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A semianalytical approach to the quantum dynamics of a plane pendulum is developed, based on Mathieu
functions which appear as stationary wave functions. The time-dependent Schrödinger equation is solved for
pendular analogs of coherent and squeezed states of a harmonic oscillator, induced by instantaneous changes of
the periodic potential energy function. Coherent pendular states are discussed between the harmonic limit for
small displacements and the inverted pendulum limit, while squeezed pendular states are shown to interpolate
between vibrational and free rotational motion. In the latter case, full and fractional revivals as well as
spatiotemporal structures in the time evolution of the probability densities �quantum carpets� are quantitatively
analyzed. Corresponding expressions for the mean orientation are derived in terms of Mathieu functions in
time. For periodic double well potentials, different revival schemes, and different quantum carpets are found
for the even and odd initial states forming the ground tunneling doublet. Time evolution of the mean alignment
allows the separation of states with different parity. Implications for external �rotational� and internal �tor-
sional� motion of molecules induced by intense laser fields are discussed.
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I. INTRODUCTION

A plane pendulum in classical physics can be realized by
a point mass particle restricted to move on a circle, subject to
a trigonometric, proportional to cos �, potential energy func-
tion in the angular coordinate �. The quantum pendulum can
be realized in molecular physics where the external degrees
of freedom can be manipulated by electric fields. For ex-
ample, linear molecules can be oriented or aligned by inter-
action with their permanent dipoles �1� or induced dipoles
�2–6�, respectively. Other applications of the pendulum in
the realm of molecules involve internal rotation of molecules
�7�, e.g., the torsion of the two methyl groups comprising an
ethane molecule �8�. Yet another example for the realization
of a microscopic pendulum are cold atoms in an optical lat-
tice �9�, which is formed by counterpropagating laser beams.
In this atom optics realization of a quantum pendulum
�10,11�, the spatial squeezing of the atoms is analogous to
the orientation of a rotor �12�.

Soon after its first formulation, the stationary Schrödinger
equation has been solved for the plane pendulum by Condon
�13�. Despite of its fundamental importance, this solution is
barely mentioned in textbooks �14�, probably because the
wave functions are Mathieu functions which were first dis-
cussed in the context of vibrations of an elliptic membrane
�15�. Although Mathieu’s functions cannot be given as ana-
lytical expressions, there exists an extensive body of litera-
ture on the numerical analysis of these functions �16–19�.
Depending on the energies considered, the plane pendulum
can be regarded as an interpolation between two exactly
soluble limiting cases �8,20�: for energies well below the
potential barrier, pendular states approach the �nondegener-
ate� states of a harmonic oscillator with equally spaced en-

ergy levels. For the high energy limit, pendular states ap-
proach the �doubly-degenerate� eigenstates a free rotor with
quadratically spaced energy levels.

With very few exceptions �21–24�, the quantum dynamics
of plane pendular states is a largely unexplored field. This
situation is in marked contrast to the two limiting cases of
the pendulum: for the harmonic oscillator, there is a substan-
tial body of literature, particularly on the celebrated coherent
and squeezed states representing the closest quantum analog
to classical vibrational dynamics �25–27�. For the free rotor
and for the closely related particle in a box, the quantum
dynamics is subject to pronounced quantum effects. In gen-
eral, the nonlinear energy level progressions give rise to
�fractional� revivals and super-revivals. The revival theory is
based on the fact that long time wave packet dynamical phe-
nomena are directly encoded in the energy representation of
multilevel quantum systems �28–32�. A special case repre-
sents the particle in a box with its quadratic energy spectrum
analyzed, e.g., in Ref. �33�. In addition to the purely tempo-
ral structures of �fractional� revivals, intriguing patterns have
been found in the correlated space-time dependence of wave
functions and probability densities. The structures of these
so-called quantum carpets have been thoroughly analyzed in
Refs. �34,35�.

The present work aims at an in-depth investigation of
time-dependent phenomena of the quantum pendulum. In
particular, pendular analogs of squeezed and coherent state
of harmonic oscillators shall be studied. To this end, we con-
sider the quantum dynamics of pendular states induced by an
instantaneous change of barrier height or by an instantaneous
shift of the trigonometric potential, respectively. In the
former case, the quantum dynamics of squeezed pendular
states naturally connects the limits of the harmonic oscillator
and the free particle on a ring �22�. In the latter case, the
quantum dynamics of coherent pendular states shall be
shown to lie between the harmonic oscillator and the in-
verted pendulum limit �21�. Other interesting features in pen-
dular quantum dynamics arise for a cos�2�� potential, which
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can be regarded as a periodic analog of a double well poten-
tial. Apart from quantum rotational tunneling �23� leading to
splitting of low-lying energy levels, interesting effects on the
wave packet dynamics are expected to arise from the even or
odd parity of the initial states. Note that the antisymmetry
principle relates rotational eigenstates with even and odd par-
ity to nuclear spin isomers. Recently, it has been demon-
strated that laser induced alignment of linear molecules �36�
and intramolecular torsion of rotatable molecules can be
used to select nuclear spin states �37�.

In our studies of pendular quantum dynamics, our atten-
tion shall focus on two aspects. First, the dependence of the
wave packet dynamics on the nature of the initial �squeezed
or coherent� pendular state will be investigated: in particular,
different interference schemes are expected to lead to differ-
ent �fractional� revivals and to different patterns in the space-
time densities �quantum carpets�. Note that approximate ex-
pressions for the corresponding revival times in the vicinity
of the harmonic oscillator and the free rotor limit have been
derived by perturbation theory �24�. Second, the influence of
the initial state on the expectation values of observables shall
be monitored. In particular, we want to calculate and discuss
the mean orientation and mean alignment versus time for
various quantum dynamical scenarios. In this way, the
present paper is related to recent work on field-free align-
ment of molecules, induced by nonresonant interaction with
strong laser fields �6,38�. In particular, the instantaneous
switches involved in the definition of squeezed and/or coher-
ent states �27� have been realized in molecular alignment
experiments by means of adiabatic turn on and sudden turn
off of the laser field �39,40�.

II. STATIONARY PENDULAR STATES

Before we discuss the quantum dynamics of the plane
pendulum, let us first review its stationary quantum states.
The Hamiltonian operator in units of twice the rotational
constant 2B=�2 / I is given by

Ĥ = −
1

2

d2

d�2 +
V

2
�1 + cos�m��� , �1�

where 0���2� denotes the angular variable, I stands for
the moment of inertia, and the periodic potential energy
function has m minima separated by m barriers of height V
�0. The corresponding time-independent Schrödinger equa-

tion Ĥ�=E� is equivalent to the Mathieu equation

d2�n

d�2 + �an − 2q cos 2���n = 0 �2�

for scaled angle �=m� /2 and scaled barrier height q
=2V /m2. Then the pendular eigenenergies E are related to
the characteristic values a of Mathieu’s equation through

En =
m2

8
an +

V

2
�3�

thus revealing an interesting scaling property for wave func-
tions with periodicity 2� /m of the plane quantum pendulum:

A change of the multiplicity from m to m� accompanied by a
change from V to V�= �m� /m�2V implies the following
changes in the angles, energies, and time

�� =
m

m�
�, E� = �m�

m
�2

E, t� = � m

m�
�2

t , �4�

which serves useful in our later considerations of the free
rotor limit �V=V�=0� of pendular states. The required 2�
periodicity �n��+2��=�n��� in the original angular coordi-
nate � translates to m� periodicity �n��+m��=�n��� in the
reduced coordinate �. Appropriate solutions are obtained as
Mathieu’s cosine elliptic �ce� or sine elliptic �se� functions
�16–18�, respectively,

�2n��� =
1

��
ce2n/m��;q� �5a�

�2n+1��� =
1

��
se�2n+2�/m��;q� �5b�

with n	0. For a regular pendulum with a single potential
well, m=1, these wave functions can be expressed as a Fou-
rier series in the original variables � ,V �with �=� /2 and q
=2V�

�2n��� =
1

��
ce2n��

2
;2V� =

1

��
�
k=0




Ak
�2n�cos�k�� , �6a�

�2n+1��� =
1

��
se2n+2��

2
;2V� =

1

��
�
k=1




Bk
�2n+1� sin�k�� .

�6b�

Note that only even order se or ce functions occur because of
the above-mentioned requirement of periodicity. The tradi-
tional way of calculating the characteristic values an and the
corresponding coefficients A ,B employs recursive methods
of continued fractions �16,17�. However, this approach tends
to become unstable for large barrier heights. Instead, we re-
sort to the Fourier grid Hamiltonian method which was pro-
posed for general potential energy functions in Refs. �41,42�
and in the special context of periodic potentials and Mathieu
functions in Ref. �19�. Inserting the Fourier series �6� into the
Mathieu Eq. �2� yields an eigenvalue problem with a sym-
metric tridiagonal representation of the Hamiltonian �1�
which is routinely solved e.g., by the LAPACK package imple-
mented in MATLAB. The numerical effort scales with
O�N log2 N� where N is the number of basis functions.

Useful illustrations of Mathieu functions are compiled in
Ref. �18� which shall not be reproduced here. In analogy to
extensive work on orientation �m=1� and alignment �m=2�
of linear molecules interacting with external fields �3,43�,
stationary wave functions on a circular domain shall be char-
acterized here and throughout this work by the following
mean �expectation� value of cosm � which is closely related
to the partitioning of kinetic and potential energy via Eq. �1�.
For the first case to be investigated here �m=1�,
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	cos �
2n = A0
�2n�A1

�2n� + �
k=0




Ak
�2n�Ak+1

�2n�, �7a�

	cos �
2n+1 = �
k=1




Bk
�2n+1�Bk+1

�2n+1�, �7b�

where only successive terms of the Fourier series expansion
�6� are coupled.

Figure 1 shows typical results for the mean orientation of
stationary pendular states: For sufficiently small quantum
number n with En�V, the wave functions are essentially
confined to the region of the potential minimum resulting in
highly oriented pendular states with 	cos �
�−1, see Sec.
II A on the harmonic oscillator limit. At intermediate values
of n, the energies approach the barrier height En�V and the
wave functions exhibit large amplitudes in the region of the
potential maximum, thus leading to moderate anti–
orientation with 	cos �
�0.5. Finally, in the limit of large
quantum numbers, n→
 with En�V, the wave functions
approach simple cosine or sine functions and the mean ori-
entation converges to zero, see Sec. II B on the free rotor
limit.

A. Harmonic oscillator limit

When the energies of pendular states are well below the
barrier height �E�V�, the Hamiltonian �1� for the trigono-
metric potential energy function with m=1 can be replaced
by its harmonic approximation. In order to adapt the corre-
sponding eigenfunctions to the periodic boundary conditions
of the pendulum, a discrete cosine or sine Fourier transfor-

mation yields the following coefficients �17�:

A0
�2n� = �− 1�n 1

�2

N2n


H2n�0� , �8a�

Ak
�2n� = �− 1�k+n�2

N2n


exp�−

k2

22�H2n� k


� , �8b�

Bk
�2n+1� = �− 1�k+n�2

N2n+1


exp�−

k2

22�H2n+1� k


� , �8c�

for k�0 and n	0, with parameter ��V /2�1/4 and normal-
ization

Nn = �2

�
�1/4 1

�2nn!�1/2 �9�

In the harmonic limit, the expectation value of the orienta-
tion of a pendulum can be approximated by a truncated Tay-
lor expansion of the cosine function around the minimum at
���−�=0,

	cos �
n � − 1 +
1

2
	�2
n = − 1 +

1

2
����n�2 + 	�
n

2� �10�

with the position uncertainty �fluctuation� for the standard
harmonic oscillator ���n�2= �2n+1� / �22� and 	�
=0. As can
be seen in Fig. 1, the linear relation is in good agreement
with the numerical result for the Mathieu function for low
quantum numbers with En�V, while there are major devia-
tions for higher n where the range of validity of the harmonic
approximation increases with the barrier height V.

B. Free rotor limit

For vanishing barrier height �V→0�, the Hamiltonian �1�
approaches that of a free particle on a ring with trivial Fou-
rier coefficients

A0
�2n� =

1
�2

�n,0, �11a�

Ak
�2n� = Bk

�2n+1� = �k,n, �11b�

for k�0 and n	0 and where � stands for Kronecker’s sym-
bol. In the free rotor limit, the expectation value of the ori-
entation of a pendulum vanishes exactly due to the symmetry
of the wave function, see Eq. �7� and Fig. 1. For the lowest
barrier heights, we find 	cos �
n�0 for all but the very low-
est quantum numbers n. Obviously, the range of validity of
the free rotor approximation decreases with increasing bar-
rier height V.

III. PENDULAR ANALOG OF SQUEEZED STATE

In this section we consider the generalization of the
squeezed state to a periodic situation with a trigonometric
potential; see Eq. �1�. In analogy to the situation for a har-
monic oscillator �27�, squeezed states can be created by a

sudden change of the barrier height from V to Ṽ. We aim at
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FIG. 1. �Color online� Curves in the bottom plane show ener-
gies, En, of the 26 lowest stationary pendular states vs barrier height
V with dashed line indicating E=V. The surface shows an interpo-
lation of the corresponding expectation values of orientation,
	cos �
n.
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solutions of the time-dependent Schrödinger equation

i�t��t�= Ĥ��t� where the time is given in units of 1 / �2B�
= I /� and where the initial wave function is chosen to be the
lowest Mathieu function �pendular ground state� ��0��� , t
=0�=�0���. The resulting wave packet can be written in

terms of eigenenergies Ẽ and eigenfunctions ũ of the “new”

Hamiltonian with changed barrier height Ṽ,

��0���,t� = �
n=0




c2n
�0� exp�− iẼ2nt��̃2n��� . �12�

The corresponding expansion coefficients c2n
�0� of the “old”

wave function in the basis of the “new” ones are most con-
veniently calculated using the Fourier representation intro-
duced in Eq. �6�,
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FIG. 2. �Color online� Probability densities ��� , t�2 for squeezed pendular states with Ṽ=10 �a�, Ṽ=5 �b�, Ṽ=0 �c�. In all cases, V
=100.
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FIG. 3. �Color online� Left:
mean orientation 	cos �
�t� for
squeezed pendular states with �a�
Ṽ=10, �b� Ṽ=5, �c� Ṽ=0. Dashed
�red� curve in �a� shows results for
the squeezed state of the limiting
harmonic oscillator �15� while
dashed �red� curve in �c� is for
free particle dynamics without pe-
riodic boundary conditions �23�.
Right: Corresponding energy dis-
tributions c2n2. Solid �blue� bars:
exact values. Dashed �red� bars:
harmonic approximation �14�. In
all cases, V=100.
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c2n
�0� = A0

�0�Ã0
�2n� + �

k=0




Ak
�0�Ãk

�2n�, �13�

where Ã are the Fourier coefficients of the solutions �̃ of the

Mathieu Eq. �2� but with Ṽ or q̃, which are again obtained
with the matrix-based method described above.

Throughout the remainder of this work we assume an ini-
tial barrier height of V=100 with the corresponding ground
pendular energy level E0�3.5 lying far below the potential
barrier. The probability densities, ��� , t�2, associated with

the squeezed wave packets are shown in Fig. 2. For Ṽ=10
the density is centered around the potential energy minimum
at �=� with its width oscillating in a nearly periodic manner.

More complicated patterns are observed for Ṽ=5 and for Ṽ
=0 where the wave functions are �partially� able to cross the
barrier. The corresponding probability distributions are found
to span the whole range �0,2�� of the periodic coordinate �
giving rise to complicated interference patterns. Of particular

interest is the barrier-less case, Ṽ=0, where revival phenom-
ena are observed, vide infra.

The most important observable of interest is the mean
orientation, 	cos �
�0��t�, shown in the left panel of Fig. 3. It
displays an oscillatory behavior reflecting the Bohr frequen-
cies associated with the populated states. These can be iden-
tified from the corresponding energy distributions c2n

�0�2
shown in the right panel of Fig. 3. Upon a sudden decrease

of the potential barrier height to Ṽ=10,5 ,0, the wave pack-
ets mainly �c2n

�0�2�0.1� comprises of only two, three, and
four eigenstates of the new potential, respectively.

In the following two paragraphs, we shall proceed in anal-
ogy to the discussion of stationary states of the plane quan-
tum pendulum in the literature �8,20�, i.e., we consider the
two limiting cases of the harmonic oscillator and of the free
rotor, which allows us to derive analytical expressions for the
time dependence of the mean orientation. It is noted that the
transition from the oscillator to the rotor limit can also be
considered as a transition from classical to quantum dynam-
ics: while coherent states in a harmonic oscillator represent
the closest quantum analog to classical vibrational dynamics,
the dynamics of rotor states is subject to pronounced quan-
tum phenomena such as interference and wave packet reviv-
als �27,44�, vide infra.

A. Harmonic oscillator limit

Let us first consider the case where the energies of all
notably populated states, c2n

�0�2��, are well below the “new”

potential barrier, Ẽ2n� Ṽ. Hence, the corresponding Fourier

coefficients Ã�2n� in Eq. �13� can be replaced by their har-
monic approximation �Eqs. �8a� and �8b��. In this case, the
quantum dynamics is identical to that of a squeezed state of
a non–periodic harmonic oscillator �27,45�. The evolving
wave packet remains Gaussian shaped with its center at �
=0 with its width is periodic in time. This is approximately

realized in Fig. 2�a� for Ṽ=10 which is rather close to the

harmonic limit while for Ṽ1=5 notable deviations of the
Gaussian shape occur already during the first period of vi-

bration. In the harmonic oscillator limit, the expansion coef-
ficients �Eq. �13�� are given by �27�

c2n
�0� = �− 1�n� 2�s

s + 1
�1/2� s − 1

s + 1
�n �2n − 1� ! !

��2n�!
, �14�

with squeeze parameter s=�V / Ṽ and where the coefficients
c2n+1 vanish due to the even symmetry of the initial state �0.
The double factorial is defined as �2n−1� ! ! =1�3�5
� ...�2n−1�. These results are shown as dashed �red� bars in
the right panel of Fig. 3. While they still represent a good

approximation of the case of Ṽ=10, major deviations occur

for Ṽ=5, see Figs. 3�d� and 3�e�.
The expectation value of the orientation can be approxi-

mated by a truncated Taylor expansion

	cos �
�0��t� � − 1 +
1

2
	�2
�0�

= − 1 +
1

2
����0��t��2 +

1

2
�	�
�0��t��2 �15�

with 	�
�0��t�=0 and with the well-known result for the time-
dependent position uncertainty of a squeezed state �27�

����0��t��2 =
1

2�̃
�s sin2��̃t� +

1

s
cos2��̃t�� , �16�

where �̃=�Ṽ /2 is the classical frequency of harmonic oscil-

lation. For comparison, this result is illustrated for Ṽ=10 as a
dashed �red� curve in Fig. 3�a�. The numerically exact result
oscillates slightly slower in time, and with less modulation,
than the harmonic approximation resulting in a notable phase
mismatch already after a few periods of vibration. A synopsis
with the right panel of the figure reveals that this discrepancy

is rather due to the energy levels Ẽn than the corresponding
populations c2n

�0�2.

B. Free rotor limit

Next, we consider the case when the energies of all nota-
bly populated states �c2n2��� are high above the “new”

potential barrier, Ṽ� Ẽ2n. The extreme case of Ṽ→0 corre-
sponds to a sudden turn off of the hindering potential �22�
which could indeed be realized in molecular alignment ex-
periments by adiabatic turn on and sudden turn off of the
laser field �39,40�. In that case, the corresponding expansion
coefficients are simply obtained as

c0
�0� = �2A0

�0�, �17a�

c2n
�0� = An

�0�, �17b�

with n�0 and where the coefficients c2n+1 vanish again.
Hence, expression �12� for the wave packet with free rotor

energies Ẽ2n and eigenfunctions �̃2n yields
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��0���,t� =
1

��
�
n=0




An
�0� exp�− in2 t

2
�cos�n�� . �18�

The time evolution of the corresponding density is shown in
Fig. 2�c�. The initially very narrow Gaussian-like wave
packet starts to spread. For t /��0.1, the behavior is essen-
tially equal to the evolution of a free particle wave packet on
an infinite domain �46�. At later times, however, the wave
packet starts to interfere with itself through the periodic
boundary conditions giving rise to a plethora of interference
phenomena. It can be seen from Eq. �18� that at the full
revival time �t /�=4, not shown in the figure� the wave
packet has regained its initial, Gaussian bell shape, centered
at �=�,

��0���,4�� = ��0���,0� . �19�

At the half revival time t /�=2, the wave packet is again
Gaussian shaped but shifted by � yielding �44�

��0���,2�� = ��0��� − �,0� �20�

because the phase factors in Eq. �18� are real valued for
t /�=4 and t /�=2 with equal or alternating signs, respec-
tively. For the quarter revival time, t /�=1, a superposition
of the above wave functions is obtained �44�

��0���,�� =
1
�2

�e−i�/4��0���,0� + e+i�/4��0���,2��� �21�

because the phase factors in Eq. �18� are 1 and −i for even
and odd n, respectively. Similar fractional revivals with a
splitting of the wave packet in three, four, etc., lobes are
partly visible in Fig. 2�c� for t /�=2 /3,1 /2, etc.

In addition to the purely temporal patterns observed at the
�fractional� revival times, the space-time representation of
the evolving probability density in the free rotor limit exhib-
its further structure, similar to the “quantum carpets” previ-
ously found for, e. g., a particle in a square well �35�. In
particular, our Fig. 2�c� shows an intriguing combination of
spatial and temporal structures: in between linear canals
around �= � t /2, �3t /2, �5t /2, . . ., where the density prac-
tically vanishes, there are linear ridges at �=0, � t , �2t , . . .,
where the density exhibits maxima, interspersed by saddles.
Another set of such ridges can be seen at �=�t /2+� for
integer � but without interlacing canals. All of these patterns
become more and more washed out for higher values of the
slopes of the characteristic ��t� rays. However, by increasing
the barrier height V, more canals and ridges finally become
visible. For an in-depth analysis of these space-time struc-
tures, the reader is referred to Appendix A.

Equation �18� also allows for a ready evaluation of expec-
tation values of the orientation cosine

	cos �
�0��t� = A0
�0�A1

�0� cos� t

2
� + �

n=0




An
�0�An+1

�0�

�cos��2n + 1�
t

2
� , �22�

the time dependence of which is shown in Fig. 3�c�. The
initial spread of the wave packet is reflected by a rapid loss
of orientation. Up to t /��0.1, the result is similar to the
dispersion of a free particle Gaussian wave packet without
periodic boundary conditions �46�

	cos �
�0��t� = − 1 +
1

4�
�1 + ��t�2� �23�

which can be easily derived from Eq. �15�, see also the
dashed curve in Fig. 3�c�. At the half revival time, t /�=2,
the shifted Gaussian centered at �=0 leads to strong anti–
orientation, 	cos �
�1. In between those two times, the
mean orientation practically vanishes, and at the quarter re-
vival time, t /�=1, the double Gaussian structure leads ex-
actly to 	cos �
�0�=0.

Next, we insert the harmonic approximation �8� for the
Fourier coefficients of the ground vibrational state Ak

�0� into
Eq. �22�, which is well justified for the rather large value of
V=100 considered here. As will be shown in Appendix B,
the mean orientation can be expressed in terms of a Mathieu
sine elliptic function in time

	cos �
�0��t� = � 2

�2�1/4
exp�−

1

42�se1� t − �

2
;
V

2
� ,

�24�

where the harmonic oscillator limit of the Mathieu functions
�8� was used again.

IV. PENDULAR ANALOG OF COHERENT STATES

In this section, the generalization of a coherent state to a
periodic situation with a trigonometric potential is discussed.
In analogy to coherent states of a harmonic oscillator, we
shall consider a situation where the trigonometric potential in

Eq. �1� is shifted horizontally by �̄ but the barrier height V
remains unchanged. The resulting eigenfunctions of the
“new” potential are given by the Fourier series �6� with �

replaced by �− �̄. In analogy to Eq. �12�, pendular analogs of
coherent state wave packets can be expressed in terms of the
above wave functions

��0���,t� = �
n=0




cn
�0� exp�− iEnt��n�� − �̄� , �25�

where the eigenenergies �3� are unchanged. In general, the
shifted basis functions are neither even nor odd with respect
to inversion at �=0. Hence, the even initial wave function,
has nonvanishing overlap with both even and odd numbered
eigenfunctions of the shifted potential

c2n
�0� = A0

�0�A0
�2n� + �

k=0




Ak
�0�Ak

�2n� cos�k�̄� , �26a�

c2n+1
�0� = − �

k=1




Ak
�0�Bk

�2n+1� sin�k�̄� . �26b�
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The probability distributions for three different values of

�̄ are shown in Fig. 4. While for �̄=� /8 the distributions
are essentially centered along the classical trajectory, the

densities become more blurred for �̄=� /2 after few periods

of vibration. Finally, for �̄=�, the wave packet is subject
to strong interference phenomena resulting from the

periodic boundary conditions. The corresponding mean
orientations and probability amplitudes cn2 are displayed in
Fig. 5. In the following, we shall investigate two special

cases in more detail, i.e., that of small ��̄��� and of

largest possible ��̄=�� displacement leading to potential
inversion.
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FIG. 4. �Color online� Probability densities ��� , t�2 for coherent pendular states with �̄=� /8 �a�, �̄=� /2 �b�, �̄=� �c�. In all cases,
V=100.
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FIG. 5. �Color online� Left:
mean orientation 	cos �
�t� for co-

herent pendular states with �a� �̄

=� /8, �b� �̄=� /2, �c� �̄=�.
Dashed �red� curve in �a� shows
results for the squeezed state of
the limiting harmonic oscillator.
Right: corresponding energy dis-
tributions cn2. Solid �blue� bars:
exact values. Dashed �red� bars:
harmonic approximation �27�. In
all cases, V=100.

QUANTUM DYNAMICS OF A PLANE PENDULUM PHYSICAL REVIEW A 80, 012510 �2009�

012510-7



A. Limit of small displacements (harmonic limit)

First, we consider the limit of small displacements, �̄
��. Because the energies of the pendular ground state both
before and after the sudden shift of the potential are well
below the barrier, all Fourier coefficients A ,B can be re-
placed by their harmonic counterparts �Eq. �8��. The situation
approaches a coherent state of a �nonperiodic� harmonic os-
cillator with a Gaussian packet of constant width moving
along the classical trajectory �25,26�. Such a situation is ap-

proximately realized in our simulations for �̄=� /8 for which
the time dependence of the mean orientation cosine is shown
in Fig. 5�a�. For comparison the result for the harmonic limit
is shown as a dashed �red� curve. It is obtained from Eq. �15�
with the trajectory 	�
�0��t�= �̄ cos��t� and with constant
width ����0��t��2=1 / �2�� which is derived from Eq. �16�
with s=1.

Figure 5�d� shows that for the wave packet state with �̄
=� /8, where only the lowest three eigenstates bear notable
population, the energy levels and populations are practically
indistinguishable from the corresponding harmonic results
�27�,

cn
�0� =

�n

�n!
exp�−

�2

2
� �27�

with �= �̄ /�2. The corresponding energy distribution,
cn

�0�2, is a Poisson distribution in �2. However, the slow
modulation of the amplitudes of 	cos �
�0��t� seen in Fig. 5�a�
is due to the tiny anharmonicity of the pendular states for
V=100. More pronounced deviations from the harmonic re-

sults occur for �̄=� /2, where nine states are essentially
populated with a peak around En�50, see Fig. 5�e�. These
discrepancies clearly show up in the dynamics of the orien-
tation cosine shown in Fig. 5�b� where the amplitudes of the
vibrations are subject to strong interference phenomena
which can be explained in the context of revival theory �44�.

B. Limit of largest displacement (potential inversion)

When going to larger displacements �̄, higher and higher
pendular states become populated and the harmonic approxi-
mation is no longer valid. For the largest possible displace-

ment, �̄=�, an inversion of the trigonometric potential en-
ergy, i.e., a sudden exchange of minima and maxima of the
potential energy curve occurs which is also referred to as
inverted pendulum �21�. In the realm of molecules, qualita-
tively similar situations are realized in photoinduced dynam-
ics of intramolecular torsional degrees of freedom: upon ex-
citation of suitable electronic states, the positions of minima
and maxima may be swapped �37,47,48�. A typical example
is the photoinduced torsion around a CC or CN double bond
�49�.

Due to the symmetry of the inverted potential for �̄=�,
the initial wave packet comprises of even-numbered �cosine
elliptic� eigenstates of the potential only. Figure 5�f� shows
that for the case of V=100 considered here, only three states
with n=16, 18, 20 close to the barrier of the trigonometric

potential essentially contribute to the wave packet �E16
�94.9, E18�100.6, and E20�107.0�. With their probability
densities centered near the potential maxima, these states are
antioriented as shown in Fig. 1. The mean orientation dis-
plays oscillatory behavior with the Bohr frequencies corre-
sponding to the energy gaps between those states. The period
of the carrier frequency is approximately � /3, its amplitude
being modulated with a period of about 3�. Occasionally, a
frequency doubling of the carrier is seen, e.g., around �� t
�3� /2 which can be assigned to the energy gaps E20−E18
�6.4 or E18−E16�5.7, E20+E16−2E18�0.7, and E20−E16
�12.1, respectively.

V. PENDULAR ANALOG OF DOUBLE WELL POTENTIAL

Quantum-mechanical eigenstates for a periodic double
well pendulum as defined in Eq. �1� can be expressed in
terms of Mathieu’s cosine elliptic �ce� or sine elliptic �se�
functions �16–18�. Inserting the multiplicity m=2 into Eq.
�5� immediately yields �with �=� and q=V /2�

�2n��� =
1

��
cen��;

V

2
� , �28a�

�2n+1��� =
1

��
sen+1��;

V

2
� . �28b�

These wave functions can be categorized with respect to two
different symmetry properties �18�. The first one is the sym-
metry with respect to reflection at the potential minima at
�=� /2,3� /2 which is equivalent to the even/odd symmetry
of the wave functions of the single well potential, where ce
functions of even order and se functions of odd order are
even at the potential minima. In addition, all ce and se func-
tions are of g �gerade, even� or u �ungerade, odd� symmetry,
respectively, with respect to inversion at the potential barrier
at �=�. This symmetry, throughout the remainder of this
article referred to as parity, gives rise to a class of genuine
phenomena in quantum dynamics of the double well pendu-
lum, ranging from tunneling to interference and revival phe-
nomena, as discussed in the following subsections on the
harmonic oscillator limit and on the free rotor limit, respec-
tively. To this end, we shall restrict ourselves to the consid-
eration of the ground-state doublet �even symmetry with re-
spect to reflection at potential minima� which can be
expressed by the following two Fourier series:

��g���� =
1

��
ce0��;

V

2
� =

1

��
�
k=0




Ak
�g� cos�2k�� , �29a�

��u���� =
1

��
se1��;

V

2
� =

1
��

�
k=0




Bk
�u� sin��2k + 1��� .

�29b�

For the barrier height V=100 chosen here, this pair of states
is quasidegenerate with a tunnel splitting �E=E�u�−E�g�

�1.2�10−10.
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A. Harmonic oscillator limit

When the energies of pendular states are well below the
barrier height �En�V�, the harmonic approximation can be
invoked. The corresponding eigenfunctions of g and u parity
can be approximated by linear combinations of two Gaussian
packets

��g/u���� =
1
�2

N0�exp�− 2�� − �/2�2/2�

� exp�− 2�� − 3�/2�2/2�� �30�

with ��2V�1/4. In the context of pendular dynamics, these
wave functions have to be adapted to periodic boundary con-
ditions by expressing them in terms of the Fourier series �29�
with coefficients �for k�0�

A0
�g� =

N0


, �31a�

Ak
�g� = 2

N0


�− 1�kexp�−

�2k�2

22 � , �31b�

Bk
�u� = 2

N0


�− 1�kexp�−

�2k + 1�2

22 � . �31c�

Apart from a tiny tunnel splitting of the corresponding en-
ergy levels, there is no notable effect of parity, as long as the
barrier is high enough to prevent interaction between the
wave packets in the two wells. Hence, all of the results ob-
tained for the harmonic oscillator limits of the squeezed and
coherent pendular state analogs can be directly transferred
from the single well to the double well potential. For ex-
ample, the wave packet dynamics confined to the region of
the single potential well displayed in Figs. 2�a�, 4�a�, and
4�b� is essentially equivalent upon changing from m=1 to
m=2, the only exception being the change in the force con-
stant, V /2→2V, �and corresponding changes →�2 and
N0→�42N0�, see Eq. �4�.

B. Free rotor limit

The free rotor limit of a pendulum is approached if all
considered energies vastly exceed the barrier height, En�V.
Similar to our discussion of the free rotor limit of squeezed
states for a single well pendulum, we now consider the pen-
dular ground state doublet �Eq. �29��, subject to an instanta-

neous change of the potential barrier height, Ṽ→0. In anal-
ogy to Eq. �12�, the thus created wave packets can be
expressed in terms of the free rotor eigenenergies and eigen-
functions

��g���,t� =
1

��
�
n=0




An
�g� exp�− i�2n�2 t

2
�cos�2n�� ,

�32a�

��u���,t� =
1

��
�
n=0




Bn
�u� exp�− i�2n + 1�2 t

2
�sin��2n + 1��� ,

�32b�

��l���,t� =
1
�2

���g���,t� + ��u���,t�� , �32c�

where the even �g� or odd �u� parity enforces the restriction
to even or odd order eigenfunctions of the free rotor and
where the third equation describes a localized wave function
as a linear combination of g and u packets. It is noted that the
first of these equations is in complete analogy with Eq. �18�.
However, the restriction to even numbered indices is equiva-
lent to the introduction of a scaled angle ��→2�� and a
scaled time �t→4t�, as predicted by Eq. �4�.

The time evolutions of the corresponding g, u, l densities
are displayed in Fig. 6. At earliest times, t /��0.05, the
wave packets start to spread like those of a free particle,
essentially identical for the three cases considered here. At
later times, the wave packets start to interfere with them-
selves, and a rich pattern of revival phenomena starts to de-
velop. It is apparent from Eq. �32� that the first full revivals
of the g, u, and l wave packets are found at different times

��g���,�� = ��g���,0� , �33a�

��u���,4�� = ��u���,0� , �33b�

��l���,4�� = ��l���,0� , �33c�

which is a direct consequence of the �even/odd/none� parity
of the initial wave functions. Also the appearance of the
wave functions at the half revival time is qualitatively
different,

��g���,�/2� = ��g��� − �/2,0� , �34a�

��u���,2�� = − ��u���,0� , �34b�

��l���,2�� = ��l��� − �,0� , �34c�

i.e., while the even parity �g� wave function is shifted in
angle by � /2, the odd �u� wave function only changes its
sign. In contrast, a wave function initially localized in the
left potential minimum ��=� /2� is found at the half revival
time in the right minimum ��=3� /2�. At the quarter revival
time, the g and l wave functions split into two lobes sepa-
rated by � /2 and �, respectively, whereas the u wave func-
tion merely acquires an overall phase factor

��g���,�/4� =
1

�2
�e−i�/4��g���,0� + ei�/4��g���,�/2��

�35a�

��u���,�� = − i��u���,0� �35b�

��l���,�� =
1

�2
�e−i�/4��l���,0� + ei�/4��l���,2��� .

�35c�

Furthermore, neither a doubling nor a shift of the spatial
structures is observed for the odd parity �u� case at the 1/8
revival time
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��u���,�/2� = e−i�/4��u���,0� . �36�

However, a doubling occurs for the first time at 1/16 of the
full revival time.

In summary, it is observed that the number of maxima of
the g and u densities in Figs. 6�a� and 6�b� is identical for all
fractional revival times. Due to the different phase relation-
ships between the two initial Gaussian packets, however, the
positions of those maxima differ, giving rise to different pat-
terns in the quantum carpets of ��� , t�2. While for the even
�g� wave functions all of the above relationships are equiva-
lent to those for the single well pendulum but with t→ t /4
and �→� /2, as implied by the scaling relation �4� for
Mathieu’s equation, the odd �u� dynamics shows completely
different patterns.

The “quantum carpets” representing the evolving prob-
ability densities in the free rotor limit exhibit intriguing com-
binations of spatial and temporal structures. It can be seen in
Fig. 6�a� that the even parity density exhibits linear canals at
�= � t , �3t , . . . and linear ridges at �=0, � t , �2t , �4t , . . ..
An alternative set of such ridges is found for �=�t+� /2 for
all integer values of �. The odd parity density plot in Fig.
6�b� is qualitatively different. The first class of rays intersects
the abscissa at �=0,� featuring canals or ridges for even or
odd slopes d� /dt. The most pronounced of the former ones
are the vertical canals. Another class of rays intersects the
abscissa at �=� /2,3� /2, yielding ridges for all integer
slopes. Finally, the situation for the initially localized wave
packet displayed in Fig. 6�c� yields characteristic rays not
only in places where the even or odd parity densities showed
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FIG. 7. �Color online� Left: mean alignment 	cos2 �
�t� for squeezed pendular states of a double well potential �V=100� in the free rotor

limit �Ṽ=0�. Even �solid blue curve�, odd �dashed red curve�, and localized �dotted green curve� initial states. Right: corresponding energy
distributions cn2. Solid �blue� bars: even wave function. Dashed �red� bars: odd wave function.
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their rays, but also new rays that emerge from the interfer-
ence of even and odd components. For an in-depth discus-
sion of space-time structures and characteristic rays, the
reader is referred to Appendix A.

The observable of interest for the double well situation
�m=2� is the degree of alignment, cos2 �, because the poten-
tial energy does not distinguish between �=0 and �=�.

	cos2 �
�g��t� =
1

2
+

1

2
A0

�g�A1
�g� cos�2t� +

1

2�
n=0




An
�g�An+1

�g�

�cos��4n + 2�t� , �37a�

	cos2 �
�u��t� =
1

2
−

1

4
�B0

�u��2 +
1

2�
n=0




Bn
�u�Bn+1

�u� cos��4n + 4�t� .

�37b�

The result for the even parity �g� alignment is shown as a
solid curve in Fig. 7�a�. Starting from a highly aligned situ-
ation, 	cos2 �
�g/u��0��0, the initial spreading quickly ap-
proaches the isotropic value of 	cos2 �
�g/u��0.5. In particu-
lar, the fractional revivals at t /�=1 /4 discussed above do
not leave any fingerprint. At t /�=1 /2, the g state reaches its
half revival time with the lobes of its wave function now
residing at �=0,� leading to strong antialignment,
	cos2 �
�g��� /2��1. In marked contrast, the u state reaches
the 1/8 revival time where the wave function regains, apart
from a global phase factor, its original shape thus leading to
high alignment, 	cos2 �
�u��� /2��0. After that event, the
alignment signals for both g and u parity states approach the
isotropic plateaux again, 	cos2 �
�g/u��0.5, before returning
to a highly aligned state again, 	cos2 �
�g/u��0��0. Note that
this time corresponds to a full or a quarter revival for g or u
state dynamics, respectively. Finally, it is noted that the tran-
sient alignment for the parity-less, initially localized wave
function, ��l�, follows that for the g and u functions near t
=0 and t=� but stays near the isotropic value of 0.5 all the
time in between.

As will be shown in Appendix B, the results �Eq. �37�� for
the time dependence of the mean alignment can be expressed
in terms of Mathieu function thus yielding the double well
analog of Eq. �24�.

	cos2 �
�g��t� =
1

2
− � 1

2�2�1/4
exp�−

1

2�se1�2t +
�

2
;
V

8
� ,

�38a�

	cos2 �
�u��t� =
1

2
− � 1

2�2�1/4
exp�−

1

2�ce0�2t +
�

2
;
V

8
� ,

�38b�

where the harmonic oscillator limit of Mathieu functions
�Eq. �31�� was used.

VI. SUMMARY

In this work the quantum dynamics of a plane pendulum
is treated using a semianalytic approach. It is based on ex-
panding the solutions of the time-dependent Schrödinger
equation in terms of Mathieu functions which appear as so-
lutions of the time-independent Schrödinger equation �13�.
Once the Fourier coefficients specifying the eigenvectors are
obtained numerically, various quantum dynamical scenarios
can be expressed analytically in terms of these coefficients.
In particular, pendular analogs of the celebrated squeezed
and coherent states of a harmonic oscillator are investigated.
This is achieved by instantaneously changing the barrier
height or by instantaneously shifting the trigonometric poten-
tial horizontally. Squeezed pendular states are discussed be-
tween the limiting case of the harmonic oscillator and the
free rotor limit. Coherent pendular states are discussed be-
tween the limits of smallest displacements, in which case the
quantum dynamics can be well described within the har-
monic approximation, and the limit of largest possible dis-
placement, i.e., the case of the inverted pendulum. In all
those cases, semianalytic expressions for the wave packet
evolution as well as for the corresponding mean orientation
or alignment are derived in terms of the above-mentioned
Fourier coefficients. A special case is the free rotor dynamics
starting from initial wave functions in the harmonic limit,
i.e., narrow Gaussian packets evolving freely on a circle
where simple expressions for the wave functions allow an
analysis of temporal features �full and fractional revivals�
and spatiotemporal features �quantum carpets�. Furthermore,
the mean orientation and alignment can be expressed as
Mathieu functions in time. Novel features arise when passing
on from the periodic single well potential to the pendular
analog of the double well potential. While the lowest states
forming tunneling doublets in deep potential wells can
hardly be distinguished by traditional, i.e., energy resolved,
techniques, the time-dependent approach pursued in this pa-
per opens several routes to the separation of states of differ-
ent parity: Full and fractional revivals occur at different
times for even states, odd states, and localized superpositions
thereof. Also the characteristic rays �canals and ridges� are
found at different locations in the respective quantum car-
pets. Furthermore, the different revival times and structures
of the corresponding probability densities give rise to strong
alignment or antialignment at certain instances in time, de-
pending on the parity of the initial state.

In future work, the present approach could be extended in
several directions: the first is the generalization to a spherical
pendulum, where the representation of pendular states in
terms of Mathieu functions �in one angular coordinate� has to
be replaced by oblate spheroidal wave functions �in two an-
gular degrees of freedom� �16,50�. Another intriguing case is
the investigation of periodic multiwell potentials, e.g., the
intramolecular rotation of a methyl group with m=3 �8,23�.
Instead of the concept of two parity states, there are m states
transforming according to different irreducible representa-
tions of the point group of rotations. They are expected to
show qualitatively different spatiotemporal densities yielding
different experimentally observable, transient properties.
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APPENDIX A: SPACE-TIME STRUCTURES OF FREE
ROTOR WAVE FUNCTIONS

In this appendix, the evolutions of the probability densi-
ties obtained in the free rotor limit of squeezed pendular
states displayed in Figs. 2�c� and 6�a�–6�c� for single well
and double well potentials, respectively, shall be discussed in
more detail. In addition to purely spatial patterns �nodal
structures of wave functions� and purely temporal patterns
�fractional revivals� already discussed above, interesting fea-
tures arise from the combination of spatial and temporal
structures, similar to those discussed for quantum carpets of
a particle in a square well �35�. In particular, linear canals
�minima� and linear ridges �maxima, interspersed with
saddles� are found in the space-time representation of densi-
ties.

The time-dependent wave functions �Eqs. �18� and �32��
for the free rotor limits of the single and double well case,
respectively, are found to be of the general form

���,t� =
1

��
�
�=0




C�z�2
cos��� − ��/2�

=
i−�

2��
�
�=0




C��z�2
ei�� + �− 1��z�2

e−i��� �A1�

with z�exp�−it /2� and where C stands for the Fourier co-
efficients A or B characterizing the Mathieu functions, � rep-
resents even, odd, or unrestricted positive integer numbers,
and �� �0,1� is used to distinguish between cosine and sine
elliptic wave functions. From the density plots in Figs. 2�c�
and 6 it is apparent that the characteristic rays �canals and
ridges� on which the extremal values of ��� , t� can always
be given by

����t� = ��t + ���/2 �A2�

with � ,� being integer numbers. As already noted in Ref.
�35�, these rays can be interpreted as trajectories of free par-
ticles on a ring, starting at initial angles ��0�=�� /2 and
proceeding with quantized angular velocities d� /dt=� /2
which are commensurate with a full revival time of 4� ob-
tained for ��0�, ��u�, and ��l�. Note that for the case of ��g�

with a revival time of �, only even values of � can occur as
is indeed found below, see the scaling relation given in Eq.
�4�. Evaluating the wave functions along these rays yields

����t� =
1

2��
�
�=0




i��−�C��z���−�� + �− 1���−�z���+��� .

�A3�

Substituting �+� by � in the second term renders the time-
dependent phase factors of the two summands identical

����t� =
1

2��
��

�=0




i��−�C�z���−��

+ �
�=�




i3���−��−��C�−�z���−��� , �A4�

where the summation in the second term starts from �=�.
Due to the symmetry of the free rotor densities in Figs. 2 and
6 with respect to inversion at �=�� /2, the rays with ��0
are mirror images of those with ��0. Hence, we shall re-
strict the following discussion to the case of �	0, thus al-
lowing to separate the first �−1 terms occurring only in the
first summation from the remaining ones

����t� =
1

2��
��

�=0

�−1

i��−�C�z���−��

+ �
�=�




i��−��C� + i−3���− 1���−�C�−��z���−��� .

�A5�

While the time-dependent phase factors �powers of z� rotate
in the complex plane giving rise to rich interference phenom-
ena, the time-independent prefactors govern the amplitude of
the oscillations which shall be analyzed in the following for
the cases of single and double well pendular dynamics.

1. Periodic single well potential

Comparing expression �18� for the free rotor limit for the
single well wave function with the present ansatz �Eq. �A1��,
one readily identifies the Fourier coefficients C�=A�

�0� with
�=n for the pendular ground state which is a cosine elliptic
function ��=0�. The corresponding density plot in Fig. 2�c�
shows characteristic rays as defined in Eq. �A2� for all inte-
ger numbers � and for �=0,4 , . . .. Thus, the exponents ��
−� and 3�� are multiples of four rendering all time-
independent phase factors unity and Eq. �A5� simplifies to

���
�0��t� =

1

2��
��

n=0

�−1

An
�0�zn�n−�� + �

n=�




�An
�0� + An−�

�0� �zn�n−��� .

�A6�

If the initial wave function �0��� is sufficiently narrow �E0
�V�, the harmonic approximation �8� can be invoked. Due
to the alternating sign structure of the coefficients An

�0�, the
sum An

�0�+An−�
�0� is large for even values of � while it becomes

small for odd values of �. In particular, in the limit of 
→
, the Gaussian shaped distribution �8� becomes infinitely
wide and the sum An

�0�+An−�
�0� goes to zero �canals� or to 2An

�0�

�ridges� for odd or even values of �, respectively. In that
limit, also the magnitude of the first sum in Eq. �A6� tends to
zero. Thus, the density along the odd order rays goes to zero
in the limit of →
. In contrast, for finite values of , the
alternating canals and ridges become less pronounced for
increasing �. Another class of characteristic rays is observed
for �=2 and arbitrary integer �. Here, the bracket in front of
the second exponential in Eq. �A6� reads �An

�0�+ �−1��An−�
�0� �
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which approaches 2An
�0� in the harmonic limit, thus explain-

ing the ridges observed for both for even and odd orders �.
Note that all these considerations do not hold for the gen-

eral case, i.e., without the assumption of an initially narrow
Gaussian. As shown in Ref. �19�, the alternating sign struc-
ture of the Fourier coefficients is only found for higher order
coefficients, while the lower ones have equal sign.

2. Periodic double well potential

First, let us consider the free rotor limit for the even parity
��=0� double well wave function �32a�. Comparison with
Eq. �A1� yields coefficients C�=A�/2

�g� with even indices �
=2n. The corresponding density plot in Fig. 6�a� exhibits
characteristic rays for both � and � being even numbers.
Again, the exponents ��−� and 3�� are multiples of four
rendering all time-independent phase factors unity yielding a
result similar to Eq. �A6� for single well pendular states

���
�g��t� =

1

2��
� �

n=0

�/2−1

An
�g�z2n�2n−��

+ �
n=�/2




�An
�g� + An−�/2

�g� �z2n�2n−��� . �A7�

Also in this case the corresponding harmonic approximation
�30� has an alternating sign structure of the Fourier coeffi-
cients, with vanishing difference of the magnitude of neigh-
boring coefficients in the limit of →
. Hence, canals are
found for �=2,6 , . . . and ridges for �=0,4 ,8 , . . .. An alter-
native set of characteristic rays is found for odd values of �
and even values of �. In this case, the bracket changes to
�An

�g�+ �−1��/2An−�/2
�g� � which gives rise to the ridges observed

for all even orders � in the harmonic limit. Note again that
the complete space-time structure is equivalent to the single
well case but with scaled angle ��→2�� and scaled time
�t→4t�, as noted previously in Secs. II and V.

A qualitatively different situation is encountered for the
wave packet evolution starting from the odd parity ��=1�
member of the ground tunneling doublet, see Eq. �32b�. Now
the coefficients can be identified to be C�=B��−1�/2

�u� with odd
indices �=2n+1. The corresponding density plot in Fig. 6�b�
shows a variety of characteristic rays but only for even val-
ues of �. The first class of rays is found for even � where the
prefactor of the second exponential function in Eq. �A5� re-
duces to �Bn

�u�−Bn−�/2
�u� � yielding canals or ridges for even or

odd values of � /2, respectively. Most pronounced are the
vertical canals ��=0� where the wave function is exactly
zero, in accordance with the odd parity which is conserved
for all times. The second class of rays is found for odd �, in
which case the prefactor reduces to �Bn

�u�+ �−1��/2Bn−�/2
�u� � re-

sulting in ridges for all even values of �, due to the oscillat-
ing sign structure in the harmonic limit of Bn, see Eq. �31�.

Finally, the situation for a wave packet initially localized
in one of the potential wells shall be discussed. First of all,
Fig. 6�c� indicates that characteristic rays exist only for odd
values of �. A first set of ridges is found for even values of �,
both for �=1 and for �=3. It is obvious that their existence
is straightforward to derive from the existence of identical

rays in the time evolution of even and odd parity states as
discussed above. This is, however, not true for the other set
of ridges observed for odd values of �. For a quantitative
explanation of their occurrence, let us consider Eq. �A3� and
insert definition �32� which yields

���
�l� �t� =

1

2�2�
�
�=0




�− 1�n�An
�g��z2n�2n−�� + z2n�2n+���

+
i�−1

2�2�
�
�=0




�− 1�n�Bn
�u��z�2n+1��2n+1−��

+ �− 1��−1z�2n+1��2n+1+��� �A8�

for the time evolution of the wave function along the char-
acteristic rays. Replacing n by n− ��−1� /2 in the upper right
parts of the equation, and n by n− ��+1� /2 in the lower
right, and grouping together terms with equal powers of z
finally yields

���
�l� �t� =

1

2�2�
�
n=0

�−

�− 1�n�An
�g�z2n�2n−�� +

1

2�2�

� �
n=�+




�− 1�n��An
�g� + i3��−1��− 1�−��+

Bn−�+
�u� �z2n�2n−��

+
i�−1

2�2�
�
n=0

�−−1

�− 1�n�Bn
�u�z�2n+1��2n+1−��

+
1

2�2�
�

n=�−




�− 1�n�

���− 1�−��−
An−�−

�g� + i�−1Bn
�u��z�2n+1��2n+1−��, �A9�

where ��= ���1� /2 are integer numbers for odd values of
�. In the following we shall treat the cases �=1 and �=3
separately: first, let us consider the case of rays starting from
the center of the initial wave packet ��=1�. The square
brackets in the second and fourth summation in the last equa-
tion reduce to �An

�g�+ �−1��+
Bn−�+

�u� � and ��−1��−
An−�−

�g� +Bn
�u��,

respectively. Inserting the harmonic limit �Eq. �31��, it is
evident from the equal signs of Fourier coefficients An

�g� and
Bn

�u� that the space-time representation of the densities must
have ridges. Note that we previously also showed the pres-
ence of ridges for even �. Hence, for �=1 there are ridges
for all integer values of �, with no canals in between. Finally,
we consider rays starting opposite of the initial wave packet
��=3�. In that case, the two brackets yield �An

�g�−
�−1��+

Bn−�+
�u� � and ��−1��−

An−�−
�g� −Bn

�u�� yielding canals for odd
values of �. They are interspersed by the ridges for even
values of � as discussed earlier.

APPENDIX B: FREE ROTOR LIMIT OF MEAN VALUES

In this appendix we show that the mean orientation or
alignment of a squeezed pendular state in the free rotor limit
can be expressed as Mathieu elliptic functions in time if the
Mathieu coefficients of the initial wave function are given in
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the harmonic limit. For the following derivation, we recall
that for Mathieu functions with m=1 �single well�

An
�0� = An

�0��q = 2V� �B1�

and similarly for Bn
�1�, as defined in Eqs. �2� and �6�. In the

harmonic oscillator limit, we define the parameter 
= �V /2�1/4 and thus q=44. For Mathieu functions with m
=2 �double well�, the Fourier coefficients are given as

An
�g� = An

�g��q = V/2� �B2�

and similarly for Bn
�u�. In the harmonic oscillator limit, Eq.

�30�, with = �2V�1/4 this leads to q=4 /4.

1. Periodic single well potential

We start with expression �22� for the mean orientation of
a squeezed state in the free rotor limit for a single well po-
tential. If one inserts the harmonic approximation �11� for the
Fourier coefficients of the ground vibrational state Ak

�0�, one
obtains the analytical expression

	cos �
�0��t� = −
2N0

2

2 �
n=0




exp�−
2n2 + 2n + 1

22 �
�cos��2n + 1�

t

2
� . �B3�

Expressing the cosine by a shifted sine-function, this can
also be written as

	cos �
�0��t� =
2N0

2

2 exp�−
1

42� �B4�

��
n=0




exp�−
�2n + 1�2

42 ��− 1�n

�sin��2n + 1�� t

2
−

�

2
�� . �B5�

Comparing Eq. �B5� with the Fourier coefficients of the low-
est Mathieu sine elliptic function, Eq. �31c�, one obtains

	cos �
�0��t� = 21/4N0


exp�−

1

42��
n=0




B̂n
�u�

�sin��2n + 1�� t

2
−

�

2
�� . �B6�

Here the Fourier coefficients are

B̂n
�u� = B̂n

�u��q̂ = ̂4/4� with ̂ = �2 = �2V�1/4. �B7�

Using the normalization �9�, N̂0= �̂2 /��1/4 and the Mathieu
expansion �29b� of odd parity states in a double well, we can
finally write

	cos �
�0��t� = � 2

�2�1/4
exp�−

1

42�se1� t − �

2
,
V

2
� .

�B8�

Hence, for a single well potential, the mean orientation can
be written as the lowest Mathieu sine elliptical function in
time.

2. Periodic double well potential

For a double well potential, the mean alignment of the
even and odd wave functions can be expressed in a similar
way. Starting from Eq. �37�, we can insert the harmonic os-
cillator limit �Eq. �31�� for the coefficients An

�g� and Bn
�u� and

obtain

	cos2 �
�g��t� =
1

2
− 2

N0
2

2 �
n=0




exp�−
4n2 + 4n + 2

2 �
�cos��4n + 2�t� , �B9a�

	cos2 �
�u��t� =
1

2
−

N0
2

2 exp�−
1

2� − 2
N0

2

2 �
n=0




�exp�−
4n2 + 8n + 5

2 �cos��4n + 4�t� .

�B9b�

By replacing the cosine by shifted sine or cosine functions
for the even and odd wave functions, respectively, this can be
rewritten as

	cos2 �
�g��t� =
1

2
− 2

N0
2

2 exp�−
1

2��
n=0




�− 1�n

�exp�−
�2n + 1�2

2 �sin��2n + 1��2t +
�

2
�� ,

�B10a�

	cos2 �
�u��t� =
1

2
−

N0
2

2 exp�−
1

2� − 2
N0

2

2 exp�−
1

2�
� �

n=1




�− 1�nexp�−
4n2

2 �cos�2n�2t +
�

2
�� .

�B10b�

Note that, for the odd wave function, we have also shifted
the summation index from n+1 to n, so that the sum starts
from n=1. Comparing the last two equations with Eq. �31�
leads to

	cos2 �
�g��t� =
1

2
−

1

21/4
N0


exp�−

1

2��
n=0




B̆k
�u�

�sin��2n + 1��2t +
�

2
�� , �B11�

which allows to identify the coefficients as
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B̆k
�u� = B̆k

�u��q̆ =
̆4

4
=

V

8
� with ̆ = /�2. �B12�

Similarly, for the odd wave function, we can write

	cos2 �
�u��t� =
1

2
−

1

21/4
N0


exp�−

1

2��
n=0




Ăk
�g�

�cos�2n�2t +
�

2
�� �B13�

with

Ăk
�g� = Ăk

�g��q̆ =
̆4

4
=

V

8
� . �B14�

Note, that the second term on the r.h.s. of Eq. �B10b� is
combined with the sum over n, which now starts from n=0.

Finally, we can use expansion �29� of the Mathieu functions
in terms of cosine and sine functions and obtain

	cos2 �
�g��t� =
1

2
− � 1

2�2�1/4
exp�−

1

2�se1�2t +
�

2
;
V

8
� ,

�B15a�

	cos2 �
�u��t� =
1

2
− � 1

2�2�1/4
exp�−

1

2�ce0�2t +
�

2
;
V

8
� .

�B15b�

Depending on the symmetry of the wave function, the mean
alignment can be written as the lowest Mathieu sine or co-
sine elliptic functions in time. Again, it is noted that the
result �B15a� for the even wave function is equivalent to that
for the single well pendulum by virtue of the scaling relation
given in Eq. �4�.
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