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We investigate the entanglement between two spatially separated intervals in the vacuum state of a free
one-dimensional Klein-Gordon field by means of explicit computations in the continuum limit of the linear
harmonic chain. We demonstrate that the entanglement, which we quantify by the logarithmic negativity, is
finite with no further need for renormalization. We find that in the critical regime, the quantum correlations are
scale invariant as they depend only on the ratio of distance to length. They decay much faster than the classical
correlations as in the critical limit long-range entanglement decays exponentially for separations larger than the
size of the blocks, while classical correlations follow a power-law decay. With decreasing distance of the
blocks, the entanglement diverges as a power law in the distance. The noncritical regime manifests richer
behavior, as the entanglement depends both on the size of the blocks and on their separation. In correspondence
with the von Neumann entropy also long-range entanglement distinguishes critical from noncritical systems.
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The scaling of block entanglement in both harmonic
chains �HC� and spin chains has received considerable atten-
tion recently �1�. The scaling of the entanglement entropy
S��A�=−tr��A ln �A� of a block A has been found to behave
in a universal way in one-dimensional critical systems. Ex-
plicit computations for the Klein-Gordon massless field us-
ing density matrices have shown that the entanglement en-
tropy is proportional to the area of the boundary �2,3�. Using
general conformal field theory methods, it has been shown
that the entropy of a block with size l scales as �c̄ /3�ln l for
bosonic fields �4�, where c̄=1 is the central charge in the
one-dimensional case. This result has been verified analyti-
cally �5� using quantum information methods both in critical
bosonic spin chains and in critical linear HCs �6�, where the
area law has been proven in higher dimensions in �7�. In
noncritical chains, however, the entropy saturates for blocks
larger than the correlation length ��m−1, where m is the
energy gap, given in dimensionless units where �=c=1.

The von Neumann entropy requires further renormaliza-
tion as it diverges in the continuum limit. Due to this diver-
gence, the mutual information I=S��A�+S��B�−S��AB� of
two regions A and B has been suggested as a better measure
�8� since it admits a finite value in the continuum limit. For
critical fields, I can still be computed using conformal field
theory techniques, where it scales as a power law with the
separation between the regions, and decays exponentially in
the massive case �9�. However, mutual information is not a
genuine measure of entanglement as it includes both classi-
cal and quantum correlations as demonstrated by the fact that
it does not vanish for separable states �10�. Hence we will
consider in the following the logarithmic negativity ELN as
a quantifier of entanglement �11� for both pure and mixed
states, due in part to the relative ease with which it is com-
puted. Entanglement between groups of discrete sites has
been discussed before in various setups, such as the �dis-
crete� Bose-Hubbard model �12� spin chains �13�, and the
ion trap �14�. Our work, on the other hand, studies the

behavior of the long-range entanglement in continuous
fields. We present numerical evidence that the logarithmic
negativity admits a finite value in the critical- and non-
critical-field limits, making it a promising candidate for
studying entanglement of quantum fields. We study the scal-
ing of entanglement between two spatially separated blocks
in a free one-dimensional Klein-Gordon field.

In the following, we summarize our main findings before
presenting the numerical analysis. First, as there are no
length scales in the critical field, any well-defined finite
physical property must depend only on a single parameter
r�d / l, where l is the length of each of the blocks and d is
their separation. This property is automatically valid both for
the mutual information and the logarithmic negativity due to
the following reason. When studying the critical case, the
continuum limit is taken by taking the lattice constant to zero
and the coupling coefficient to infinity in a way that the
propagation velocity remains constant. Both the negativity
and the mutual information do not depend on the coupling
and thus the continuum limit is taken just by increasing the
number of oscillators. Thus, only the ratio d / l can enter as a
parameter in the continuum limit.

Second, while the classical correlations between two sites
or blocks decay as a power law in the critical regime, we find
that quantum correlations measured by ELN decay exponen-
tially with the distance in this regime following ELN�e−�cr

for r�1 /2, where �c�2�2 with accuracy better than 1%.
This result improves a previously found lower bound ELN

�e−r2
for bosons �15� and fermions �16�. As the blocks ap-

proach each other, i.e., r→0, we find that the ELN diverges as
a power law r−�, where �= 1

3 with accuracy better than 1%.
Both the mutual information I and the logarithmic negativity
ELN are upper bounds to the distillable entanglement. Here
we observe that ELN is much tighter though, since I scales as
a power law throughout, where we obtained numerically I
�r−0.05. Hence classical correlations exhibit a power-law
scaling while quantum correlations exhibit an exponential
decay.
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Third, since the noncritical chain has a length scale pro-
portional to the inverse mass, this system is characterized by
two dimensionless parameters d and l taken in units of the
correlation length m−1, where the critical behavior is ob-
tained in the limit where d→0 and l→0. We find that long-
range entanglement discriminates critical and noncritical
fields even more strongly than the entropy. With respect to
the blocks’ size l, ELN�l� saturates with increasing l, while it
diverges for the critical field. Interestingly, the saturation oc-
curs for l� ls�d+1, in contrast to the block entropy for
which the saturation occurs for l� ls=1. With respect to the
blocks’ separation ELN�d��exp�−�ncd

2� for d� l�1, where
�nc depends on l. As d→0, the entanglement in both critical
and noncritical fields exhibits a similar behavior since in the
noncritical regime �finite l�, ELN diverges as a power law as
well.

Let us start by describing the correspondence between a
continuous Klein-Gordon field and the discrete chain and
review the computation of several quantum information mea-
sures. The free one-dimensional Klein-Gordon Hamiltonian
H=�Hdx, where

H =
1

2
�2 +

1

2
��	�2 +

1

2
m2	2 �1�

corresponds upon discretization with a spacing a to

H =
1

2 	
i=−



 
a�i
2 +

1

a
�	i − 	i−1�2 + am2	i

2� . �2�

Substituting �i→pi and 	i→qi, transforming to circular
boundary conditions and writing in dimensionless form, we
find

H =
1

2	
n=1

N

�qn
2 + pn

2 − �qnqn+1� , �3�

where qn and pn are canonical variables �q1=qN+1�, N is the
number of oscillators in the chain, and 0���1 is the cou-
pling constant. The correlation length � in units of the oscil-
lators spacing is defined as �=1 /�2�1−��. The continuum
limit of the harmonic chain corresponds to Eq. �1� in the
strong-coupling limit �→1, given that N→
 and m=N /� is
kept constant to ensure a constant propagation speed. The
system is critical, i.e., m→0, when N��. The spectrum of
Eq. �3� is given by 
k=�1−� cos �k, where �k=2�k /N and
k=0,1 , . . . ,N. Then we can express

qn =
1

�N
	

k

1
�2
k

�ake
i�kn + H.c.� ,

pn =
− i
�N

	
k

�
k/2�ake
−i�kn − H.c.� , �4�

where �ak ,ak
†�=1, and the two-point vacuum correlation ma-

trices G and H are

Gij = �0
qiqj
0� = g�i−j� =
1

2N
	

k

1


k
cos�
i − j
�k� ,

Hij = �0
pipj
0� = h�i−j� =
1

2N
	

k


k cos�
i − j
�k� . �5�

Throughout this paper we consider two separated blocks
A and B with the same size L and separation D given by the
number of oscillators in the blocks and their separation,
respectively. For Gaussian states S�A�=	 j�f�� j +1 /2�− f�� j
−1 /2��, where f�x�=x ln x and � j are the eigenvalues of
iGAHA with GA being the restriction of G to a block A, and

ELN=−	 j ln2�min�2�̃ j ,1�� �11�, where �̃ j are the eigenvalues

of iGA�BH̃A�B, where H̃A�B is obtained from HA�B by time
reversal in B, i.e., pB→−pB.

In the continuous limit of the critical field the two-point
correlation functions g�x1−x2� , h�x1−x2� are

g�x� � g0 − ln�m
x
�, h�x� � −
1

x2 . �6�

The two-point correlation functions in the noncritical case
depend on the mass m, where in the asymptotic limit, x
�m−1

g�x� � −
e−m
x


�m
x

, h�x� �� m


x
3
e−m
x
. �7�

We proceed with the presentation of the numerical results.
We examine large chains with N=2�104 �and N=4�104

oscillators in order to confirm the continuum limit�. We
begin with the critical regime where we take �=1–10−12

�deep in the critical limit�. In Fig. 1 we present ln ELN as a
function of r. For r�0.5, the linear approximation is accu-
rate ELN�r�0.5�=E0�e−�cr, where the obtained constant
is �c�2�2 to 1% accuracy. In the upper inset, we observe
on a log-log scale the power-law correction to the exponen-
tial approximation. Assuming ELN=E1�r−�e−�cr, we find
ln�E1 /E0��−� ln r. For r�0.25�ln r�−1.4�, we obtain nu-
merically �= 1

3 to 1% accuracy �this number was also nu-

FIG. 1. �Color online� Critical HC: ln ELN as a function of
r�d / l. For r�0.5, the linear approximation practically coincides
with the computed values �c�2�2. The dotted line is the over-
all estimation �Eq. �8��. Upper inset: ln�E1 /E0� as a function of
ln r. Lower inset: ln ELN as a function of L for different values of r
�D �the number of oscillators that separate the blocks� increases
with L�.
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merically observed for critical spin systems in �17��. Note
that � is identical to the prefactor of the entanglement en-
tropy S�l� in the critical field. In the lower inset, we confirm
that ELN is scale invariant, depending only on d / l in the
critical limit. We plot ln ELN as a function of L, the number
of oscillators in each of the blocks, such that the ratio r
�D /L is kept constant. The plots are given for different
values of r. The curves are approximately constant for L
sufficiently large to correspond to the continuum limit. We
have also verified the same scale invariance for the mutual
information. All figures are dimensionless throughout the pa-
per.

For arbitrary values of r, we find

ELN
critical � �ar−� + t�r��e−�cr, �8�

where t�r�=e−�/r. Note that as expected t�r�1�→1 and t�r
→0�→0. �Numerically, we obtain ��3 /2 and a�4 /3.�
The dotted line in Fig. 1 shows Eq. �8� �on logarithmic scale�
and provides a very good approximation. Analyzing Eq. �8�
with respect to the blocks’ size L, keeping their separation D0
constant, we find that the first-order exponential term E0�l�
�exp�−�cd0 / l� has a saddle point d2E0 /dl2=0 at l=�cd0 /2,
in which the scaling turns from exponential at l→0 to a
power of 2. At l��cd0, E0�l� already scales logarithmically
and for l /d0�1, E0�l� saturates. However, at this limit the
power-law correction becomes the dominant factor, where
ELN� l1/3.

We now turn to investigate the long-range entanglement
in the noncritical field characterized by a length scale m−1,
where in units of the particles’ spacing in the harmonic
chain, the length scale is �. Due to the existence of a length
scale, entanglement has to be characterized by two dimen-
sionless parameters d, l given in units of m−1: d=mD and
l=mL. Numerically, we have confirmed that ELN�m ,D ,L�
=ELN�mx ,D /x ,L /x� in the continuum limit, where x�0, i.e.,
we observe no difference in ELN as we simultaneously in-
crease N and � such that m=N /� remains constant. The non-
critical regime reduces to the critical one if we take d→0
and l→0. The noncritical regime is characterized by several
limits, depending on the size of l and d with respect to 1 and
with respect to each other. We expect that in correspondence
with the von Neumann entropy, in the limit l�1 the scaling
becomes independent of l. Interestingly, we observe that this
is indeed true only if also l�d.

In Fig. 2 we plot ln ELN�l� for several values of a constant
separation d0. We observe that the entanglement reaches a
constant value ELN

sat �d0� and, thus, distinguishes noncritical
systems from critical ones. The points ELN�l=d0�, which are
added for reference, fit a linear curve. Saturation occurs at
l� ls, where ls is a linear function of d0: ls�0.75d0+1. For
small values of d0, saturation is obtained for ls�1. Note that
each of the curves starts linearly, showing that the entangle-
ment increases exponentially with l for small values of l. In
the opposite limit d� l, we observe exponential decay as
in the critical regime, but now with different exponent ELN
�exp�−�nc�l�d2�, as can be seen in Fig. 3, where ELN�d� is
shown for several values of the constant blocks size l0. Note
that in the d→0 limit, the entanglement diverges as a power
law, as can be seen in the inset in a log-log scale. We obtain

that the power is different from the �= 1
3 in the critical limit

and in general depends on l0. In addition, we observe that for
l0�d�1 the exponential decay becomes linear with d again,
corresponding to the intermediate saturation regime.

In order to observe the transition from critical to noncriti-
cal behavior, we plot in Fig. 4 ln ELN as a function of d for
constant ratios r=d / l. Note that all curves begin with a criti-
cal behavior as the entanglement is approximately constant.
As l approaches one correlation length, the noncritical be-
havior emerges and entanglement starts to decay. It can be
seen that all curves with r�1 coincide at a certain point.
This corresponds to the saturation regime, in which the en-
tanglement decays as ELN�exp�−2.25d�, independent of l.
The curves with d� l do not coincide and characterize the
regime where ELN�exp�−�nc�l�d2�.

We would like to conclude with our main results. The
logarithmic negativity, which is a genuine measure of en-
tanglement, is finite in the continuum limit. It is distin-
guished from the classical correlations especially in the criti-
cal limit, where it decays exponentially with the separation,
while classical correlations decay as a power law. As the
blocks approach each other, the entanglement diverges as a
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FIG. 2. �Color online� Saturation in the noncritical chain. ln ELN

as a function of l for various values of d0. The curves in the legend
from top to bottom correspond to the curves shown from top to
bottom in the figure. The points ELN�l=d0� fit a linear curve.

FIG. 3. �Color online� Noncritical chain. ln ELN as a function of
d for various values of l0. The curves in the legend from top to
bottom correspond to the curves shown from left to right in the
figure. We observe the exponential decay with a quadratic function
of d �which also depends on l0�. In the intermediate saturation re-
gime l0�d�1, the decay is exponentially linear with d. Inset:
power-law divergence in the d→0 limit �shown in log-log scale�.
The power is different than the 1

3 in the critical limit and in general
depends on l0.
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power law, where the power seems to be equal to the univer-
sal prefactor of the logarithmic scaling of the von Neumann
entropy of a large block. It would be interesting to determine
analytically whether methods from the conformal field
theory may be applied to the negativity and obtain �= c̄ /3.
We note that much like the entropy of entanglement of a
single block, the scaling of the long-range entanglement al-
lows us to discriminate critical from noncritical behavior.
Finally, we point out that for the critical field, both logarith-
mic negativity and mutual information are scale invariant
and depend only on the ratio between the distance and length
of the blocks.

Note added. Recently, we became aware of the indepen-
dent work on long-range entanglement in critical spin-chains
drawing similar conclusions �17�.
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