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We study the ground state as well as the dynamics of chains of bosons with local repulsive interactions and
nearest-neighbor exchange using numerical techniques based on density-matrix decimation. We explore the
development of entanglement between the terminal sites of such chains as mechanisms are invoked to con-
centrate population in these sites. We find that long-range entanglement in the ground state emerges as a result
of transfer taking place throughout the chain in systems with appropriate hopping coefficients. Additionally, we
find appropriate perturbations to increase the entanglement between the end sites above their ground-state
values.

DOI: 10.1103/PhysRevA.80.012330 PACS number�s�: 03.67.Bg, 05.30.Jp, 74.20.�z

I. INTRODUCTION

As constant experimental developments expand our pos-
sibilities of materializing a new generation of computing de-
vices, the need for a better understanding of quantum phe-
nomena becomes more important. Outstanding emphasis has
been placed on the concept of entanglement as, for example,
a resource for quantum information processing, and in gen-
eral as a tool to study the contrast between classical and
quantum physics. One fundamental problem that is now the
subject of intensive research is the emergence of quantum
correlations between distant sites of a quantum system. For
most many-body systems this is notoriously difficult and en-
tanglement between distant sites can only be achieved
through clever engineering �1� or nonequilibrium dynamics
�2–6�, where, in the latter case, either intricate methodology
is required or the amount of entanglement between the ends,
although finite, is not substantial in amount. Typically, in
quantum many-body systems, even when total correlations
are long range, the entanglement between individual con-
stituents such as spins is extremely short range, such as be-
tween nearest or next to nearest neighbors �7�. Thus it is
already interesting when in some many-body system an en-
tanglement between its farthest components, such as the
spins or harmonic oscillators at the very ends of an open
chain, can be generated and even more interesting when it is
substantial in amount. Most of the work done in this field has
been carried out in light-matter systems and spin chains, but
more recently, the development on new numerical techniques
and algorithms �8� has opened the possibility of addressing
more challenging scenarios such as chains of interacting
bosons �5,9–11�. Usually, where bosonic chains have been
studied, although true quantum correlations have indeed
been found to emerge between distant individual sites, they
are generically not “substantial” in magnitude �2,12�. Thus
substantial entanglement between distant sites of a Bose-
Hubbard model, even if with some reasonable engineering of
the Hamiltonian, should be of great interest not only because
of the uncommon nature of such long-distance entanglement,
as motivated above, but also because from a practical point
of view this entanglement is known to be “distillable,” i.e.,
convertible from an impure �mixed state� to a pure useful
form through local actions. Density matrices whose partial

transposes display negative eigenvalues are distillable
�13�—so if one finds a mixed entangled state with the above
property, then one can already claim, at least in principle, to
have a resource for quantum communication.

Chains of bosons are more often than not well described
by the Bose-Hubbard model �14–16�. In this model bosons
can hop between neighboring positions while undergoing lo-
cal repulsion when several bosons occupy the same site. The
impressive development in atom cooling techniques has led
to a significant rise in the amount of experiments related to
the Bose-Hubbard model. The transition from a superfluid to
a Mott insulator has been verified in numerous experiments
of cold atoms in optical lattices as, for example, in Refs.
�15,17–20�, just to mention a few. As a result, physical real-
izations of quantum systems displaying key features such as
long-range entanglement are becoming more and more fea-
sible. Motivated by these advances, in this paper we analyze
from a fundamental point of view the emergence of long-
range quantum correlations in Bose-Hubbard arrangements
�Fig. 1�. There has been one previous investigation on long-
range entanglement in a Bose-Hubbard chain where the dy-
namics is effectively reducible to a single-particle propaga-
tion in a lattice �5�. Our study is, however, irreducible to a
many-particle situation and can even result in more entangle-
ment than what a single-particle hopping in a lattice can ever
do. It is also pertinent to point out that there has been much
interesting work on the various forms of entanglement con-
tained in Bose gases �21,22� but here we concentrate on a
specific type of entanglement, namely, that between two in-
dividual sites at the very ends. If implemented in the labora-
tory, the entanglement obtained from the scheme presented
in this work, as it is distillable, would provide a resource for

FIG. 1. �Color online� Potential realization of a Bose-Hubbard
chain in an optical lattice. The above finite lattice can be realized in
one cell of a superlattice. The end sites of the lattice are depicted
differently in the figure as we will require them to have vanishing
repulsion in our study.
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quantum information applications. In addition to the end-to-
end entanglement �EEE�, which has been motivated above,
in this paper we will also present some results for the en-
tanglement between a couple of other bipartite partitions of
the chain in order to fully appreciate the distribution of en-
tanglement between parts of a finite chain as the strength of
the local repulsion between bosons is varied.

II. HUBBARD MODEL: CHARACTERISTICS
AND METHODS

We assume a chain of size N with M bosons, nearest-
neighbor hopping, and open ended boundary conditions gov-
erned by a Bose-Hubbard Hamiltonian with variable coeffi-
cients,

Ĥ = �
k=1

N
Uk

2
âk

†âk�âk
†âk − 1� − �

k=1

N−1

Jk�âk+1
† âk + âk

†âk+1� . �1�

Constants Uk and Jk account for the on-site repulsion and
hopping, respectively, while the annihilation and creation op-
erators âk and âk

† obey the usual commuting rules �âl , âk
†�

=�k
l and �âk

† , âl
†�= �âk , âl�=0. Physical realizations of this

Hamiltonian include experiments where remarkable control
of the ratio U /J can be achieved �15,17,20�. In a typical
experiment, atoms are cooled in an optical lattice of retrore-
flected diode lasers and then transferred into a magnetic trap
where further cooling is to take place. This creates an ar-
rangement of atoms where the resulting optical potential
depths Vx,y,z are proportional to the laser intensities and can
be expressed in terms of the recoil energy ER= �k2

2m with m as
the atomic mass and k as the wavelength number. Through-
out this paper we measure energy in units of ER. To prepare
one-dimensional arrays, two lattice lasers are given high in-
tensities in such a way that hopping can only take place
efficiently across one axis �19�. In terms of experimental
parameters, hopping and repulsion coefficients are given by

J=A�
V0

ER
�Be−C�V0/ERER and U=

2asER

d
�2�V�

ER
�

V0

ER
�1/4, where V0 is

the axial lattice depth, V� is the depth of the lattice in the
transverse directions, as is the s-wave scattering length, d is
the lattice spacing, and A, B, and C are fixed constants
�23,24�. Spatial variations in U and J can also be imple-
mented using detuned lasers sent through specific sections of
the lattice as reported in Ref. �18�.

From the Heisenberg equations of motion we know
d�̂k

dt

= ie−itĤ�âk
† , Ĥ�eitĤ, where �̂k=e−itĤâk

†eitĤ. In the general case
nonlinearities induced mostly by repulsive terms keep us
from getting reliable expressions for the �̂k in terms of time.
One fortunate instance is the repulsionless case where all Vk
go to zero and we are left with

d

dt�
�̂1

�̂2

�̂3

]

�̂N

� = − i�
0 J1 0 ¯ 0

J1 0 J2 ¯ 0

0 J2 0 ¯ 0

] ] ] � JN−1

0 0 0 JN−1 0
��

�̂1

�̂2

�̂3

]

�̂N

� . �2�

One can of course assume that all the coupling constants
are equal, which corresponds to the most frequently studied

and perhaps the most natural setting of the Bose-Hubbard
model. To contrast with this, one can also study a setting
with nonuniform couplings to investigate whether better EEE
can be obtained by appropriately engineering the couplings.
As an example we will choose a nonuniform hopping distri-
bution that matches an angular-momentum representation of
length j= N−1

2 , namely, Jk= �
2
�k�N−k� ��=2 for all the simu-

lations presented in this work�. The above couplings, when
present in spin chains, are known to facilitate perfect quan-
tum state transfer �25�, which has been developed in context
of the idea of using spin chains to convey quantum states
�26�. In a Hubbard model, the above coupling profile will
transfer particles perfectly from one end of the chain to the
other �12� �however, the aim of this paper is different,
namely, generating entanglement between the ends�. More-
over, because we are interested in studying EEE, hopping
distributions are known to play a crucial role as it is particle
tunneling that determines how distant places get correlated
with each other. So, in this work we compare results from
two different hopping profiles, namely, the well-known con-
stant hopping �CH� Jk=1 and the above introduced perfect
transmission hopping �PTH�. The purpose in bringing in
PTH is to explore what kind of physics is shown by a hop-
ping profile with perfect transmission properties in situations
where transport is either absent or not directly involved. The
natural question in this context is whether perfect transmis-
sion properties, which involve dynamical synchronization at
long scales, are in any way linked to the onset of quantum
correlations among distant sites of a boson chain.

On the other hand, when repulsive terms in Eq. �1� are
considered, we apply numerical methods. Here we make use
of density-matrix techniques as presented in �8�, also known
as TEBD, combined with conservation and symmetry prop-
erties associated with the Hamiltonian. Briefly, TEBD con-
sists in writing the state in terms of canonical coefficients
that are closely related to Schmidt vectors. These coefficients
are updated through successive applications of semilocal uni-
tary operations that correspondingly only modify coefficients
associated with the subspaces on which they act. This fact is
then skillfully exploited to work out an efficient way of
simulating both real and complex evolutions. In addition to
the standard set of coefficients employed in the canonical
representation of the state, we also retain the number of par-
ticles associated with every Schmidt vector in the decompo-
sition. Memory storage is handled by making use of allocat-
able types and pointers in FORTRAN 95, which suits the
mechanics of TEBD where the dimension of the Hilbert
space is updated adaptively. Usually, the TEBD coefficients
that determine the local properties of the chain are presented
with explicit reference to every local dimension, i.e., ���

�n�i,
where i=1, . . . ,M. However, the only relevant component i
above is completely determined by the number of particles
m� and m� associated with Schmidt vectors 	�
 and 	�
 in the
expression 		
=��,�,i���

�n�i	�
	i
	�
 through the relation m�

+m�+ i=M. In getting this expression for 		
 we have used
the properties of the canonical decomposition as described in
Ref. �8�, specifically, we exploit the fact that the elements of
tensor ���

�n�i can be seen as the components of the whole
quantum state given in terms of the local basis, i.e., the oc-
cupation number, and the Schmidt vectors obtained from par-
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titioning the system to the sides. Consequently, truncating the
local Hilbert space as a way of attenuating the memory re-
quirement of the simulation is not necessary. Similarly, we
use dynamical allocation and deallocation to store the ca-
nonical representation, which allows an efficient handling of
computer memory. The maximum number of Schmidt coef-
ficients 
 as well as the size of other elements relevant to the
simulation are updated at run time. After every updating step
we retain all the Schmidt coefficients greater than �1

�n�

�10−14, where �1
�n� is the greatest coefficient at site n. In

ground-state simulations, 
 saturates and remains quite fixed
until the state converges �insets of Fig. 8�. For real-time
simulations, on the other hand, this convenient saturation
does not manifest as strongly as in the ground-state case, and
in some cases, especially for long simulations, truncation in
the number of coefficients is important as a mean of sustain-
ing the simulation efficiency. In our program we use second-
order Trotter expansion with time steps �t= 10−3

Ne
, where Ne is

the effective length of the chain, which is to be taken as the
number of sites in the chain unless something else is speci-
fied. Here we limit ourselves to Hamiltonians with symmet-
ric distributions of parameters with respect to the center of
the chain, and with an even number of sites and bosons.
Additionally, all the simulations presented in this work cor-
respond to M =N. Therefore, the system can be genuinely
simulated by focusing on the canonical coefficients of half of
the chain plus the interaction between complementary half-
chain blocks. The algorithm is applied recursively to simu-
late

		G
 = lim�→


e−�Ĥ		0


�e−�Ĥ		0
�

until convergence to the ground state 		G
 is accomplished
according to the criterion

	1 − �	���		�� + ���
	 � 10−14.

Ground-state simulations in repulsionless chains agree well
with the exact ground state of Hamiltonian �1�, which for
PTH chains reads


 �
m=−j

j
�− 1� j+m

2 j � �2j�!
�j − m� ! �j + m�!

âm+j+1
† �M

�
l=1

N

	0l
 , �3�

with energy EG=−�jN. Similar expressions for the ground
state of CH chains can be found elsewhere. Additionally,
real-time simulations coincide with available theoretical re-
sults �5,12,27�.

As it was stated from the introduction of TEBD and fur-
ther verified in several numerical studies �28�, efficient simu-
lations can be carried out as long as the state can be repre-
sented using reasonable low 
, i.e., correlations are not too
strong. As a reference one could take the infinity Hubbard
model with unit filling, where such regime would correspond
primarily to the Mott insulator phase where according to
mean-field theory U

zJ �5.8 with z=2d as the number of near-
est neighbors �14,15�. Another efficient simulation scenario
corresponds to the case when, although hopping constants
are strong and superfluid features dominate, the Hamiltonian
structure remains close to integrability, e.g., U

J �1, since usu-

ally integrable dynamics takes place in subspaces. When the
case is neither of the above mentioned, as it is for most of the
simulations presented from now on, one can still see that 

often remains well below the maximum allowed in the Hil-
bert space.

III. RESULTS

A. Ground state

In order to calculate the entanglement between the ends of
the chain, we need to get the corresponding reduced density
matrix. This task is by itself challenging, as the quantum
state is given in terms of canonical coefficients associated
with TEBD and not in the standard basis. Similarly, the com-
putation of such density matrix is greatly improved in terms
of speed and memory when exploiting number conservation.
Once this density matrix is obtained, we have to quantify the
entanglement using a measure that is appropriate for mixed
states of two arbitrary dimensional quantum systems. So we
choose the logarithmic negativity as defined in Ref. �29�.
Moreover, to measure the entanglement between comple-
mentary subsystems �30�, we use von Neumann entropy S=
−tr��Â log2��Â��, where �̂A represents the reduced density
matrix of subsystem A. Here we show results against the
fraction of particles on the ends �= ��2�â1

†â1
� /M�, which al-
lows a convenient depiction of the system phenomenology
for different chain sizes. � varies according to the intensity of
the repulsion in intermediate sites. When repulsion is small,
few particles remain on the ends and ��0. When repulsion
is strong the amount of particles on the ends is maximum and
�= 1

2 + 1
M .

Irrespective of the hopping profile the ground state of re-
pulsionless chains is highly superfluid although with most of
the hopping taking place in the central part, leaving the ter-
minal positions nearly unoccupied. In this repulsionless re-
gime entanglement is strong but confined around the center.
For example, in these circumstances, it is strong between the
left and right halves of the chain. When repulsion in inter-
mediate positions is increased, particles are forced to hop
through longer distances and correlations develop at longer
scales. Similarly, bosons accumulate on the terminals accord-
ing to the strength of the interaction in intermediate places.
Notice that on account of the repulsionless ends, hopping
persists no matter how intense the repulsion in intermediate
sites. Small repulsion leads to a decrease in entanglement
between both halves and an increase in entanglement be-
tween both ends and the rest of the system, an indication that
entanglement is being spread along the chain following the
particle distribution profile. When repulsion is increased
even more, the terminals start getting macroscopically occu-
pied while the average number of bosons �ANB� in interme-
diate sites goes down asymptotically toward 1

2 , which means
that strong tunneling renders the quantum state of intermedi-
ate places into superpositions of kets corresponding to one or
zero boson. In this case correlations among places near the
ends and in opposite sides of the chain are strongly en-
hanced, in contrast to the correlations in the center of the
chain. This can be seen in the inset plots of Fig. 2 where von
Neumann entropy between both ends and the rest of the sys-
tem slightly comes down after the original redistribution of
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entanglement mentioned above occurs. This fact, combined
with the emergence of EEE shown in Fig. 3, means that as
repulsion in the center becomes intense the terminals tend to
entangle with each other more strongly than with intermedi-
ate sites.

Once the conditions for the emergence of EEE are given,
what determines how much entanglement can be generated is
the hopping scope. Indeed, as repulsion in the middle is con-
tinuously turned on, bosons get to hop through longer dis-
tances and thereby become more and more delocalized. The
behavior displayed by von Neumann entropy between both
halves is consistent with a regime in which entanglement is
being continuously redistributed across the system as a result
of increasing hopping scope but the fact that there is no
turning point in Fig. 2 for CH indicates that such hopping
never takes place across the complete length of the chain.
Nevertheless, such hopping is enough to induce EEE at finite
N but not in the thermodynamic limit since EEE dies down
against increasing chain size. In PTH chains, on the other

hand, there exist a point in which hopping scope actually
embraces the whole chain, which facilitates the particle
transport from one end to the other, making the proportion of
particles being held on the terminals useful for entanglement.
Once this long scale hopping takes over, increasing the re-
pulsion in intermediate sites reinforces end-to-end exchange
and induces an increase in the amount of entanglement con-
tained in the system, as can be seen in Figs. 2 and 3. At the
same time, EEE begins to show a linear dependence with �
with a slope that is independent of the system size. In this
case EEE remains even when the size of the chain is aug-
mented, which means that long-range correlations will mani-
fest themselves in the thermodynamic limit. Finally, numeri-
cal fitting from Fig. 3 yields EEE�=0.5

PTH � log�N0.1� and
EEE�=0.5

CH � log�N−0.2�.

B. Dynamics

Here we investigate how EEE entanglement shows up as
a result of dynamics in a chain initially prepared in a Mott
insulating state. The typical behavior of entanglement in
chains with homogeneous repulsion and hopping constants is
shown in Fig. 4. As hopping is bigger than repulsion, particle
tunneling generates rich dynamics and entanglement behaves
nontrivially in contrast to the high repulsion regime. En-
tanglement saturation is identical for all sites except those
very close to the terminals, where saturation takes place at
smaller values. Such boundary effects are typical of open
chains �9,31�. As a consequence, the ends are poorly en-
tangled with the rest of the system and between them as well.
On the other hand, dynamics in repulsionless chains is
known to lead to a progressive thermalization of reduced
density matrices of each site �32� and therefore any sort of
two site entanglement is weak. In this sense, dynamic EEE in
repulsionless chains is characteristically similar to that found
previously in the ground state. As an alternative approach,
we try the same methodology already applied and set all
intermediate repulsion constants to high values in order to
artificially create a particle distribution favorable to EEE.
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FIG. 2. Entanglement between both halves of
the chain �main plots� and entanglement between
the ends and the rest of the system �Insets�. In
PTH chains, when repulsion is sufficiently strong,
tunneling starts to take place throughout the
whole chain, enhancing the amount of entangle-
ment in the system. CH chains, on the other hand,
display an entanglement register that can be un-
derstood as having originated from short scope
hopping.
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FIG. 3. The emergence of EEE in the chain as the on-site repul-
sion or equivalently the fractional population at the end sites � is
increased. Linear behavior can be observed independently of the
chain size. Also, EEE in chains with PTH lingers on when the size
of the chain is increased, in contrast to EEE in CH chains.

JOSE RESLEN AND SOUGATO BOSE PHYSICAL REVIEW A 80, 012330 �2009�

012330-4



The effect on the ANB can be seen in Fig. 5. The ends get
macroscopically occupied and tunneling in intermediate
places intensifies. EEE arises some time after the ends have
been occupied �Fig. 6�. In general, the bigger the chain the
longer it takes for EEE to emerge. For PTH, a natural time
scale is determined by the transmission period, namely, T
=� given our particular choice of �. Entanglement arises
after half of such period, just after information has gotten to
travel from one end of the chain to the other, but there is not
enough evidence that this is always the case, particularly for
very long chains. Additionally, it is possible that entangle-
ment will build up further for longer times, independently of
the hopping profile, but this effect is difficult to observe as

long-time simulations require additional computational re-
sources �28,33�.

C. Perturbation approach and detection

We would now ideally like to generate such an entangle-
ment between the ends where the logarithmic negativity ex-
ceeds unity �the maximum value in a two qubit state� so that
the possibilities of multiple occupation numbers at the end-
ing sites is utilized highly beneficially. Looking at potential
alternatives to the schemes discussed before, we now assume
that a chain initially prepared in the ground state of a Hamil-
tonian with high intermediate repulsion and highly fermion-
ized intermediate positions is set to evolve under the action
of a small perturbation potential corresponding to a physical
mechanism that internally pumps bosons in and out of the
ends. The idea is to use the perfect transmission properties at
a perturbation level to generate entanglement as a result of
transport. The quantum state at any time can be written as

		�t�
 = e−it
Ĥ+� �
j=1

N
ĥj�		g
 , �4�

where 		g
 is the ground state of Ĥ, � is a small number, and

ĥj represents a local operator acting on site j. For consis-

tency, we require �Ĥ ,� j=1
N ĥj��0. Here we assume that the

local perturbations can be written as functions of the corre-

sponding local number operator, i.e., hj�N̂j�, where N̂j = âj
†âj.

We can establish a nonvanishing commutator between the
perturbation and the Hamiltonian by choosing, for every site
but the ends, hj�x�=kx, where k is the integer distance be-
tween site j and the closest end. Notice that this is equivalent
to considering a chain with spatially dependent chemical po-
tential in intermediate positions. Moreover, the primary fac-
tor determining h1,N=h is the optimization of boson transfer
from intermediate sites into the ends when an initial state

		g
 is set. Supposing �Ĥ
 remains stable during perturbation
evolution, and correlations between the Hamiltonian and the
perturbation can be ignored, we can use the occupation-
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=100ER for PTH �upper plot� and U=200ER for CH �lower plot�.
Stronger repulsion constants are necessary in PTH chains in order
to maintain intermediate sites fermionized. The initial state is a
Mott insulator with one boson per site. At the beginning bosons
start to migrate toward the ends, leaving the intermediate of the
chain with half a boson per site on average. As a result of the
hopping, EEE emerges after some time �Fig. 6�. For longer times
slow oscillations can be seen but the ends remain well populated.
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=50. U=100ER for CH and U=200ER for PTH. The purpose is to
restrain particle accumulation anywhere but the terminal sites. En-
tanglement in PTH chains is not only bigger but it also arises at
earlier times than in CH chains. In both plots log negativity de-
creases with the size of the chain. Also, entanglement emerges well
after bosons migrate to the ends �Fig. 5�.
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number basis to carry out our perturbative analysis. In this
way, performing average-energy balances among sequential
particle distributions underlying an optimal trajectory, we get

h�n0 +
1

2

N

2
− k� +

1

2
� − h�n0 +

1

2

N

2
− k�� =

�k

2
, �5�

where n0 is the average number of bosons allocated in one
end at t=0. After some algebraic manipulations we find
h�x�=c2x2+c1x with c1= � N−1

2 +2n0�� and c2=−�. With this
perturbation, the mean number of bosons does not fluctuate
much since the dynamics is still governed by a Hamiltonian
with strong repulsion coefficients in intermediate sites and
bosons remain squeezed into the ends. The leading mecha-
nism in the evolution is the equitable particle exchange be-
tween the terminals and the rest of the system. Such ex-
change enhances the correlations between distant places and
also the entanglement. Figure 7 shows log negativity as a
function of time for different perturbation intensities. CH
results are shown for comparative purposes. In the initial
stages of evolution the dynamics is characterized by an in-
crease in quantum fluctuations on the ends of the chain ac-
companied by little change in the average number of bosons.
Hence, EEE is enhanced while avoiding massive migration
of bosons toward the center of the chain. Significantly, en-
tanglement generation is improved not by adding interaction
terms to the Hamiltonian but by adding a local perturbative
potential.

Finally, we would like to comment about how this en-
tanglement can be verified experimentally. Once the atoms
condense in the ground state or after the dynamics has taken
place, the detection scheme presented in �34� could be used.
Following such a scheme, bosons on the ends are sent
through a 50:50 beam splitter and then the number of par-
ticles on the outputs is counted. Entanglement can then be
detected using �AB=tr�âc

†âc�̂�− N
2 =tr�â1

†âN�̂�, where tr�âc
†âc�̂�

is the number of particles in one output and �̂ is the reduced
density matrix describing the ends. �AB=0 for separable
states and �AB�0 for entangled states. In this way, entangle-
ment is characterized in terms of experimentally measurable

parameters. For illustrative purposes, we present in Fig. 8 a
plot of �AB obtained from the ground state of chains with
PTH and CH. We conclude that �AB correctly determines
whether the state is entangled. In order to illustrate how our
simulations converge to the ground state and the computa-
tional cost involved, we also include plots of 
 against the
number of steps. Here we emphasize that in our program 

defines the dimension of an allocatable array, which is being
continuously resized according to the number of Schmidt
coefficients in the canonical representation.

IV. SUMMARY

We have studied the ground-state entanglement as well as
the dynamical entanglement displayed by Bose-Hubbard
chains for several configurations of parameters. Our results
indicate that chains with strong repulsion coefficients in in-
termediate places are suitable scenarios for the emergence of
long scale hopping that can lead to a subsequent develop-
ment in long-range quantum correlations. Entanglement also
emerges as a result of dynamics in chains initially prepared
in a Mott insulator state. In addition, we showed that ground-
state entanglement can be improved through perturbation dy-
namics. Irrespective of the issue of entanglement, the behav-
iors displayed by the ground and dynamical states that we
have predicted for different repulsion profiles should be in-
teresting to verify in an experiment. It would also be inter-
esting to investigate how the transition from short scope to
long scope hopping occurs. It could happen that, and our
results provide some evidence of this, this transition is in fact
a second-order phase transition where EEE works as the or-
der parameter.
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