carry out the evaluation of uncertainties of atomic
properties needed for many applications such as the calcula-

TABLE I. Comparison of the CI, CI+MBPT, and CI � all-order ab initio results for the two-electron
binding energies of Mg, Ca, Zn, Sr, Cd, Ba, and Hg with experiment. The energies are given in cm−1. The
relative difference with experimental values is given in the last three columns in %.

Element State

Energies
Differences with experiment

�%�

Expt. CI CI+MBPT CI � all-order CI CI+MBPT CI � all-order

Mg 3s2 1S0 182939 179537 182717 182877 1.86 0.12 0.03

Ca 4s2 1S0 145058 139068 145985 145517 4.13 −0.64 −0.32

Zn 4s2 1S0 220662 204083 218521 219442 7.51 0.97 0.55

Sr 5s2 1S0 134896 127858 136082 135322 5.22 −0.88 −0.32

Cd 5s2 1S0 208915 188884 210716 208620 9.59 −0.86 0.14

Ba 6s2 1S0 122721 114898 124956 123363 6.37 −1.82 −0.52

Hg 6s2 1S0 235469 207652 241152 236626 11.81 −2.41 −0.49
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TABLE II. Comparison of the CI, CI+MBPT, and CI � all-order ab initio results for the energy levels of
Mg, Ca, Cd, and Ba with experiment. Two-electron binding energies are given in the first row for each
element; the other values are counted from the ground-state energy. The energies are given in cm−1. The
relative difference with experimental values is given in the last three columns in %.

Element State

Energies Differences with experiment �%�

Expt. CI CI+MBPT CI � all-order CI CI+MBPT CI � all-order

Mg 3s2 1S0 182939 179537 182717 182877 1.86 0.12 0.03

3s4s 3S1 41197 40409 41132 41175 1.91 0.16 0.05

3s4s 1S0 43503 42689 43459 43502 1.87 0.10 0.00

3s3d 1D2 46403 45119 46318 46384 2.77 0.18 0.04

3s3d 3D1 47957 46972 47892 47936 2.05 0.14 0.04

3s3d 3D2 47957 46972 47892 47936 2.05 0.14 0.04

3s3d 3D3 47957 46972 47892 47936 2.05 0.14 0.04

3s3p 3P0 21850 20906 21780 21833 4.32 0.32 0.08

3s3p 3P1 21870 20926 21801 21852 4.32 0.32 0.08

3s3p 3P2 21911 20967 21844 21897 4.31 0.30 0.07

3s3p 1P1 35051 34488 35053 35065 1.61 0.00 −0.04

Ca 4s2 1S0 145058 139068 145985 145517 4.13 −0.64 −0.32

3d4s 3D1 20335 24200 19927 20335 −19.00 2.01 0.00

3d4s 3D2 20349 24201 19949 20355 −18.93 1.97 −0.03

3d4s 3D3 20371 24203 19982 20386 −18.81 1.91 −0.07

3d4s 1D2 21850 23853 21620 21965 −9.17 1.05 −0.53

4s5s 3S1 31539 30147 31765 31694 4.42 −0.72 −0.49

4s5s 1S0 33317 31893 33552 33466 4.27 −0.70 −0.45

4s4p 3P0 15158 13509 15474 15338 10.88 −2.08 −1.19

4s4p 3P1 15210 13557 15528 15385 10.87 −2.09 −1.15

4s4p 3P2 15316 13655 15638 15498 10.85 −2.10 −1.19

4s4p 1P1 23652 23052 23771 23729 2.54 −0.50 −0.32

Cd 5s2 1S0 208915 188884 210716 208620 9.59 −0.86 0.14

5s6s 3S1 51484 44027 51916 51395 14.48 −0.84 0.17

5s6s 1S0 53310 46153 53788 53272 13.43 −0.90 0.07

5s5d 1D2 59220 50634 59697 59015 14.50 −0.81 0.35

5s5d 3D1 59486 51292 59881 59259 13.77 −0.66 0.38

5s5d 3D2 59498 51303 59893 59271 13.77 −0.66 0.38

5s5d 3D3 59516 51320 59911 59291 13.77 −0.66 0.38

5s5p 3P0 30114 24417 30903 30141 18.92 −2.62 −0.09

5s5p 3P1 30656 24875 31451 30646 18.86 −2.59 0.03

5s5p 3P2 31827 25833 32656 31838 18.83 −2.60 −0.03

5s5p 1P1 43692 38902 43970 43607 10.96 −0.64 0.20

Ba 6s2 1S0 122721 114898 124956 123363 6.37 −1.82 −0.52

6s5d 3D1 9034 11524 9276 9249 −27.57 −2.67 −2.38

6s5d 3D2 9216 11603 9489 9441 −25.91 −2.97 −2.45

6s5d 3D3 9597 11780 9941 9840 −22.75 −3.59 −2.54

6s5d 1D2 11395 12753 11878 11727 −11.92 −4.24 −2.91

6s6p 3P0 12266 9938 13112 12556 18.98 −6.90 −2.36

6s6p 3P1 12637 10269 13484 12919 18.73 −6.70 −2.23

6s6p 3P2 13515 11010 14391 13819 18.53 −6.48 −2.25

6s6p 1P1 18060 16908 18621 18292 6.38 −3.11 −1.28
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tion of black-body radiation shifts and the study of funda-
mental symmetries.

VI. CONCLUSION

We have developed a theoretical method combining the
all-order approach currently used in precision calculations of
properties of monovalent atoms with the configuration-
interaction approach that is applicable for many-electron sys-
tems. This approach has been tested on the calculation of
energy levels of divalent systems from Mg to Hg. We have
demonstrated an improvement of at least a factor of 3 in
agreement with experimental values for the two-electron
binding energies and most excited-state energies in compari-
son with the CI+MBPT method. Further work on this
method will include an addition of the all-order terms be-
yond the RPA in the treatment of the transition amplitudes
and other matrix elements for the precision calculation of
atomic properties of systems with few valence electrons.
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