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In this work we analyze the dynamical Casimir effect for a massless scalar field confined between two
concentric spherical shells considering mixed boundary conditions. We thus generalize a previous result in
literature �Phys. Rev. A 78, 032521 �2008��, where the same problem is approached for the field constrained
to the Dirichlet-Dirichlet boundary conditions. A general expression for the average number of particle creation
is deduced considering an arbitrary law of radial motion of the spherical shells. This expression is then applied
to harmonic oscillations of the shells, and the number of particle production is analyzed and compared with the
results previously obtained under Dirichlet-Dirichlet boundary conditions.
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I. INTRODUCTION

Since the pioneering paper published by Moore in 1970
�1� and the contributions by Fulling and Davies �2� and by
Ford and Vilenkin �3� that appeared some years later, radia-
tion reaction force on moving boundaries attracted the atten-
tion of many physicists. Due to the movement of the bound-
ary, this topic is also referred to as the dynamical Casimir
effect �DCE�, a name coined by J. Schwinger in his attempt
to explain sonoluminescence in the early 1990s �4�. For a
review on this subject see the book by Milton �5� and on
DCE see Refs. �6,7�.

Though the Casimir force on a unique static plate in
vacuum is zero �9�, the fluctuations of this force are nonva-
nishing �8�. Hence, if this plate starts moving with a nonzero
general acceleration, we expect that a dissipative force pro-
portional to these fluctuations appears �10–12�, and argu-
ments based on energy conservation lead directly to real par-
ticle creation.

Though the DCE already occurs for a unique moving
boundary, oscillating cavities in parametric resonance with a
particular field mode of the corresponding static cavity may
enhance significantly the particle creation rate �13–15�. This
effect was studied by several authors considering the case of
the 1+1 ideal cavity �13,15�. The 3+1 case was also inves-
tigated, and different geometries were taken into account,
among them parallel plane plates �13,14,16�, cylindrical �17�,
and spherical �18–21� cavities. The nonideal case was also
considered in Refs. �22,23�.

Concerning the static scenario, Boyer �24� was the first to
consider the case of mixed boundary conditions �BCs�. He
demonstrated that the electromagnetic Casimir force between
a perfectly conducting plate and an infinitely permeable one
is repulsive rather than attractive. An analogous result was
also obtained in the case of a scalar field confined within two
parallel plates �25–27� and submitted to a Dirichlet BC at
one plate and to a Neumann BC at the other.

The measurement of a repulsive Casimir effect has been
pursued for many years and has finally been achieved very

recently by Munday, Capasso, and Parsegian �28� in a re-
markable experiment involving three distinct media, with ap-
propriate values for their permittivity. Although the setup
used by these authors in their experiment on repulsive Ca-
simir effect is quite different from the two-plate setup made
of a perfectly conducting plate and an infinitely permeable
one, we may learn many things studying the DCE with such
mixed BCs. Further, though mixed BCs are relatively com-
mon in the study of the static Casimir effect �25–27,29–32�,
and also in correlated topics of Cavity QED �33–36�, the
same does not occur for the DCE. In fact, as far as we know,
the DCE in a 1+1 dimensional resonant cavity with mixed
BCs was considered only very recently, in Refs. �37,38�.
However, mixed BCs have never been considered in the
study of DCE for different geometries as, for instance, in
concentric �and oscillating� spherical shells.

In a recent paper �21�, the DCE was examined for a mass-
less scalar field submitted to Dirichlet BCs at two concentric
spherical shells, each of them possessing a time-dependent
radius. A general expression for the average number of cre-
ated particles was derived for arbitrary laws of radial mo-
tions of the spherical shells. Such an expression was thus
applied to breathing modes of the concentric shells: when
only one of the shells oscillates and when both shells oscil-
late in or out of phase. The purpose of this paper is to
complement the previous one �21� by considering mixed
BCs. We observe that the field modes associated with mixed
BCs differs from that following from Dirichlet-Dirichlet
�DD� BCs. Our calculations constitutes preliminary �and
much simpler� results that enlighten the more realistic prob-
lem involving the electromagnetic field. The reason for that
is explained in what follows.

Let us admit the Casimir effect, where a quantum electro-
magnetic field is constrained between two static infinitely
conducting parallel plates, where the Coulomb gauge is as-
sumed. The decomposition into TE and TM modes can be
implemented with two scalar fields, � and �, where � ��� is
submitted to DD �Neumann-Neumann, NN� BC at both
plates. The frequencies for � and � are
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��DD��kx,ky,n� = c�kx
2 + ky

2 +
n2�2

a2 , n = 1,2, . . . ,

��NN��kx,ky,n� = c�kx
2 + ky

2 +
n2�2

a2 , n = 0,1,2, . . . ,

with the plates located at z=0 and z=a, respectively. Except
for the term n=0 in the NN case, all frequencies are the same
in the above equations. However, this term is not important
in the computation of the Casimir effect since it does not
depend on the distance a between the plates. Hence, in order
to compute the Casimir energy of the electromagnetic field
between two parallel perfectly conducting plates, we can
simply compute the Casimir effect for a massless scalar field
submitted to DD BC at both plates and multiply the final
result by 2.

We next assume the Casimir effect for the quantum elec-
tromagnetic field constrained between an infinitely conduct-
ing plate at z=0 and an infinitely permeable one at z=a �24�.
The decomposition into TE and TM modes can still be easily
implemented with two scalar fields, � and �, where � is
submitted to Dirichlet BC at z=0 and Neumann BC at z=a,
whereas � is submitted to Neumann BC at z=0 and Dirichlet
BC at z=a. For both cases, the frequencies of the field modes
are

��DN��kx,ky,n� = ��ND��kx,ky,n�

= c
�

kx
2 + ky

2 +
�n +

1

2
�2

�2

a2 , n

= 0,1,2, . . . .

In order to compute the Casimir energy of the electromag-
netic field between a perfectly conducting plate and an infi-
nitely permeable one, we can simply compute the Casimir
effect for a massless scalar field submitted to mixed BC,
namely, Dirichlet BC at one plate and Neumann BC at the
other, and again multiply the final result by 2.

The arguments given above explain the great interest in
making Casimir calculations involving mixed boundary con-
ditions. The formal treatment of the dynamical Casimir effect
for the electromagnetic field inside two concentric spherical
shells, with radial oscillations, is much more involved. How-
ever, since in some appropriate limit, spherical shells reduce
to parallel plates, it is reasonable to analyze the physical
scenario involving the simpler problem of a massless scalar
field inside two concentric spherical shells submitted to
mixed BCs.

Therefore, considering the oscillatory motion of the shells
as assumed in Ref. �21�, in the present contribution we iden-
tify all the resonances under mixed BCs and derive the ex-
pression for the associated particle creation rate. Then, per-
forming a numerical analysis we compare our results with
those presented in Ref. �21�. For convenience, we shall as-
sume that the spherical shell on which we impose Neumann
BC is at rest, while the other, on which we impose Dirichlet
BC is in an arbitrary motion. We shall study two situations:
when the inner shell is at rest while the outer undergoes an

arbitrary motion, and the reverse case with the outer shell at
rest and the inner in arbitrary motion. Comparisons of our
results with those involving only DD BCs are presented
graphically.

This paper is organized as follows: in Sec. II we briefly
summarize the main steps of the method employed to the
case where only Dirichlet BCs were considered. in Sec. III
we apply this method to the case of mixed BCs and obtain
our general formulas. With the purpose of obtaining explicit
results for the average number of created particles, in Sec. IV
we choose a particular motion for the oscillating shell. Sec-
tion V is left for the concluding remarks.

II. DIRICHLET-DIRICHLET BCS

In Ref. �21� the DCE for a massless scalar field confined
between two concentric moving shells was considered. This
quantum scalar field obeys the Klein-Gordon equation
���r ; t�=0. Besides, this field and its canonical momentum
��r ; t�= �̇�r ; t� satisfy the equal time commutation relations

���r;t�,��r�;t�� = i��r − r�� ,

���r;t�,��r�;t�� = ���r;t�,��r�;t�� = 0. �1�

The spherical symmetry of the problem leads us to the fol-
lowing solution:

��r;t� = �
l=0

�

�
m=−l

l

�
s=1

� � 1

2�ls�t�
Fls�r;t��alms�t�Ylm�	,
�

+ H.c.� ,

��r;t� = − i�
l=0

�

�
m=−l

l

�
s=1

� ��ls�t�
2

Fls�r;t��alms�t�Ylm�	,
�

− H.c.� , �2�

where 	Ylm�	 ,
�
 are the spherical harmonics and the ortho-
normal radial functions satisfy the following differential
equation

1

r2

d

dr
�r2dFls�r;t�

dr
� + ��ls

2 �t�
c2 −

l�l + 1�
r2 �Fls�r;t� = 0. �3�

Moreover, the operators alms�t� and alms
† �t� obey the stan-

dard commutation relations

�alms�t�,al�m�s�
† �t�� = �ll��mm��ss�,

�alms�t�,al�m�s��t�� = �alms
† �t�,al�m�s�

† �t�� = 0. �4�

Through the time derivative of Eqs. �2�, together with the
Klein-Gordon equation and the canonical momentum for-
mula, we obtain the time evolution for the operators

ȧlms�t� = − i�ls�t�alms�t� + �
s�

�l�ss���t�alms��t� + �
s�

�l�ss��

��t�al�−m�s�
† �t� , �5�

where the functions �l�ss���t�= ��lss��t�+�ls�s�t�� /2 and
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�l�ss���t�= ��lss��t�−�ls�s�t�� /2 are the symmetric and anti-
symmetric parts, respectively, of the time-dependent coeffi-
cient

�lss��t� =
�̇ls�t�

2�ls�t�
�ss� + �1

− �ss��� �ls�t�
�ls��t�

�
ri�t�

ro�t�

r2Fls��r;t�Ḟls�r;t�dr . �6�

As demonstrated in Ref. �21�, by comparing Eq. �5� with
the Heisenberg equation of motion ȧlms�t�= i�Heff�t� ,alms�t��
and assuming the most general quadratic form of an effective
Hamiltonian, we derive

Heff�t� = �
l,m,s

�ls�t��alms
† alms +

1

2
� +

i

2 �
l,m,s,s�

�lss��t���alms�

+ al�−m�s�
† �alms

† − alms�al�−m�s� + alms�
† �� . �7�

The evolution of the density operator is computed through
the relation 
̇�t�= i�Heff�t� ,
�t��, with the aid of an iterative
procedure up to second-order approximation in the velocity
of the cavity boundaries, i.e., ṙi�t�, ṙ0�t��c. The derivation
of the average number of particles created in a particular
mode—labeled by the quantum numbers �l ,m ,s�—is thus
given by Nlms�t�=Tr�
�t�alms

† �0�alms�0��, and for an initial
vacuum state 
�0�= �	0

�	0

 it follows that

Nlms�t� = �
s�
��

0

t

dt1�l�s�s��t1�exp	i��ls��t1� + �ls�t1��
�2

,

�8�

with �ls�t�=�0
t dt1�ls�t1�.

The number of created particles Nlms�t� depends on the
radial function Fls�r ; t� through �l�s�s��t�. The solution of Eq.
�3� is given by a linear combination of spherical Bessel func-
tions of the first �jl� and second �nl� kind, such that the Di-
richlet BC applied to the inner shell leads to the relation

Fls�r;t� = Nls	jl��ls�t�r�nl��ls�t�ri� − jl��ls�t�ri�nl��ls�t�r�
 ,

�9�

whereas that on the outer shell results in the transcendental
equation

jl��ls�t�ro�nl��ls�t�ri� − jl��ls�t�ri�nl��ls�t�ro� = 0. �10�

In Fig. 1 we present a map of the solutions of Eq. �10� for
some values of the numbers l and s. As it was noted in �21�,
for the case l=0, the frequencies are equally spaced. This
fact does not occur for the case l�0. However, when both
radii of the shells are much larger than the separation be-
tween them, i.e., ri�t��ro�t�−ri�t�, the solutions for all val-
ues of l approach the solution for the one-dimensional case,
so that �ls→s� / �ro�t�−ri�t��.

III. MIXED BOUNDARY CONDITIONS

It is important to emphasize that the expression for the
average number of created particles, derived in Eq. �8�, does

not depend on the character of the BCs. Thus it can be ap-
plied even for mixed BCs as in the present work, where we
assume that the massless scalar field satisfies the Neumann
BC at a fixed spherical shell and a Dirichlet BC at a second
concentric spherical shell whose radius has an arbitrary time
dependence,

�r��r,t��r=r�
= 0 and ��r,t��r=r��t� = 0, �11�

where the index ���� is related to the static �moving� shell.
However, different expressions come up for Fls�r ; t� and
�ls�t�, as compared to those in Ref. �17�.

As already noted in the previous section, the general so-
lutions to Eq. �3� are linear combinations of spherical Bessel
functions, but the mixed BC leads to a different solution. The
assumption of Neumann BC for the field at the static shell
leads to the following expression for the radial functions

Fls�r;t� = Nls� jl��ls�t�r�
�

�r�

nl��ls�t�r��

− nl��ls�t�r�
�

�r�

jl��ls�t�r��� , �12�

and the subsequent assumption of Dirichlet BC on the field
at the moving shell leads to a frequency discretization

�

�r�

jl��ls�t�r��nl��ls�t�r��t�� = jl��ls�t�r��t��
�

�r�

nl��ls�t�r�� .

�13�

In Figs. 2 and 3 we show the maps of the numerical
solutions of the transcendental equation Eq. �13� for some
values of l and s. As we can see, the map of �ls�t� is very
sensitive to the BCs. For DD BCs �Fig. 1� the frequencies
�0s�t� are equally spaced, a situation that does not occur for
mixed BCs. We also note that the map of �ls�t� turns out to

1

2

3

4

ω
ls
r o

/π

0 1 2 3

ωlsri/π

FIG. 1. �Color online� Map of the solutions of the transcendental
Eq. �10�. The colors correspond to different values of the number l
in ascending order from zero. The solid, dashed, and dotted lines
correspond to s=1, s=2, and s=3, respectively.
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be entirely different when considering the Dirichlet BC in
the outer shell and Neumann BC in the inner one �Fig. 2� or
oppositely, with Neumann BC in the outer shell and Dirichlet
BC in the inner one �Fig. 3�.

However, there are also some similarities between the re-
sults derived from mixed BCs and those for DD BCs, in Fig.
1; it can be directly verified that the solutions for �ls�t�,
coming from Eq. �13�, approach that for the one-dimensional
case ��ls→ �s−1 /2�� / �r�−r��t��� when both radii of the
shells are much larger than the separation between them.

A comment is in order here: we note that the BCs must be
imposed in the instantaneously comoving Lorentz frame,
where the boundaries are momentarily at rest. If the Neu-
mann BC was to be imposed on the moving boundary, we
should have used the appropriate Lorentz transformation to
write the fields in the inertial frame of the laboratory as fol-
lows

�r���r�,t��r�=r��t� ⇒ 	�r + ṙ��t��t
��r,t��r=r��t� = 0. �14�

In that case, the time derivative in Eq. �14� invalidates the
expansion used in Eq. �2�, and as a consequence, also in Eq.
�8�. This fact demands a different formal development for the
computation of the required particle creation rate. For that
reason, in the present work we treat only the case where the
Neumann BC is imposed on a spherical shell at rest, leaving
aside the breathing modes analyzed in Ref. �21�, when both
shells oscillate in or out of phase.

IV. NUMERICAL ESTIMATIVES

In this section, in order to obtain explicit results, we will
consider an specific motion for the spherical shell that im-
poses on the field the Dirichlet BC. A typical situation con-
sists of an oscillation that starts at some instant has a sinu-
soidal behavior with an angular frequency � and a small
amplitude and then stops at some later instant. We, then,
assume that the radius of the moving shell has the following
law of motion:

r��t� = r��1 + � sin��t�� , �15�

with ��1. In the following we also assume that the cavity
mirror oscillates only during a finite time interval T, then
stopping suddenly its motion.

Substituting Eqs. �6� and �15� into Eq. �8� and making a
power series expansion with respect to the small parameter �,
we obtain

Nlms = � ��T

2
�2

�
s�

�Cl�ss��f lss���;T��2, �16�

where, after defining �lss���ls�0�+�ls��0�, the coefficient
Clss� and function f lss��� ;T� are given by

f lss���;T� =
exp�i�� − �lss��T� − 1

i�� − �lss��T

−
exp�− i�� + �lss��T� − 1

i�� + �lss��T
, �17�

and

Clss� = r��ss�
1

2�ls�0�
��ls�0�

�r�

− r��1

− �ss��� �ls�0�
�ls��0��ri

ro

drr2Fls�r;0�
dFls��r;0�

dr�

.

�18�

Note that f lss��� ;T� is an oscillating function of T, except
when the mirror oscillating frequency satisfies the resonance
condition, namely, �=�lss�. In this case f lss���lss� ;T�=1,
and the number of created particles turns to be the following
quadratic function of T:

1

2

3

4

ω
ls
r o

/π

0 1 2 3

ωlsri/π

FIG. 2. �Color online� Map of the solutions of the transcendental
Eq. �13� with r��r�. The colors correspond to different values of
the number l in ascending order from zero. The solid, dashed, and
dotted lines correspond to s=1, s=2, and s=3, respectively.
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2

3

ω
ls
r o

/π

0 1 2 3

ωlsri/π

FIG. 3. �Color online� Map of the solutions of the transcendental
Eq. �13� with r��r�. The colors correspond to different values of
the number l in ascending order from zero. The solid, dashed, and
dotted lines correspond to s=1, s=2, and s=3, respectively.
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lim
�→�lss�

Nlms = � ��lss�T

2
�2

�Cl�ss���2. �19�

This result is valid only under the short-time approximation
��lss�T�1, since we have disregard terms proportional to
���lss�T�n with n�3. Moreover, Eqs. �16�–�19� are valid ei-
ther for DD BCs or mixed BCs since they were derived using
the equation of motion �Eq. �15�� and Eqs. �1�–�8� which are
independent from the BCs.

To study the behavior of our result in Eq. �19�, we plot in
Fig. 4 the expression Nlms / ���T�2 as a function of �� / �ro
−ri� for some values of l and s, under resonance conditions
�=�lss�, setting ro=2ri. Both letters in the legend indicate
the BCs on the inner and the outer shells, respectively: for

example, D�D̃� means Dirichlet BC on a static �moving�
shell, whereas N means Neumann BC on a static shell. As we
can see, both the intensity and position of the resonances
change in a nontrivial way with the BC. The case of a mov-
ing outer shell with the field satisfying DD BCs exhibits
higher resonance intensities, while the case of a moving in-
ner shell with the field submitted to mixed BCs leads to
lower resonance frequencies.

In the limit ri�ro−ri, we can use the Bessel asymptotic
forms for large arguments to derive an analytical expression
for the average number of created particles in a particular
mode. For the case where the field is submitted to DD BCs,
we obtain

�lss� →
�s + s���
�r� − r��

�20�

and

lim
�→�lss�

Nlms →
�2�2T2

4

r�
2

�r� − r��4s�s . �21�

Analogously, for the field submitted to mixed BCs �Eq. �11��,
we have

�lss� →
�s + s� − 1��

�r� − r��
�22�

and

lim
�→�lss�

Nlms →
�2�2T2

16

r�
2

�r� − r��4 �2s� − 1��2s − 1� . �23�

Expressions �20� and �21� correspond to the results for the
1+1 DCE under DD BCs derived in Refs. �6,13,15�, whereas
Eqs. �22� and �23� correspond to the results under mixed BCs
presented in �25–27�. These similarities can be related to the
fact that the limit ri�ro−ri is akin to the plane geometry.

V. CONCLUDING REMARKS

In this paper we have investigated the dynamical Casimir
effect for a massless scalar field within two concentric
spherical shells considering mixed boundary conditions. We
have thus complemented some previous results presented in
Ref. �21� where the massless scalar field was assumed to
satisfy only Dirichlet BC in both shells. We have analyzed
the real particle creation phenomenon for the case where
only one of the shells is allowed to move with an arbitrary
law of motion for its radius. In addition, the Dirichlet BC
was imposed on the moving shell while the Neumann’s was
assumed on the static one. However, in our discussion, the
moving shell could be the inner shell or the outer one as
well. In order to get some numerical estimatives, and with
the purpose of comparing our results with those obtained in
Ref. �21�, we chose a particular, but very typical, oscillating
motion for the moving shell, in which it starts moving at a
certain instant, oscillates with a given frequency and then
stops suddenly its motion. Considering this particular situa-
tion, we have identified the resonance conditions where the
number of created particles is more appreciable. A direct
inspection in our graphs �see Fig. 4�, allows us to make some
conclusions: for both cases of DD BCs or mixed BCs, we see
that every time the moving shell is the outer one the average
number of created particles is greater than the corresponding
cases where the inner shell is in motion �by a factor of the
order of �4�. This can be understood simply recalling that
the dynamical Casimir effect increases with the area of the
moving surface. In other words, the dissipative force that
acts on the moving boundary, responsible for converting me-
chanical energy into field energy �real field quanta� increases
with the area with the moving boundary. Another interesting
result that can be extracted from our calculations is the fact
that the case with mixed BCs presents lower resonance fre-
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FIG. 4. �Color online� Plot of Nlms / ���T�2 as a function of
�� / �ro−ri�, in the resonance condition for a few values of l and s.
We have considered DD and Mixed BCs. On the legend �top-right
of the figure�, the letter on the left indicates the BC imposed on the
field at the inner shell and the letter to the right, indicates the BC
imposed on the field at the outer shell. D means Dirichlet BC and

static shell, D̃ means Dirichlet BC and moving shell, whereas N
means Neumann BC and static shell. We have set ro=2ri.
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quencies than that with DD BCs. This feature can be useful
for further experimental investigations of particle creation
within the context of the dynamical Casimir effect since it
makes easier to access the parametric amplification regime of
particle creation.
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