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We derive the fully retarded energy shift of a neutral atom in two different geometries that are useful for
modeling etched microstructures. First, we calculate the energy shift due to a reflecting cylindrical wire, and
then we work out the energy shift due to a semi-infinite reflecting half-plane. We analyze the results for the
wire in various limits of the wire radius and the distance of the atom from the wire, and obtain simple
asymptotic expressions useful for estimates. For the half-plane we find an exact representation of the Casimir-
Polder interaction in terms of a single fast converging integral, which is easy to evaluate numerically.
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I. INTRODUCTION

The explosive rate of developments in nanotechnology as
well as in the manipulation of cold atoms has meant that
interest in atom-surface interactions has increased strongly in
recent years. What were once tiny elusive effects are now
dominant interactions, or, as the case may be, a major nui-
sance in some experimental setups. Motivated by a common
type of microstructure, which consists of a protruding ledge
fabricated by successive etching and possibly a thin electro-
plated top layer, we have recently studied the force on a
neutral atom in close proximity of reflecting surfaces of ei-
ther cylindrical geometry or that of a semi-infinite half-plane
�1�. In the absence of free charges or thermal excitations, the
interaction of the atom with the microstructure is dominated
by Casimir-Polder forces �2�, which are due to the interaction
of the atomic dipole with polarization fluctuations excited by
vacuum fluctuations of the electromagnetic field. If the atom
is sufficiently close to the surface of the microstructure, then
the interaction between the atomic dipole and the surface is
purely electrostatic and retardation can be neglected, which
was the case investigated in Ref. �1�. Then one does not need
to quantize the electromagnetic field but can work with the
classical Green’s function of Poisson’s equation. The only
difficulty lies then in the geometry of the problem.

However, in experimental situations one more often finds
that retardation is in fact important, as the distance of the
atom from the surface of the microstructure is often com-
mensurate or larger than the wavelength of a typical atomic
transition. This is the case we investigate here, again for
microstructures of two types of geometries: a cylindrical re-
flector of radius R and infinite length, and a reflecting half-
plane.

Various versions of this problem have been studied be-
fore, both analytically and numerically. Probably the first to
consider the interaction between an atom and a metallic wire,
according to �3�, was Zel’dovich �4� almost 75 years ago.
This problem was then revisited and extended by Nabu-
tovskii et al. �5�, and subsequently by Marvin and Toigo �6�.
In Nabutovskii’s paper a dielectric cylinder is envisaged to
be surrounded by a cylindrical shell of vacuum, which in
turn is surrounded by a rarefied gas of polarizable particles.
The interaction energy of a single particle is then calculated
through the work done by the force �obtained from the stress

tensor� due to the fluctuating electromagnetic fields, in the
limit of zero density of the surrounding gas. The asymptotic
results obtained there �Eqs. �23� and �24� of Ref. �5�� are,
according to Ref. �3�, valid only for dilute dielectric materi-
als; they diverge in the perfect-reflector limit.

On the other hand, the work by Marvin and Toigo �6�,
motivated by �7,8� and based on a normal-mode expansion
and a linear-response formalism �9�, gives the same general
formula for the interaction between a point particle and a
cylinder �their Eq. �4.10�� as the equivalent result in �5�. We
have no reason to believe that the result in �6� is incorrect in
the perfect-conductor limit, as it reduces to our previous re-
sult �1� in the electrostatic limit. Moreover, Ref. �6� manages
to recover the original Casimir-Polder result �2� in the large-
radius limit of the cylinder. This suggests that the general
expression in �5� is probably correct, only that the perfect-
conductor limit does not commute with the asymptotic limit
of the zero radius �or large distance of the atom from the
cylinder� studied there. In the small-radius limit, the result
for the interaction between an atom and a metallic filament,
in both retarded and nonretarded limits, is also given by �3�.

Marvin and Toigo’s work �6� is certainly the most com-
prehensive but due to its generality it is also quite cumber-
some to apply, which is mainly done numerically for just a
few examples �10�. Further numerical studies of the interac-
tion of atoms with macroscopic cylinders can be found in
Refs. �11–14�.

By contrast, in this paper we are after a relatively simple
theory that allows one to estimate the force between an atom
and a cylindrical reflector at any distance and cylinder radius.
To this end we are not interested in the precise dependence
of the interaction on material constants of the reflector, and
therefore we work with the model of a perfectly reflecting
surface.

As discussed in Ref. �1�, we also determine the force be-
tween an atom and a semi-infinite half-plane in order to fa-
cilitate estimates for common types of microstructures that
consist of a ledge protruding from a substrate. The Casimir-
Polder interaction between an atom and such a half-plane has
also been studied before but only in the extreme retarded
limit of very large distances of the atom from the surface
�15�. To the best of our knowledge no formula for the inter-
action in the intermediate region, when the distance of the
atom from the surface is comparable to the typical wave-
length of an internal transition in the atom, has been derived
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yet. Recent work of Mendes et al. �16�, dealing with wedges,
does not include the general result in the half-plane geometry
as a limiting case of a zero-angle wedge.

II. FIELD QUANTIZATION AND THE ENERGY SHIFT

The complete system of an atom interacting with the
quantized electromagnetic field is described by the Hamil-
tonian

H = HAtom + HField + HInt. �1�

We choose to work with � ·E coupling, i.e., our interaction
Hamiltonian is

HInt = − � · E . �2�

Quantization of the electromagnetic field is done by way of a
normal-mode expansion of the vector potential in terms of
photon annihilation and creation operators for each mode �
and polarization �,

A�r,t� = �
�,�

1
�2�0��

�a�
���F�

����r�e−i�t + H.c.� . �3�

To describe a mode we use the composite index � instead of
a wave vector, as we shall be working in cylindrical coordi-
nates where the quantum number of the azimuthal part of the
mode function is discrete but the other two are continuous.
We work in Coulomb gauge, � ·A�r�=0, so that the normal
modes F�r� satisfy the Helmholtz equation,

��2 + �2�F�r� = 0 . �4�

The energy-level shift due to interaction �2� can be calcu-
lated perturbatively. For our system in state 	i ;0
, i.e., the
atom in state 	i
 and the electromagnetic field in its vacuum
state 	0
, the lowest nonvanishing order of perturbation
theory is the second, so that

�W = �
j�i

��j ;1�
���	 − � · E	i;0
�2

Ei − �Ej + ���
. �5�

As the relevant field modes can be expected to vary slowly
over the size of the atom, we make the electric-dipole ap-
proximation, which simplifies the expression for the energy
shift to

�W = − �
�,�,j�i

��

2�0

��j	�	i
 · F�
�����r��2

Eji + ��

, �6�

where we have introduced the abbreviation EjiEj −Ei. The
sum over intermediate states j in Eq. �6� is in practice limited
to one or a few states to which there are strong dipole tran-
sitions from the initial state i. These strong dipole transitions
dominate the internal dynamics of the atom, and the corre-
sponding time scales are then given by 1 /Eji, the inverse
frequency of these dominant dipole transitions. Therefore,
when we analyze the distance dependence of the energy
shift, we shall use 1 /Eji for these transitions as the scale in
which to compare the distance of the atom from the surface.
We shall refer to Eji as the frequency of a typical atomic
transition.

Alternatively one can use the atomic polarizability, whose
diagonal elements are

������ = �
j

2Eji��j		�	i
�2

Eji
2 − �2 , �7�

and express the energy shift as an integral over the polariz-
ability and the electric field susceptibility at imaginary fre-
quencies �17�. In this formalism one can see most easily that
the energy shift at large distances �in the so-called retarded
limit� must always depend just on the static polarizability

����0� = �
j

2��j		�	i
�2

Eji
. �8�

For brevity and presentational clarity we shall henceforth
abbreviate the matrix elements of the atomic dipole moment
as

	�	  ��j	�	i
� . �9�

III. ENERGY SHIFT NEAR A PERFECTLY
REFLECTING WIRE

First we wish to calculate the energy shift of an atom near
a perfectly reflecting and infinitely long cylindrical wire of
radius R. It is advantageous to work in cylindrical coordi-
nates, cf. Fig. 1.

In order to find two independent transverse vector field
solutions of Eq. �4�, we make use of the representation theo-
rem for the vector Helmholtz equation �Eq. 10.411 of �18��.
If 
�x� is a solution of the scalar Helmholtz equation then
the two independent solutions of the vector equation are
given by

F�1��r� = �� � êz�
�r� , �10�

F�2��r� =
1

�
� � �� � êz�
�r� . �11�

The particular choice of the constant unit vector êz is moti-
vated by the symmetry of our problem, and lets us identify

�

�

R

FIG. 1. Atomic electric-dipole moment in the vicinity of a per-
fectly reflecting cylinder of radius R. The normal modes F�

����x� in
this geometry are given by Eqs. �15� and �16�.

CLAUDIA EBERLEIN AND ROBERT ZIETAL PHYSICAL REVIEW A 80, 012504 �2009�

012504-2



the solutions F�1��r� and F�2��r� with the transverse electric
�TE� and transverse magnetic �TM� modes, respectively. In
cylindrical coordinates the scalar Helmholtz equation has so-
lutions of the form


��,,z� = N�cos �mJm�k�� + sin �mYm�k���eim+i�z,

�12�

where Jm�k�� and Ym�k�� are Bessel functions of the first and
second kinds �Chapter 9 of �19��. The separation constants
satisfy �2=k2+�2, and m is an integer. The phase shifts �m
describe the superposition of regular and irregular solutions.
In free space only regular solutions Jm�k�� are admissible,
and �m=0. In the presence of the perfectly reflecting wire,
the phase shifts serve to make the electromagnetic fields sat-
isfy the boundary conditions on the surface of the wire. The
normalization constant N is chosen such that

� d3rF��
�����r� · F�

����r� = �mm���� − ���
��k − k��

�kk�
�13�

is met. Setting cos �m=1, sin �m=0, one can derive quite
easily that N= �2�k�−1.

On the surface of a perfect conductor, the tangential com-
ponents of the electric field and the normal component of the
magnetic field vanish. Therefore, at the surface �=R of the
cylindrical wire we must have E=0=Ez and B�=0. These
boundary conditions determine the phase shifts as

tan �m
TE = −

Jm� �kR�
Ym� �kR�

, tan �m
TM = −

Jm�kR�
Ym�kR�

. �14�

According to Eqs. �10�–�12�, the normalized mode functions
F�

����r�, �= �k ,m ,��, that satisfy the boundary conditions at
�=R, are given by

F�
TE��,,z� =

1

2�� im

k�

Jm�k��Ym� �kR� − Ym�k��Jm� �kR�
�Jm�

2�kR� + Ym�
2�kR�

ê�

−
Jm� �k��Ym� �kR� − Ym� �k��Jm� �kR�

�Jm�
2�kR� + Ym�

2�kR�
ê�eim+i�z,

�15�

F�
TM��,,z� =

1

2�
� i�

�

Jm� �k��Ym�kR� − Ym� �k��Jm�kR�
�Jm

2 �kR� + Ym
2 �kR�

ê�

−
m�

�k�

Jm�k��Ym�kR� − Ym�k��Jm�kR�
�Jm

2 �kR� + Ym
2 �kR�

ê

+
k

�

Jm�k��Ym�kR� − Ym�k��Jm�kR�
�Jm

2 �kR� + Ym
2 �kR�

êz�eim+i�z.

�16�

These mode functions can now be substituted into Eq. �6� for
obtaining the energy shift of an atom positioned at r
= �� , ,z�. However, what we want to calculate here is only
the correction to the energy shift caused by the presence of a
perfectly conducting surface rather than the whole energy
shift due to the coupling of the atom to the fluctuating
vacuum field, which would include the free-space Lamb

shift. Therefore we need to subtract the energy shift caused
by the vacuum fluctuations of the electromagnetic field in
free space, which is obtained by either letting the phase shifts
�m→0 or equivalently taking the limit R→0. In the limit of
vanishing radius R of the cylinder, the behavior of mode
functions �15� and �16� is dominated by the singular behavior
of Ym�kR� and Ym� �kR� at the origin, which causes the phase
shifts �Eq. �14�� to vanish. The renormalized energy shift
�Wren=�W−limR→0 �W is found to be of the form

�Wren = −
1

4��0
�
j�i

���		�	2 + �			2 + �z		z	2� , �17�

with

�� =
2

�
�
m=0

�

��
0

�

dkk�
0

�

d�
�

Eji + �

��� m

k�
�2� �Jm�k��Ym� �kR� − Ym�k��Jm� �kR��2

Jm�
2�kR� + Ym�

2�kR�

− Jm
2 �k��� + � �

�
�2

�� �Jm� �k��Ym�kR� − Ym� �k��Jm�kR��2

Jm
2 �kR� + Ym

2 �kR�
− Jm�

2�k���� ,

�18�

� =
2

�
�
m=0

�

��
0

�

dkk�
0

�

d�
�

Eji + �

�� �Jm� �k��Ym� �kR� − Ym� �k��Jm� �kR��2

Jm�
2�kR� + Ym�

2�kR�
− Jm�

2�k���
+ � m

k�

�

�
�2

�� �Jm�k��Ym�kR� − Ym�k��Jm�kR��2

Jm
2 �kR� + Ym

2 �kR�
− Jm

2 �k��� ,

�19�

�z =
2

�
�
m=0

�

��
0

�

dkk�
0

�

d�
�

Eji + �

��� k

�
�2� �Jm�k��Ym�kR� − Ym�k��Jm�kR��2

Jm
2 �kR� + Ym

2 �kR�

− Jm
2 �k���� , �20�

where the primes on the sums indicate that the m=0 term is
weighted by an additional factor of 1/2. It appears that the �
integrals fail to converge but this is a common feature in
such calculations caused by the dipole approximation, see,
e.g., �2�. As we shall see, convergence is in fact brought
about by the Bessel functions, which come to bear if the k
integral is replaced by an integral over �=��2+k2.

As the Bessel functions Jm�x� and Ym�x� are both oscilla-
tory for large x, we wish to rotate the integration contour in
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the complex k plane in order to get an integrand that is ex-
ponentially damped for large arguments. To this end we in-
troduce the Hankel functions Hm

�1��x�=Jm�x�+ iYm�x� and
Hm

�2��x�= �Hm
�1��x���=Jm�x�− iYm�x�, in terms of which we can

rewrite the energy-level shift in such a form that there are no
poles in the first quadrant of the complex k plane, as is re-
quired for the rotation of the integration contour. This step
greatly simplifies further analysis,

�� = − Re
2

�
�
m=0

�

��
0

�

dkk�
0

�

d�
�

Eji + �
� �2

�2 �Hm�
�1��k���2

�
Jm�kR�

Hm
�1��kR�

+
m2

k2�2 �Hm
�1��k���2 Jm� �kR�

Hm�
�1��kR�� , �21�

� = − Re
2

�
�
m=0

�

��
0

�

dkk�
0

�

d�
�

Eji + �
��Hm�

�1��k���2

�
Jm� �kR�

Hm�
�1��kR�

+
m2

k2�2

�2

�2 �Hm
�1��k���2 Jm�kR�

Hm
�1��kR�� , �22�

�z = − Re
2

�
�
m=0

�

��
0

�

dkk�
0

�

d�
�

Eji + �
� k2

�2 �Hm
�1��k���2

�
Jm�kR�

Hm
�1��kR�� . �23�

We now transform the k integration in Eqs. �21�–�23� into an
integration over �=��2+k2, and note that on the interval 0
���� the integrands become pure imaginary and therefore
do not contribute if added to the real part of the integral. We
can therefore shift the lower limit down to the origin

�
�

�

d� → �
0

�

d� , �24�

without affecting the result. Further, we note that the func-
tions Hm

�1��z� and Hm�
�1��z� have no zeros in the first quadrant

of the complex plane �Fig. 9.6 of �19�� so that the contour of
the � integration can be rotated from the positive real to the
positive imaginary axis, �→ i�. Then the oscillatory Bessel
functions turn into the modified Bessel functions according
to Eqs. 9.6.3 and 9.6.5 of �19�

Jm�iz� = eim�/2Im�z� , �25�

Hm
�1��iz� = −

2i

�
e−im�/2Km�z� . �26�

Taking the real part and going to polar coordinates, where
the angle integrals are elementary, we find that

�� =
2

�
�
m=0

�

��
0

�

dkk���Eji
2 + k2 − Eji�

Im�kR�

Km�kR�
�Km� �k���2

+
m2

k2�2� Eji
2

�Eji
2 + k2

− Eji� Im� �kR�

Km� �kR�
�Km�k���2� , �27�

� =
2

�
�
m=0

�

��
0

�

dkk�� Eji
2

�Eji
2 + k2

− Eji� Im� �kR�

Km� �kR�
�Km� �k���2

+
m2

k2�2
��Eji

2 + k2 − Eji�
Im�kR�

Km�kR�
�Km�k���2� , �28�

�z =
2

�
�
m=0

�

��
0

�

dkk� k2

�Eji
2 + k2

Im�kR�
Km�kR�

�Km�k���2� .

�29�

Note that the effect of our manipulations has been that the
integration variable k in Eqs. �27�–�29� has been rotated by
� /2 in the complex plane compared to Eqs. �21�–�23�.

The final result for the energy shift, Eq. �17� with Eqs.
�27�–�29�, is a sum over a series of rapidly converging inte-
grals, which, unlike Eqs. �18�–�20�, is reasonably easily
evaluated numerically. However, as the functions
��,,z�Eji ,d ,R� are quite cumbersome and it is not possible
to find exact closed-form expressions for them, we now look
at their asymptotics in various limiting cases, which is very
useful for analytical estimates.

A. Asymptotic regimes

There are three length scales in the problem: the distance
of the atom from the surface of the cylinder d=�−R, the
radius of the cylindrical wire R, and the wavelength of a
typical transition in the atom � ji�1 /Eji. Accordingly we get
six different asymptotic regimes, three nonretarded and three
retarded. The criterion as to whether retardation matters is
the relative size of the distance d of the atom from the sur-
face and the wavelength � ji of a typical transition: if the
atom is very close to the surface its interaction with the sur-
face is entirely electrostatic �1�, whereas retardation begins
to play a role once d�� ji or larger because the internal state
of the atom is then subject to non-negligible evolution during
the time a virtual photon mediating the interaction would
take to travel from the atom to the surface and back. First we
shall deal with the three nonretarded cases, and then with the
three retarded ones.

1. d™R™�ji

If � ji is larger than any other length scale, we can take the
limit Eji→0 in Eqs. �27�–�29�. This gives the same result as
a purely electrostatic calculation �1�. If the distance d of the
atom from the surface is small, then the atom does not feel
the curvature of the surface, and one expects to get the same
energy shift as one would close to a plane surface. This is
indeed the result we get when we take the limit d→0 by
using uniform asymptotic expansions for the Bessel func-
tions �1�; we obtain

�� �
1

8d3 , � �
1

16d3 , �z �
1

16d3 . �30�

2. d™�ji™R

In this regime the energy shift behaves in exactly the
same way as in the previous case because the radius of the
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wire has no influence on retardation so that the relative size
of R and � ji does not matter. All that matters is that the
distance d of the atom from the cylinder is still much less
than the wavelength � ji of the relevant transition in the atom.
In mathematical terms, the electrostatic limit �Eji→0� and
the large-radius limit �R→�� of the energy shift commute.

The limit of large radius was studied in great detail in �6�.
Application of the summation formula derived in Appendix
A of �6� to Eqs. �27�–�29� leads to the original Casimir-
Polder result �2� for the interaction between an atom and a
plane, perfectly reflecting mirror:

�� =
1

2�d3�
0

�

d�
e−2dEji�

�1 + �2�2 , �31�

� = �z =
1

2�d3�
0

�

d�
e−2dEji�

�1 + �2�2

1 − �2

1 + �2 . �32�

If we now take � ji to be much greater than d, we reproduce
result �30� of the previous section.

3. R™d™�ji

In this case we again start by taking the limit Eji→0 in
Eqs. �27�–�29� and obtain the electrostatic expression de-
rived in �1�. In the limit of the radius of the wire being much
smaller than the distance d, the energy shift is dominated by
summand with lowest m in Eqs. �27�–�29� �1�. Asymptoti-
cally one gets

�� �
1

d3 ln d
, � �

R2

d5 , �z �
1

d3 ln d
,

which is not very helpful numerically as logarithmic series
converge only very slowly.

4. �ji™d™R

When � ji is smaller than the distance d of the atom to the
surface of the wire, then the interaction is manifestly re-
tarded. As � ji is the smallest of the three length scales, we
first take the limit � ji→0, i.e., Eji→�, in Eqs. �27�–�29� and
find that the leading terms in all three integrals go as 1 /Eji.
Thus energy shift �17� indeed depends only the static polar-
izability �8� of the atom, as mentioned at the end of Sec. II.
The remaining integration over k is then quite similar to
those found in the nonrelativistic calculation in �1� and can
be tackled by the same means. Scaling k to x=k� /m and
realizing that the dominant contributions to the integrals and
sums come from large x and large m, one can approximate
the Bessel functions by their uniform asymptotic expansions
and then get a geometric series, which is easy to sum. In this
way one finds the following approximations

�� �
1

2�Eji�
4��4�

0

�

dkk3 I0�kR�
K0�kR�

�K1�k���2

+ �
0

�

dxx��1 + x2 +
1

�1 + x2�A�A2 + 4A + 1�
�A − 1�4 � ,

�33�

� �
1

2�Eji�
4��4�

0

�

dkk3 I1�kR�
K1�kR�

�K1�k���2

+ �
0

�

dxx��1 + x2 +
1

�1 + x2�A�A2 + 4A + 1�
�A − 1�4 � ,

�34�

�z �
1

�Eji�
4��4�

0

�

dkk3 I0�kR�
K0�kR�

�K0�k���2

+ �
0

�

dx
x3

�1 + x2

A�A2 + 4A + 1�
�A − 1�4 � , �35�

with A�x� given by

A�x� = �R

�
�2

� 1 + �1 + x2

1 +�1 + x2R2

�2 �
2�2��1 + x2R2

�2

− �1 + x2�� . �36�

These are easy to evaluate numerically and provide a reason-
able approximation to the energy shift in the retarded limit,
as shown in Fig. 2. In the limit of the distance d=�−R being
much smaller than the radius R of the wire, the above ap-
proximations yield

�� � � � �z �
1

4�d4

1

Eji
, �37�

which agrees with the retarded energy shift of an atom in
front of a perfectly reflecting plane mirror, as calculated by

FIG. 2. �Color online� The contributions to the energy shift in
the retarded limit due to the three components of the atomic dipole,
multiplied by Ejid

4. Solid lines represent the results of exact nu-
merical integration of Eqs. �27�–�29� in the limit Eji→�, whereas
the dashed �red� lines represent approximations �33�–�35�. For large
d the asymptotic behavior is dominated by the lowest m terms in the
sums, given by Eqs. �38�–�40� and shown as dotted �blue� lines. The
arrow on the vertical axis indicates the exact value in the limit d
→0, Eq. �37�.
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Casimir and Polder �2�. This is what one would expect be-
cause an atom that is very close to the surface is not suscep-
tible to the curvature of the surface.

5. �ji™R™d

In this case we again start by taking the limit Eji→� in
Eqs. �27�–�29�, which gives a leading-order contribution pro-
portional to 1 /Eji. In other words, this is again a fully re-
tarded case for which the static polarizability �8� is the only
atomic property that the energy shift depends on. For dis-
tances d much larger than the wire radius R the dominant
contribution to the sum then comes from the summands with
the lowest m so that we need to consider only those,

�� �
1

2�Eji
��

0

�

dkk3 I0�kR�
K0�kR�

�K1�k���2

− 2�
0

�

dk
k

�2

I1��kR�
K1��kR�

�K1�k���2� , �38�

� �
1

2�Eji
��

0

�

dkk�k2 +
2

�2� I1�kR�
K1�kR�

�K1�k���2

− 2�
0

�

dkk3 I1��kR�
K1��kR�

�K1��k���2� , �39�

�z �
1

�Eji
�

0

�

dkk3 I0�kR�
K0�kR�

�K0�k���2. �40�

The dotted lines in Fig. 2 show that these are indeed good
approximations for large d /R. Their leading-order behavior
is

�� �
1

Eji

1

d4 ln d
, � �

1

Eji

R2

d6 , �z �
1

Eji

1

d4 ln d
,

which is in full agreement with the asymptotic results by �3�,
even though those are for a metallic wire characterized by a
plasma frequency. This is because in the retarded limit the
interaction between the atom and the surface depends, to
leading order, only on the static polarizability.

As in the electrostatic case, the contributions due to the �
and z components of the atomic dipole fall off less rapidly
than the  contribution. We also note that, just as in the
nonretarded case, the series in powers of 1 / ln d converge too
slowly to be of any practical use so that estimates must be
made with Eqs. �38�–�40�.

6. R™�ji™d

As in the nonretarded cases, the limit of vanishing radius
�R→0� and the retarded limit �Eji→�� commute, and we
recover the results of the previous section, Eqs. �38�–�40�.
This is another manifestation of the fact that the criterion of
whether the interaction is retarded depends solely on the dis-
tance d between an atom and the surface of the wire, and that
the relative size of geometrical features and the wavelength
� ji is irrelevant. This means in particular that there are no
resonance effects for � ji coinciding with the wire radius R.

B. Numerical results

For intermediate parameter ranges one has to evaluate
Eqs. �27�–�29� numerically. This is straightforward, and one
can employ standard software packages such as MATH-

EMATICA or MAPLE. The numerical convergence of Eqs.
�27�–�29� is very good although more terms are needed for
small distances d than for large distances. Figures 3–5 show
the contributions by the �, , and z components of the
atomic dipole to energy shift �17� for various values of the
typical transition frequency Eji in the atom. We give the dis-
tance d and the transition wavelength 1 /Eji in units of the
wire radius R. For plotting we have factored out of ��,,z the
asymptotic functional dependence of the shift in front of a
plane mirror, Eq. �37�.

In Fig. 6 we show how these contributions look when we
choose the wavelengths 1 /Eji of a typical internal transition
as a length scale and plot the contributions to the energy shift

FIG. 3. Contribution �27� to energy shift �17� due to the � com-
ponent of the dipole for various typical transition frequencies Eji.
The dashed line is this contribution in the retarded limit Eji→�.

FIG. 4. Contribution �28� to energy shift �17� due to the 
component of the dipole for various typical transition frequencies
Eji. The dashed line is this contribution in the retarded limit Eji

→�.
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for various wire radii R. The larger the value of R the more
terms are required in the numerical series.

IV. ENERGY SHIFT NEAR A PERFECTLY REFLECTING
SEMI-INFINITE HALF-PLANE

Next we wish to calculate the energy shift of an atom in
the vicinity of a perfectly reflecting half-plane, as illustrated
by Fig. 7.

The procedure of obtaining the normal modes of the vec-
tor potential is analogous to that described in Sec. III. The
scalar solution of the Helmholtz equation �4� in cylindrical
coordinates that is best suited to applying boundary condi-
tions on the surface of the half-plane is given by


�x� = � �

��
sin�m

2
� +

�

��
cos�m

2
��Jm/2�k��

ei�z

�2�
,

where Jm/2�k��, with m=0,1 ,2 , . . ., are the regular solutions
of Bessel’s equation, and the separation constants satisfy

�2=k2+�2. We must have m�0, as otherwise the solutions
are not linearly independent. Note that half-integer indices
arise because the angle  is restricted to the interval �0,2��
so that the usual argument of single-valuedness of eim can-
not be evoked.

In order to obtain two linearly independent vector solu-
tions, we again apply Eqs. �10� and �11�, and impose the
boundary conditions for a perfectly reflecting half-plane,
E�=0=Ez and B=0 for =0 and =2�. In this way we
find for the mode functions

F�
�1��r� = −

1
�2�

� m

2k�
sin�m

2
�Jm/2�k��ê�

+ cos�m

2
�Jm/2� �k��ê�ei�z, �41�

F�
�2��r� =

1
�2�

� i�

�
sin�m

2
�Jm/2� �k��ê�

+
i�m

2k��
cos�m

2
�Jm/2�k��ê

+
k

�
sin�m

2
�Jm/2�k��êz�ei�z, �42�

where the composite index stands for �= �k ,m ,��. For m
�0 these mode functions satisfy normalization condition
�13� but the first polarization has an additional mode with
m=0 for which Eq. �41� must be multiplied by an additional
factor of 1 /�2 for it to be normalized correctly according to
Eq. �13�,

Fm=0
�1� �r� = −

1

2�
J0��k��êei�z. �43�

Substituting mode functions �41�–�43� into Eq. �6� and
renormalizing the energy shift by subtracting the free-space
contribution in the same way as this was done in Eqs.
�18�–�20�, we obtain an energy shift of form �17� with

FIG. 5. Contribution �29� to energy shift �17� due to the z com-
ponent of the dipole for various typical transition frequencies Eji.
The dashed line is this contribution in the retarded limit Eji→�.

FIG. 6. �Color online� Contributions �27�–�29� to energy shift
�17� due to the �, , and z components of the dipole for various
radii R of the wire.

�

�

FIG. 7. An atomic dipole in the vicinity of a perfectly reflecting
semi-infinite half-plane. The normal modes F�

����x� in this geometry
are given by Eqs. �41� and �42�.
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�� =
2

�
�

0

�

dkk�
0

�

d�
�

Eji + �

��� 1

k�
�2

�
m=1

� ��m

2
�2

sin2�m

2
�Jm/2

2 �k�� − m2Jm
2 �k���

+ � �

�
�2

�
m=0

�

��sin2�m

2
�Jm/2�2 �k�� − Jm�

2�k���� , �44�

� =
2

�
�

0

�

dkk�
0

�

d�
�

Eji + �
��

m=0

�

��cos2�m

2
�Jm/2�2 �k��

− Jm�
2�k��� + � �

k��
�2

�
m=1

� ��m

2
�2

cos2�m

2
�Jm/2

2 �k��

− m2Jm
2 �k���� , �45�

�z =
2

�
�

0

�

dkk�
0

�

d�
�

Eji + �
�� k

�
�2

�
m=0

�

��sin2�m

2
�

�Jm/2
2 �k�� − Jm

2 �k���� , �46�

where the primes on the sums indicate that the m=0 terms
are weighted by an additional factor of 1/2. In order to sim-
plify these expressions, the sums over the Bessel functions
need to be evaluated. Recently, similar summations have
been carried out �16,20� but the results obtained do not in-
clude our particular case of sums involving Bessel functions
of the half-integer order.

We proceed along the following lines. First, we split each
sum into two, one over Bessel functions of integer orders,
and the other over half-integer orders. For the first we can
apply the standard summation formula �Eq. 9.1.79 of �19��

�
m=0

�

�cos �2m�Jm
2 �z� =

1

2
J0�2z sin � , �47�

and we choose to represent the right-hand side in terms of an
integral �Eq. 9.1.24 of �19��

1

2
J0�2z sin � =

1

�
�

1

�

dt
sin�2zt sin �

�t2 − 1
. �48�

For the half-integer sum we use a summation formula of Eq.
5.7.17.�11.� from �21�, which in our case gives

�
m=0

�

cos�2m + 1�Jm+�1/2�
2 �z� =

1

�
�

1

1/sin 

dt
sin�2zt sin �

�t2 − 1
.

�49�

We note that, if we use integral representation �48�, the sums
over integer and over half-integer Bessel functions are very
similar; the only difference is the upper limit of the t integral
in Eqs. �48� and �49�. As these t integrals and their deriva-

tives will arise repeatedly, we define the following auxiliary
functions:

F�z,�  �
1

1/sin 

dt
sin�2zt sin �

�t2 − 1
, �50�

G�z,�  �
1

�

dt
sin�2zt sin �

�t2 − 1
. �51�

Further, we note that the � integrals in Eqs. �44�–�46�
suffer from the same convergence problems as already dis-
cussed in Sec. III. We avoid these by introducing polar co-
ordinates with k=� sin � and �=� cos �. At the same time
we parametrize the denominator arising from perturbation
theory by

1

Eji + �
= �

0

�

dxe−�Eji+��x, �52�

with Eji+�=Eji+�k2+�2�0. Then Eqs. �44�–�46� become

�� =
2

�
�

0

�

dxe−Ejix�
0

�

d��3e−�x�
0

�/2

d� sin ���1��� sin ��

+ �3��� sin ��cos2 �� , �53�

� =
2

�
�

0

�

dxe−Ejix�
0

�

d��3e−�x�
0

�/2

d�

�sin ���2��� sin ��cos2 � + �4��� sin ��� ,

�54�

�z =
2

�
�

0

�

dxe−Ejix�
0

�

d��3e−�x�
0

�/2

d�

�sin ���5��� sin ��sin2 �� . �55�

The sums �i�z� appearing in these expressions can be calcu-
lated by using Eqs. �47�–�51� and standard derivative formu-
las for Bessel functions �Eq. 9.1.27 of �19��; we obtain in
terms of Eqs. �50� and �51�:

��1�z�
�2�z� � =

1

z2 �
m=1

�

���m

2
�2� sin2�m/2�

cos2�m/2� �Jm/2
2 �z� − m2Jm

2 �z��
=

1

8�z2��
�2G�z,�

�2 + � �2G�z,�
�2 �

=0

�
�2F�z,�

�2 − � �2F�z,�
�2 �

=0
� , �56�
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��3�z�
�4�z� � = �

m=0

�

��� sin2�m/2�
cos2�m/2� �Jm/2�2 �z� − Jm�

2�z��
= − ��1�z�

�2�z� � +
1

2�
�F�z,0�

− G�z,0�� �
cos 2

2�
�F�z,� + G�z,��

+
cos 2z

2�z
�1 � cos � , �57�

�5�z� = �
m=0

�

��sin2�m/2�Jm/2
2 �z� − Jm

2 �z��

=
1

2�
�F�z,0� − F�z,� − G�z,� − G�z,0�� . �58�

We now carry out the various integrations in the following
order. First we evaluate the � integrals, which all give Bessel
functions J1 or J0 �cf. Eqs. 3.715�10�,�14� �18��. Next we
carry out the integrations over �, which involve integrals of
the type �Eq. 6.611�1� of �18��

�
0

�

dze−azJ��bz� =
b−���a2 + b2 − a��

�a2 + b2
.

Finally, we calculate the t integrals that came in through the
auxiliary functions F and G �Eqs. �50� and �51��. These are
all elementary. At the very end we calculate the  derivatives
of Eq. �56� and take the limit →0 in the appropriate terms.
The end results then still contain the parameter integral �52�
over x, which we now scale by substituting x=2��. Then the
final results read

�� =
1

16��3�
0

�

d�e−2�Eji��3�4 + 6�2 + 4

�4�1 + �2�3/2 −
4

�4

+
4

��2 + sin2 �3 ��2�2 + 1�sin2  − �2�

+
cos 

�1 + �2�3/2��2 + sin2 �3 ��2 + �2�sin4 

+ 2 sin2 �3�4 + 6�2 + 2� − �2�3�4 + 6�2 + 4��� ,

�59�

� =
1

16��3�
0

�

d�e−2�Eji��3�6 + 6�4 + 10�2 + 4

�4�1 + �2�5/2 −
4

�4

+
4

��2 + sin2 �3 ��1 − 2�2�sin2  + �2�

+
cos 

�1 + �2�5/2��2 + sin2 �3 ��2 − 2�2 − �4�sin4 

+ 2 sin2 �2 + 2�2 − 6�4 − 3�6� + �2�3�6

+ 6�4 + 10�2 + 4��� , �60�

�z =
1

16��3�
0

�

d�e−2�Eji��9�4 + 10�2 + 4

�4�1 + �2�5/2 −
4

�4

+ 4
sin2  − �2

��2 + sin2 �3 −
cos 

�1 + �2�5/2��2 + sin2 �3

����2 − 2�sin4  + 2��4 − 4�2 − 2�sin2  + �2

��9�4 + 10�2 + 4��� . �61�

Inserted into Eq. �17�, Eqs. �59�–�61� give the final result for
the energy shift of an atom near a perfectly reflecting half-
plane. Some of the integrations over the auxiliary variable �
could in principle be carried out but those would yield com-
plicated hypergeometric functions. Thus it is preferable to
have the result in the form of an integral over elementary
functions. It converges quickly and can therefore be very
easily evaluated numerically by using standard software
packages. In addition, we shall go on to determine
asymptotic expressions in the nonretarded and retarded
regimes.

A. Asymptotic regimes

1. Plane-mirror limit

In the limit of the polar angle  being very small, the
atom is very close to the half-plane but far away from the
edge so that the energy shift should be the same as for an
atom in front of a plane, infinitely extended mirror. The com-
ponent of the atomic dipole that is normal to the surface
should then give the contribution listed in Eq. �31� to the
shift, and the parallel components should contribute the one
that is shown in Eq. �32�. As the distance d of the atom from
the half-plane is � sin , we take Eqs. �59�–�61� and scale
�→� sin  so as to get an exponential with the same argu-
ment as in Eqs. �31� and �32�. If we subsequently take the
limit →0, we recover Eqs. �31� and �32�, as expected. Note
that, however, the geometry is different from the cylindrical
case: the  component of the atomic dipole is now normal to
the surface and its contribution � to the energy shift is
given by Eq. �31�, and the � and z components are parallel so
that �� and �z are given by Eq. �32�.

2. Nonretarded regime

If �Eji�1 then the atom is very close to the half-plane,
compared to the wavelength of a typical internal transition.
This means that the interaction of the atom and the surface is
instantaneous, as the atom evolves on a much longer time
scale. In this case field quantization is not necessary, and
only Coulomb interactions between the atom and the half-
plane need to be considered, as was done in Ref. �1�, where
we derived

�� =
5

48��3 +
cos 

16��3 sin2 
+

�� − ��1 + sin2 �
16��3 sin3 

,

� = −
1

48��3 +
cos 

8��3 sin2 
+

�� − ��1 + cos2 �
16��3 sin3 

,
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�z =
1

24��3 +
cos 

16��3 sin2 
+

� − 

16��3 sin3 
.

Taking the limit Eji→0 in Eqs. �59�–�61� we recover these
results, which is an important consistency check on our
present calculation.

3. Retarded regime

In the opposite limit of the atom being far away from the
half-plane, we need to distinguish whether the atom is lo-
cated beyond the edge of the half-plane or not. If it is, i.e.,
for � /2��� the distance of the atom to the half-plane is
its distance to the edge, namely, �, so that the condition for
the interaction to be fully retarded is �Eji�1. If, on the other
hand, 0��� /2 then the distance to the half-plane is
� sin , and consequently the criterion for full retardation is
� sin Eji�1, cf. Fig. 7.

Taking the limit Eji→� in integrals �59�–�61� is straight-
forward since, according to Watson’s lemma �22�, the inte-
gral is then dominated by contributions from the vicinity of
�=0+ so that one just needs to factor out the exponential and
expand the rest of the integrand in the curly brackets in a
Taylor series about this point. The leading terms of these
Taylor expansions turn out to be constants with respect to �
in each case. Thus in the retarded limit we obtain

�� =
1

64��4Eji
�3 +

1

sin4�/2�
+

2

sin2�/2�� , �62�

� =
1

64��4Eji
�− 3 +

1

sin4�/2�
+

2

sin2�/2�� , �63�

�z =
1

64��4Eji
�3 +

1

sin4�/2�
+

2

sin2�/2�� , �64�

which, for the case of isotropic polarizability, is in agreement
with the result of Ref. �15�. Here again, the energy shift �17�
depends only on the static polarizability �8� of the atom, as

follows from general considerations in the retarded limit
�17�. In the light of our comments above, we emphasize
again that results �62�–�64� are only valid when the distance
of the atom from the half-plane exceeds several wavelengths
� ji. This means that for small angles  one needs to revert to
the plane-mirror limit discussed in Sec. IV A 1 above be-
cause, in the region 0��� /2, Eqs. �62�–�64� apply only
if sin �� ji /�. However, taking the limit �→� together
with →0 while keeping � sin =d fixed is legitimate, and
reproduces the well-known Casimir-Polder result �2� for the
retarded interaction between an atom and a plane mirror, Eq.
�37�.

Taking the limit →� in Eqs. �62�–�64� shows that for
an atomic dipole that is polarized azimuthally the interaction
vanishes when the atom is located exactly above the edge of
the half-plane �see also Fig. 8�. This conclusion actually
holds not just in the retarded regime but generally for any
distance, as Eq. �60� also vanishes in the limit →�. Purely
from symmetry one would expect there to be no azimuthal
component to the Casimir-Polder force directly above the
edge but the fact that there is no radially directed force either
is surprising.

Since we have worked in the cylindrical coordinates, the
direction of the unit vectors ê� and ê depends on the posi-
tion coordinates � and . In this context it is curious that, in
the retarded limit, all three components of the atomic dipole
contribute to the energy shift with exactly the same angular
dependence.

V. SUMMARY

We have calculated the energy shift in a neutral atom
caused by the presence at arbitrary distance of perfectly re-
flecting microstructures of two different geometries. For an
atom at a distance d=�−R from the perfectly reflecting cy-
lindrical wire of radius R, we have found an exact expression
for the interaction energy, Eq. �17� with Eqs. �27�–�29�. As
these integrals and sums are in general quite complicated, we
have analyzed various important limiting cases. The limit of
the distance d being small on the scale of the wavelength � ji
of a typical atomic transition requires only electrostatic
forces to be considered, which was done in detail in Ref. �1�.
The case of purely retarded interactions, which occur when
the distance d is much larger than � ji, has been analyzed in
Secs. III A 4–III A 6. For a small wire radius the three con-
tributions to the energy shift are well approximated by Eqs.
�38�–�40�, and for a large wire radius by Eqs. �33�–�35�.

In the case of an atom close to a perfectly reflecting half-
plane, the exact analytic analysis can be pushed a little bit
further than in the cylindrical case. We have managed to find
an exact formula for the energy shift in terms of a simple
rapidly converging integral over elementary functions �Eqs.
�59�–�61�� so that they are very easy to study numerically.
Nevertheless, we have also derived asymptotic formulas,
which agree with previous calculations.

The totality of our results can be used to reliably estimate
the energy shift in an atom close to a variety of common
microstructures that consist of a ledge and possibly an elec-
troplated top layer of higher reflectivity. We have determined

FIG. 8. Direction of the retarded Casimir-Polder force acting on
the atom with isotropic polarizability. Note from Eq. �60� that an
atom that is polarized azimuthally does not experience any force
when it is located exactly above the edge of the half-plane.
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the energy shifts for the complete range of distances, which
is very important for practical applications; as in many mod-
ern experiments the distance of the atom is neither much
larger nor much smaller than the typical wavelength of an
atomic transition but commensurate.
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