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By combining our theoretical calculation and the recently measured electric quadrupole hyperfine-structure
constant of the 3d 2D5/2 state in the singly ionized 43Ca, we determine its nuclear quadrupole moment to 1%
accuracy. The obtained result, −0.0444�6�b, is about 10% more accurate over its current accepted value. We
have employed the relativistic coupled-cluster theory at the single and double excitations level to calculate the
atomic wave functions. The accuracy of these wave functions is estimated by comparing our calculated
magnetic dipole hyperfine constants with their corresponding available experimental results of many low-lying
states. We also present hyperfine-structure constants for other higher excited states where experimental results
are not reported. The role of the Breit interaction has been investigated in these properties.
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I. INTRODUCTION

Advanced modern techniques of laser cooling and trap-
ping have enabled experimentalists to carry out precision
measurements of hyperfine-structure constants in atomic sys-
tems �1,2�. Theoretical studies of these quantities require ac-
curate many-body methods, inclusion of relativistic effects,
and the knowledge of nuclear moments �3–6�. Precise mea-
surements of nuclear moments are difficult, especially the
quadrupole and octupole moments. The prominent examples
of techniques to measure them are NMR, atomic beams, op-
tical pumping, recoil methods, etc. �7,8�. However, their ab-
solute results are of great interest for the nuclear physicists to
be able to test different nuclear models �9,10�. The quadru-
pole moment of the stable isotope 43Ca is also of particular
interest in the evaluation of the nuclear magnetic resonance
measurements in biological systems �11,12�. Investigating
properties of nuclei in the region of magic numbers is chal-
lenging because the valence nucleons can be strongly af-
fected by the close shell configuration. 43Ca has mass num-
ber between the double magic numbers 40Ca and 48Ca
suggesting a peculiar nuclear charge distribution. It is pos-
sible to obtain accurate electronic wave functions and hence
properties of single valence atomic systems using the relativ-
istic coupled-cluster �RCC� theory �6,13–15�.

It has been shown that electron correlation effects exhibit
spectacular behavior in the studies of the magnetic dipole
hyperfine-structure constant in the 2D5/2 states of the singly
ionized alkaline-earth-metal atoms. The coupled-cluster
singles and doubles �CCSD� method with contributions from
the leading order triple excitations �CCSD�T� method� is
able to yield results that are in very good agreement with the
precisely measured values of these quantities �15–17�. In this
work, we have used this method to evaluate the electronic
matrix elements due to the hyperfine interaction operators.

43Ca+ is an interesting candidate for quantum computation
�18� and optical frequency standard �19,20�. Accurate values
of hyperfine-structure constants are useful in estimating
shifts in the energy levels due to the stray electromagnetic

fields for certain experiments �21,22�. Again, theoretical es-
timations of these quantities are used to test the correct be-
havior of wave functions in the nuclear region �23,24�. The
nuclear magnetic moment of 43Ca is known within sub-1%
accuracy �25�, but its reported nuclear quadrupole moment
values vary from −0.0408�8�b to −0.065�20�b �26–30�. Us-
ing the accurate matrix element of the electric quadrupole
hyperfine interaction operator and the precisely measured
�31� electric quadrupole hyperfine-structure constant of the
3d 2D5/2 state in 43Ca+, it is possible to determine its nuclear
quadrupole moment. The accuracy of the calculations is es-
timated from an analysis of the accuracy of the wave func-
tions which reproduce the magnetic dipole hyperfine-
structure constants in a few low-lying states where
experimental results are available. We also present
hyperfine-structure constants of other excited states and they
can be compared with the results of high precision experi-
ments if they become available in the future.

II. THEORY AND METHOD OF CALCULATIONS

The detailed theory of hyperfine structure has been given
earlier in a classic paper by Schwartz �5�. Here, we have
mentioned only the relevant formulas in explicit form. The
relativistic hyperfine interaction Hamiltonian is given by

Hhfs = �
k

M�k� · T�k�, �2.1�

where M�k� and T�k� are spherical tensor operators of rank k.
In the first-order perturbation theory, the hyperfine interac-
tion energy WF of the hyperfine state �F ; I ,J� with angular
momentum F= I+J for I and J being the nuclear spin and
electronic angular momentum of the associated fine structure
state �J ,MJ�, respectively, after neglecting terms beyond k
=2 is given by

WF =
1

2
AhfsK + Bhfs

3

2
K�K + 1� − 2I�I + 1�J�J + 1�

2I�2I − 1�2J�2J − 1�
,

�2.2�

where K=F�F+1�− I�I+1�−J�J+1�, Ahfs is the magnetic di-
pole structure constant for k=1, and Bhfs is the electric quad-*b.k.sahoo@rug.nl
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rupole structure constant for k=2. These constants are de-
fined as

Ahfs = �NgI

�J��T�1���J�
	J�J + 1��2J + 1�

, �2.3�

and

Bhfs = Qnuc
 8J�2J − 1�
�2J + 1��2J + 2��2J + 3��1/2

�J��T�2���J� ,

�2.4�

where we have used atomic units �a.u.�. In the above expres-
sions, �N is the Bohr magneton and we use gI= �

�I

I � with �I
and I�=7 /2� are the nuclear magnetic dipole moment and
spin, respectively, as −0.376 469 43 from the measurement
�25� to evaluate Ahfs. Since the nuclear quadrupole moment,
Qnuc, is not known accurately, we calculate

Bhfs

Qnuc
= 
 8J�2J − 1�

�2J + 1��2J + 2��2J + 3��1/2

�J��T�2���J� . �2.5�

The reduced matrix elements of the electronic spherical op-
erators, T�k�=�t�k�, in terms of single orbitals are given by
�5�

�� f��t�1����i� = − �� f + �i��− � f��C�1����i��
0

�

dr
�PfQi + QfPi�

r2

�2.6�

and

�� f��t�2����i� = − �� f��C�2����i��
0

�

dr
�PfPi + QfQi�

r3 ,

�2.7�

where i and f represent initial and final orbitals, respectively.
The reduced matrix elements of the spherical tensors �C�k��
are given by

�� f��C�k����i� = �− 1� j f+1/2	�2j f + 1��2ji + 1�

� j f k ji

1/2 0 − 1/2 ���lf,k,li� �2.8�

with the angular momentum selection rule ��lf ,k , li�=1
when lf +k+ li=even for the orbital angular momenta lf and
li, otherwise zero.

We calculate the above electronic matrix elements of the
hyperfine interaction operators by the CCSD�T� method. It is
obvious from the single particle expressions that these matrix
elements are sensitive to the nuclear region. As a starting
point, we consider kinetically balanced Gaussian type of or-
bitals �GTOs� which seem to be an ideal choice for obtaining
the correct behavior of the single particle wave functions in
the nuclear region �32,33� to calculate the mean-field wave
functions ��0� of the closed-shell configuration in the
Dirac�Hartree�-Fock �DF� approach. To calculate the atomic
state function of a single valence system with closed-shell
configurations, we express it in the RCC ansatz as

��v� = eT�1 + Sv���v� , �2.9�

where ��v� is the new reference state which is defined as
��v�=av

†��0� and will give the DF wave function for the
above single valence system. In the above expression, we
call T and Sv as the closed-shell core and the core with va-
lence electron excitation operators, respectively, which in the
second quantization notation in the CCSD approximation are
given by

T = T1 + T2 = �
a,p

ap
†aata

p +
1

4 �
ab,pq

ap
†aq

†abaatab
pq, �2.10�

Sv = S1v + S2v = �
p�v

ap
†avsv

p +
1

2 �
b,pq

ap
†aq

†abavsvb
pq,

�2.11�

where the �a ,b ,c. . .�, �p ,q ,r. . .� and �v� subscripts of the
second quantized operators represent core, particle �virtual�
and valence orbitals, respectively. The t and sv coefficients
are the corresponding excitation amplitudes which are deter-
mined using the following equations:

��L��HNeT̂���0� = 0, �2.12�

��v
L��HNeT̂�Sv��v� = − ��v

L��HNeT̂���v� + ��v
L�Sv��v�	Ev,

�2.13�

with the superscript L�=1,2� representing the single and
double excited states from the corresponding reference states
and the wide-hat symbol denotes the linked terms. Subscript
N with the Hamiltonian H represents its normal order form.
	Ev is the corresponding valence electron affinity energy
which is evaluated by

	Ev = ��v��HNeT̂��1 + Sv���v� . �2.14�

In our CCSD�T� approach, we consider effects of the leading
order triple excitations through 	Ev by constructing the
triple excitation operator �S3v� with amplitude svbc

pqr as

S3v�svbc
pqr� =

HNT2
̂ + HNS2v

̂


b + 
c − 
q − 
r
, �2.15�

and contracting it with the Hamiltonian to get contributions
to the corresponding 	Ev, where 
i is the DF energy of the
electron in the ith orbital.

We consider the Dirac-Coulomb-Breit Hamiltonian in the
above equations that is given by

H = c�� · p� + �� − 1�c2 + Vnuc�r� +
1

r12
−

�� 1 · �� 2

r12

+
1

2
�� 1 · �� 2

r12
−

��� 1 · r�12���� 2 · r�12�
r12

3 � , �2.16�

where c is the velocity of light, � and � are the Dirac ma-
trices, and Vnuc�r� is the nuclear potential. We solve the wave
functions of the above Hamiltonian in the DF and RCC
methods self-consistently with a tolerance of below 10−7 to
obtain precise results.
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We evaluate expectation values due to the hyperfine inter-
action operators using our RCC method by

�O� =
��v�O��v�
��v��v�

=
��v��1 + Sv

†�Ō�1 + Sv���v�

�1 + Sv
†�N̄0�1 + Sv�

=
��v��1 + S1v

† + S2v
† �Ō�1 + S1v + S2v���v�

�1 + S1v
† + S2v

† �N̄0�1 + S1v + S2v�
, �2.17�

where O is any of the operator, Ō= �eT†
OeT� and N̄0=eT†

eT.

Generally, both Ō and N̄0 in the RCC approach are nonter-
minating series. However, we use a special trick to obtain the
leading order contributions using Wick’s generalized theo-
rem �34�. In this procedure, we evaluate first the effective

one-body, two-body terms, etc. step by step and at the end
sandwich them between the Sv and its conjugate operators.
This procedure has already been demonstrated in our earlier
works �15,23,35�. We also explicitly present contributions
from the normalization factors evaluating them in the follow-
ing way:

Norm = ��v�O��v�
 1

1 + Nv
− 1� , �2.18�

where Nv= �1+S1v
† +S2v

† �N̄0�1+S1v+S2v�.

III. RESULTS AND DISCUSSIONS

Earlier, we have studied the behavior of the electron cor-
relation effects in the magnetic dipole hyperfine-structure

TABLE I. Results of Ahfs, Bhfs /Qnuc, and Bhfs of many states in 43Ca+.

State

Ahfs
Bhfs /Qnuc

Calc.
�MHz b−1�

Bhfs

Expt.
�MHz�

Calc.
�MHz�

Expt.
�MHz�

4s 2S1/2 −806.4�2.5�a −797.5�2.4�b

−805.348c −805�2�d

−819e −817�15�f

−794.7g −806.402 071 60�8�h

5s 2S1/2 −234.0�2.0�a

4p 2P1/2 −145.4�4�a −158.0�3.3�b

−143.068c −145.5�1.0�d

−148e −142�8�i

−144.8g 145.4�0.1�j

5p 2P1/2 −49.7�5�a

4p 2P3/2 −30.4�4�a −29.7�1.6�b 151.3�7�a

−30.498c −31.9�2�d 151.798c −6.7�1.4�d

−30.9e −31.0�2�j 155e −6.9�1.7�j

−29.3g

5p 2P3/2 −10.335�112�a 50.904�571�a

3d 2D3/2 −47.3�3�a −48.3�1.6�i 67.3�7�a

−47.824c −47.3�2�j 68.067c −3.7�1.9�j

−52e 68e

−49.4g

−47.27k 72.06k

4d 2D3/2 −9.5�1�a 17.5�2�a

3d 2D5/2 −3.6�3�a −3.8�6�j 95.5�1.3�a −3.9�6.0�j

−3.552c −3.8931�2�l 100.208c −4.241�4�l

−5.2e 97e

−4.2g

−4.84k 102.45k

4d 2D4/2 −3.0�1�a 24.7�2�a

aThis work.
bReference �40�.
cReference �37�.
dReference �30�.
eReference �38�.
fReference �41�.

gReference �39�.
hReference �42�.
iReference �43�.
jReference �44�.
kReference �22�.
lReference �31�.
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constants in this system using the CCSD�T� method and
GTOs for a few low-lying states �35� and later only in the
3d 2D5/2 state �15�. Due to the limitations of the available
computational resources at that time, we had restricted our
calculations by considering only up to f-symmetry �orbital
quantum number l=3� orbitals. Subsequently, we had ex-
tended the basis to include g-symmetry orbitals where we
found a peculiar behavior of the core-polarization effects in
the 2D5/2 states of the alkaline-earth-metal ions. However,
detailed investigations of the accuracy of the wave functions
for other low-lying states were not carried out in that work.
In the present work, we use a large basis where functions up
to g symmetry have been included. This basis reproduces the
results of our calculations of other properties �36� including
electron affinities of many low-lying states which agree well
with the experimental results.

In Table I, we present our Ahfs and Bhfs /Qnuc �or Bhfs�
results of many states along with the available theoretical
values and experimental measurements. Estimated errors in
our calculations are given inside the parentheses. We have
estimated two types of errors for all the states: �a� calcula-
tions with limited number of finite-size basis functions up to
g symmetry and �b� approximations in the level of excita-
tions that have been considered in the RCC approach. In the
first case, we have tested our DF results for a set of basis
functions to achieve consistent results and contributions from
the higher orbitals are estimated as possible discrepancies in
these results which are assumed as one of the sources of
errors. In Table II, we present estimated results to both the
Ahfs and Bhfs /Qnuc calculations from the orbitals those be-
long to the higher symmetries. In fact, we start this study
from f symmetry as our previous calculations �35� were re-
ported by considering orbitals up to f symmetry. These esti-
mated results are based on the second-order many-body per-
turbation theory �MBPT�2��. Second, we approximate our
excitations at the level of singles and doubles. However,
equations to determine these amplitudes, in principle, should

couple with the higher excitations for accurate calculations.
Although our leading order triple excitations take care of
most of these contributions, we estimate the contributions
from the higher excitations by finding differences of the re-
sults between the CCSD and CCSD�T� methods and evalu-
ating the lower order diagrams that may arise through the
neglected triple excitations in the RCC approach. This pro-
cedure may not be very rigorous, but it explains their impor-
tance qualitatively. We have scaled these contributions to
find the upper limit of the second source of errors. Again,
both the QED and Bohr-Weisskopf �BW� effects are impor-
tant in the hyperfine structures of the s states. Possible
amount of contributions, which are discussed below, is also
estimated and considered as another source of errors in the s
states.

It is obvious that our Ahfs results agree quite well within
the uncertainties of the available experimental values giving
an indication that our calculated wave functions are suffi-

TABLE II. Contributions from higher symmetry orbitals to the Ahfs and Bhfs /Qnuc using MBPT�2� method in MHz and MHz b−1,
respectively. Here l represents the orbital quantum number.

�JMJ� l 4s 2S1/2 5s 2S1/2 4p 2P1/2 5p 2P1/2 4p 2P3/2 5p 2P3/2 3d 2P3/2 4d 2P3/2 3d 2P5/2 4d 2D5/2

Ahfs

0–3 −784.612 −228.708 −127.789 −45.226 −26.782 −9.426 −39.139 −8.593 −3.613 −1.666

4 −787.468 −229.294 −127.922 −45.265 −26.808 −9.434 −39.579 −8.562 −3.800 −1.652

5 −787.681 −229.338 −128.148 −45.327 −26.852 −9.446 −39.852 −8.532 −3.916 −1.640

6 −788.096 −229.426 −128.165 −45.331 −26.855 −9.447 −39.910 −8.527 −3.941 −1.638

7 −788.154 −229.438 −128.209 −45.344 −26.863 −9.449 −39.951 −8.523 −3.959 −1.636

8−� −788.200 −229.480 −128.215 −45.365 −26.870 −9.475 −39.960 −8.540 −3.965 −1.640

Bhfs /Qnuc

0–3 135.285 47.001 63.513 15.463 90.358 22.019

4 135.413 47.037 64.237 15.412 91.384 21.948

5 135.628 47.096 64.686 15.362 92.020 21.879

6 135.645 47.101 64.783 15.356 92.157 21.869

7 135.687 47.113 64.850 15.348 92.253 21.859

8−� 135.705 47.120 64.880 15.355 92.260 21.865

TABLE III. Breit contributions �	Br� to the Ahfs and Bhfs /Qnuc

in MHz and MHz b−1, respectively.

State

	Br

Ahfs Bhfs /Qnuc

4s 2S1/2 −0.697

5s 2S1/2 −0.214

4p 2P1/2 −0.115

5p 2P1/2 −0.063

4p 2P3/2 0.048 −0.242

5p 2P3/2 0.014 −0.054

3d 2D3/2 −0.102 0.150

4d 2D3/2 0.135 −0.231

3d 2D5/2 −0.102 0.385

4d 2D5/2 −0.035 −0.298
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ciently accurate in the nuclear region. There are also experi-
mental results available for Bhfs in many cases, but none of
them are accurate enough except the recent measured value
for the 3d 2D5/2 state �31�. It is obvious from Table I that
there is fairly good agreement between the different calcula-
tions of Bhfs /Qnuc at least for the 4p 2P3/2 and 3d 2D3/2
states, but there are large discrepancies between the results
for the 3d 2D5/2 state. Due to consistency among the theoret-
ical calculations in the 4p 2P3/2 and 3d 2D3/2 states, it would
indeed be appropriate to combine these results with the mea-
sured Bhfs values of their corresponding states to determine
the less accurately known Qnuc in 43Ca. In contrast, Bhfs of
the 3d 2D5/2 state is measured quite precisely and hence it is
necessary to use its calculated Bhfs /Qnuc result and combine
with the measured Bhfs value to determine Qnuc for the sys-
tem that we have considered. Therefore, we would like to
investigate the possible reasons for the discrepancies among
the theoretical methods which are employed in these calcu-
lations. First, we investigate the role of the Breit interaction
from which we can realize the effect of the higher relativistic
effects in the above properties which was not considered in
the previous works, then we proceed with describing differ-
ences in the inclusion of various electron correlation effects
through the different theoretical methods that have been
employed.

For high accuracy calculations, it is necessary to find the
contributions from the higher order relativistic corrections.
The most important of these contributions comes from the
frequency-independent Breit interaction due to the transverse

photon �45� which can be assumed as a benchmark test to
estimate how large the neglected relativistic effects would
be. Studies of the Breit interaction in the hyperfine-structure
constants are also of great interest as discussed by Derevi-
anko �46� for determining accuracy of the wave functions in
the nuclear region especially to estimate matrix elements of
the parity nonconserving amplitudes in the atomic systems.
In that work the random phase approximation and Bruckner
orbitals were employed to estimate the Breit interaction con-
tribution, however, we have treated the frequency-
independent Breit interaction self-consistently here both at
DF and CCSD�T� methods. In Table III, we present contri-
butions from the Breit interaction in the Ahfs and Bhfs /Qnuc
calculations in different states. There is an analytical expres-
sion as dAhfs /Ahfs�0.68Z�2 with Z and � denoting atomic
number and fine structure constant, respectively, to estimate
the Breit interaction contributions to the s electrons in many-
body systems �48�. This result corresponds to 0.0007 for the
present system which matches well with our results as
0.0008 and 0.0009 in the 4s 2S1/2 and 5s 2S1/2 states, respec-
tively. The Breit interaction contributions in the considered
system are not large and it is larger in the ground state than
in the excited states. From the recent calculation �47� on the
BW effect in lithium like 43Ca shows that the relative cor-
rections to the hyperfine constants for the s states are around
−0.00120�60�. The relative QED corrections to the s states
from the same work are about −0.07%. By accounting these
corrections, we estimate possible errors in our calculations
due to both the neglected QED and BW corrections are

TABLE IV. RCC contributions to the Ahfs calculations.

RCC terms 4s 2S1/2 5s 2S1/2 4p 2P1/2 5p 2P1/2 4p 2P3/2 5p 2P3/2 3d 2D3/2 4d 2D3/2 3d 2D5/2 4d 2D5/2

O �DF� −587.902 −181.120 −101.559 −36.396 −19.669 −7.056 −33.409 −8.104 −14.235 −3.455

O− Ō −1.626 0.111 1.076 0.370 0.215 0.080 −0.604 −0.079 −0.283 −0.041

ŌS1v+c.c. −103.321 −21.064 −21.032 −5.887 −4.089 −1.159 −8.373 −0.244 −3.554 −0.100

ŌS2v+c.c. −102.224 −28.843 −19.997 −6.345 −5.386 −1.812 −3.120 −0.926 15.803 1.138

S1v
† ŌS1v −4.527 −0.613 −1.113 −0.245 −0.217 −0.049 −0.571 −0.031 −0.241 −0.013

S1v
† ŌS2v+c.c. −7.338 −0.873 −1.689 −0.313 −0.374 −0.048 −0.260 0.115 0.932 −0.112

S2v
† ŌS2v+c.c. −9.615 −3.117 −1.108 −0.355 −0.837 −0.348 −2.017 −0.384 −2.125 −0.443

Norm 8.466 1.519 1.107 0.273 0.232 0.057 1.072 0.179 0.081 0.055

TABLE V. RCC contributions to the Bhfs /Qnuc calculations.

RCC terms 4p 2P3/2 5p 2P3/2 3d 2D3/2 4d 2D3/2 3d 2D5/2 4d 2D5/2

O �DF� 96.976 34.789 55.354 13.354 78.466 18.939

O− Ō −0.869 −0.307 3.208 0.493 4.456 0.680

ŌS1v+c.c. 20.220 5.736 15.275 0.306 21.509 0.451

ŌS2v+c.c. 32.885 10.217 −5.066 2.836 −6.843 4.067

S1v
† ŌS1v 1.076 0.243 1.155 0.060 1.619 0.084

S1v
† ŌS2v+c.c. 1.770 0.286 −1.586 0.456 −2.225 0.632

S2v
† ŌS2v+c.c. 0.341 0.220 0.621 0.308 0.844 0.432

Norm −1.153 −0.280 −1.681 −0.371 −2.354 −0.516
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around 1.6�5�MHz and 0.5�1�MHz in the 4s 2S1/2 and
5s 2S1/2 states, respectively. As mentioned above, they are
included in the error bars in Table I.

We now discuss the differences between the various cal-
culations that account for correlation effects at different lev-
els. As mentioned earlier, our previous and present calcula-
tions are carried out with the RCC method in the CCSD�T�
approximation, but the main differences in the results are due
to the inclusion of orbitals from the g symmetry and the Breit
interaction in this work. Both Yu et al. �37� and Martensson
et al. �38� have carried out their calculations in the frame-
work of finite order MBPT, but they determine core-
polarization effects to all orders and the Bruckner pair-
correlation effects �34� to lowest order. In the work of Yu et
al., they have restricted the orbitals in the evaluation of the
hyperfine-structure constants for individual states by select-
ing the configurations that make the largest contributions.
However, contributions from all these orbitals are intrinsi-
cally accounted through the coupled-cluster amplitude equa-
tions in the RCC method. Recently, another calculation has
been carried out using the multiconfigurational Dirac-Fock

�MCDF� method �22�. In contrast to our RCC approach, this
method incorporates less correlation effects at a given level
of excitation.

In Tables IV and V, we present contributions from indi-
vidual RCC terms to our Ahfs and Bhfs /Qnuc results, respec-
tively. As seen from these tables, the trends of the correlation
effects for Ahfs in the first five low-lying states are the same
as those discussed in our previous works �15,35� except that
the differences in the magnitudes are due to the new basis
functions. The correlation effects in the higher excited states
are comparatively smaller. Likewise for Ahfs, both the pair-
correlation and core-polarization effects which arise through
S1v and S2v RCC operators �15,35�, respectively, play major
roles in obtaining the final results of Bhfs /Qnuc. The differ-
ences between our Bhfs /Qnuc result of the 3d 2D5/2 state with
those of others can be attributed to the accurate treatment of
these correlation effects in the present work.

Combining our Bhfs /Qnuc result with the measured Bhfs
value of this state �31�, we get Qnuc=−0.0444�6�b. Following
the same procedure when we combine Bhfs /Qnuc results of
the 4p 2P3/2 and 3d 2D3/2 states with their corresponding ex-
perimental Bhfs results, it gives less accurate values as Qnuc
=−0.044�10�b and Qnuc=−0.059�29�b, respectively. The as-
sociated larger errors are mainly due to the larger uncertain-
ties in the experimental results. We compare the above accu-
rately estimated Qnuc value with the previously reported
results in Table VI. Our result is an improvement of about
10% over the current accepted value −0.049�5�b �49� in this
system. Recently Yu et al. �37� had evaluated this value as
−0.044b, which is in reasonable agreement with our result,
by combining their Bhfs /Qnuc result of the 4p 2P3/2 state with
its experimental Bhfs value which has an uncertainty of
around 20%. Sundholm and Olsen �26� had combined the
precisely measured Bhfs result of the 3d 4s 1D2 state of 43Ca
with their calculated electric-field gradient result to obtain
Qnuc=−0.0408�8�b for the same atom. In this work, they had
employed the nonrelativistic multiconfigurational Hartree-
Fock �MCHF� method in a restricted active space to calcu-
late electric-field gradient. We have already discussed the
difference between the RCC and MCDF/MCHF methods
earlier in this section. Again, orbitals in their work were ob-
tained using the molecular basis functions which in principle
lose properties of atomic symmetry. There are also other
works �10,28–30,50,51� which determine Qnuc in 43Ca, but
all of them have used either experimental results with larger
uncertainties or methods less rigorous than the present work
like MBPT�2�, results correcting for Sternheimer effects us-

TABLE VI. Comparison of Qnuc values �in b� from different
calculations.

Qnuc Reference

−0.0444�6� This work

−0.040�8� �10�
−0.0408�8� �26�
−0.043�9� �30�
−0.065�20� �28�
−0.049�5� �29,50�
−0.044 a �37�
−0.062�12� �51�

aError has not been estimated, however, the uncertainty in the ex-
perimental result used in this work is about 20%.

TABLE VII. Calculations of Bhfs �in MHz� using new Qnuc

value and our Bhfs /Qnuc results reported in Table I.

State Bhfs

4p 2P3/2 −6.715�125�
5p 2P3/2 −2.260�56�
3d 2D3/2 −2.987�71�
4d 2D3/2 −0.774�16�
3d 2D5/2 −4.239�115�
4d 2D5/2 −1.100�24�

FIG. 1. �Color online� Comparison of nuclear quadrupole mo-
ments reported by different calculations �references are given be-
side the results� on 43Ca. Error only from the corresponding experi-
mental result is accounted in �37�.
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ing the antishielding factor in the Hartree-Fock calculations,
etc. In Fig. 1, we compare the uncertainties associated with
various reported Qnuc values in 43Ca using different works as
tabulated in Table VI.

Using our Qnuc value, we determine Bhfs from our
Bhfs /Qnuc results presented in Table I and have given them in
Table VII. The Bhfs results are well within the error bars of
the experimental values with less uncertainties. We have also
evaluated energies of different hyperfine states using the for-
mula given by Eq. �2.2� corresponding to each fine structure
level. In Table VIII, we have reported these results which can
be verified by analyzing isotope shift measurements in future
experiments on 43Ca+.

IV. CONCLUSION

We have employed the relativistic coupled-cluster method
in the Dirac-Coulomb-Breit approximation to compute the
atomic wave functions in 43Ca+. Using these wave functions,
we were able to determine accurate results for Ahfs and

Bhfs /Qnuc. By combining our calculated result of Bhfs /Qnuc
for the 3d 2D5/2 state of 43Ca+ with its measured value of Bhfs
that is precisely available, we determine Qnuc of 43Ca=
−0.0444�6�b which is about 10% more accurate over the
current accepted value. In the present work, we have given
contributions from the Breit interaction to the hyperfine-
structure constants and its interaction energies for a number
of states. The Qnuc value that we have obtained and the hy-
perfine interaction energies that we have reported would be
useful to researchers in the fields of atomic, molecular, and
nuclear physics.
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