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The thermal pairwise entanglement �TE� of the S=1 /2 XY chain in a transverse magnetic field is exactly
resolved by means of the Jordan-Wigner transformation in the thermodynamic limit N→�. It is found that the
TE vanishes at a fixed point with temperature Tc�0.484 3J, which is independent of the magnetic field. A
thermal quantity is proposed to witness the entangled state. Furthermore, the TE of the S=1 /2
antiferromagnetic-ferromagnetic �AF-F� Heisenberg chain is studied by the transfer-matrix renormalization-
group method. The TEs of the spins coupled by AF and F interactions are found to behave distinctively. The
vanishing temperature of the field-induced TE of the spins coupled by F interactions is observed dependent on
the magnetic field. The results are further confirmed and analyzed within a mean-field framework.
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Quantum entanglement describes intrinsic correlations in-
curred in quantum mechanics. It plays the essential role in
quantum information �1�, quantum teleportation �2�, and
quantum cryptography �3�. In condensed-matter physics, it
provides a new perspective to understand the collective phe-
nomena in many-body systems �4�.

The spin entanglement in quantum spin chains is of par-
ticular interest. Many types of entanglement at both zero and
finite temperatures have been extensively studied in various
spin systems �see reviews in Ref. �4��. As the finite-
temperature entanglement �thermal entanglement �TE�� can
be witnessed theoretically �5� and detected experimentally
�6� by macroscopic variables, most efforts have been made to
quantify the TE. The critical temperature �CT� below which
the TE survives can even be estimated in experiment �7�.
Interestingly, the numerical calculations indicate that the CT
of the nearest-neighbor TE is a fixed point which is indepen-
dent of the magnetic field in the S=1 /2 Heisenberg chain �8�
and two-qubit XY spins �9�. However, the features at the
fixed point are unclear and no explanation exists. It is also a
question whether the magnetic field independence of the CT
is a universal phenomenon in quantum spin chains or there
are exceptions. For these questions, in this paper, the field
dependence of the CT of TE in the S=1 /2 XY and
antiferromagnetic-ferromagnetic �AF-F� Heisenberg chains
are exactly resolved and studied by means of the transfer-
matrix renormalization-group �TMRG� method in the ther-
modynamic limit N→�, respectively. An analysis will also
be made within the mean-field framework.

The pairwise entanglement of two S=1 /2 spins at sites i
and j in the ground state and at finite temperature can be
achieved from the corresponding reduced density matrix �̂i,j,
which, in the standard basis ��↑↑� , �↑↓� , �↓↑� , �↓↓�	, can be
expressed as

�̂i,j =

�Pi

↑Pj
↑� �Pi

↑� j
−� ��i

−Pj
↑� ��i

−� j
−�

�Pi
↑� j

+� �Pi
↑Pj

↓� ��i
−� j

+� ��i
−Pj

↓�
��i

+Pj
↑� ��i

+� j
−� �Pi

↓Pj
↑� �Pi

↓� j
−�

��i
+� j

+� ��i
+Pj

↓� �Pi
↓� j

+� �Pi
↓Pj

↓�
� , �1�

where P↑= 1
2 �1+�z�, P↓= 1

2 �1−�z�, and ��= 1
2 ��x��y�. The

brackets denote the ground-state and thermodynamic average
values at zero and finite temperatures, respectively, and � are
Pauli matrices. As the phenomenon that is of interest mainly
exists in the nearest-neighbor TE, we shall concentrate only
on �̂i,i+1 in the following.

The spin operators can be transformed into spinless fer-
mions by the Jordan-Wigner �JW� transformation

Si
+ = ci

† exp
i��
j�i

cj
†cj�, Si

z = 
ci
†ci −

1

2
� , �2�

where ci
† and ci are the creation and annihilation operators of

the spinless fermion, respectively. �̂i,i+1 becomes
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FIG. 1. �Color online� Temperature and magnetic field depen-
dence of the thermal entanglement in the S=1 /2 XY chain. The
entanglements vanish at a common temperature Tc.
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�̂i,i+1 =

Xi

+ 0 0 0

0 Yi
+ Zi

� 0

0 Zi Yi
− 0

0 0 0 Xi
−
� , �3�

where Xi
+= �nini+1��ni�ci

†ci�, Yi
+= �ni�1−ni+1��, Yi

−= �ni+1
�1−ni��, Zi= �ci

†ci+1�, and Xi
−=1− �ni�− �ni+1�+ �nini+1�. As de-

fined, the concurrence of TE of two nearest neighbors is
given through

C̃i = �1 − �2 − �3 − �4, �4�

Ci = max�0,C̃i	 , �5�

where �i are the square roots of the eigenvalues of �i,i+1�̃i,i+1,
where �1 is the largest. �̃i,i+1 is a transformed matrix of �i,i+1,
i.e., �̃=�y � �y�

��y � �y. Thus, Eq. �4� is transformed into

C̃i = 2��Zi� − �Xi
+Xi

−� . �6�

The concurrence can be calculated from the local-density,
hopping term, and site-site correlations of the fermions.

As the observed field independence of the CT of TE is
obtained by either numerical calculations �8� or only for two
qubits �9�, a deep understanding is indeed necessary. There-
fore, we shall exactly resolve the concurrence of the S
=1 /2 XY chain in a transverse magnetic field within the ther-
modynamic limit to investigate this phenomenon analyti-
cally. The Hamiltonian of the S=1 /2 XY chain is given as

H = �
i=1

N
1

2
J�Si

+Si+1
− + H.c.� − h�

i=1

N

Si
z, �7�

where J��0� is the coupling, and h is the magnetic field. As
the XY chain with F couplings can be obtained by a unitary
transformation, which rotates the odd-site spins by � angle

around the z axis, both the AF and F cases give the same
results. Here, we take J�0 for simplicity.

By applying the JW and Fourier transformations, the
Hamiltonian �7� can be diagonalized as

H = �
k

�J cos k − h�ck
†ck = �

k

�	�k� − h�ck
†ck, �8�

and the elements in the reduced density matrix �Eq. �3�� can
be explicitly expressed as

Zi =
1

N
�

k

eikf�k�, �ni� =
1

N
�

k

f�k� , �9�

Xi
+ = −

1

N2 �
k1,k2

�1 − ei�k1−k2���ck1

† ck2

† ck1
ck2

� , �10�

where f�k�=1 / �e
�	�k�−h�+1� �
 is the inverse temperature
and the Boltzmann constant is taken as kB=1� is the Fermi
distribution function. By the solution of the retarded Green’s
function Gr�t�= �ck1

�t�ck2
�t� ,ck1

† ck2

† � �k1�k2� �10�, the ex-
pectation value �ck1

† ck2

† ck1
ck2

� in Eq. �10� is obtained as

�ck1

† ck2

† ck1
ck2

� = − f�k1�f�k2� �k1 � k2� , �11�

and Eq. �10� is simplified as

Xi
+ = �ni�2 − Zi

2. �12�

By substituting Eqs. �9� and �12� into Eq. �6�, C̃i can be
obtained as

C̃i = −
2

���−1

1 xdx

�1 − x2�e
��x−h�� + 1�
+�
�

−1

1 �1 + x

1 − x

dx

e
��x−h�� + 1
�
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−1
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1 + x

dx

e
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�


�
 1

�
�

−1

1 �1 + x

1 − x

dx

e
��x−h�� + 1
− 1�
 1

�
�

−1

1 �1 − x

1 + x

dx

e
��x−h�� + 1
− 1�� , �13�

where 
�=
J and h�=h /J. The result of Eq. �13� is shown in Fig. 1, where the TEs in different fields vanish at a common CT
�Tc�, which is a fixed point. This common CT indicates that the magnetic field cannot retrieve the intrinsic TE once it is
destroyed by thermal fluctuations, even though the field changes the TE below the CT.

At T=Tc, C̃i=0 and Zi
2=Xi

+Xi
−. Thus, we can derive the equation

�ni� − �ni�2 = − �2Zi − Zi
2 �14�

at Tc for any fields. We define ��
 ,h�= �ni�+�2Zi+Zi
2− �ni�2, which can be expressed as
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��
,h� =
1

�
�

−1

1 �1 + �2x�dx

�1 − x2�e
��x−h�� + 1�
+

1

�2�
−1

1 �
−1

1 �xy − 1�dxdy

��1 − x2��1 − y2��e
��x−h�� + 1��e
��y−h�� + 1�
. �15�

Thus, ��0 describes the entangled state, and � must be
zero at Tc, i.e., ��
c ,h�=0, from which Tc can be deter-
mined. In the absence of magnetic field, �ni�=1 /2 at any
temperatures, thus, Zi,h=0

Tc = �1−�2� /2, and Tc can be obtained
by solving the equation

�2 − 1

2
=

J

�Tc
�

0

1 �1 − x2dx

1 + cosh
Jx

Tc

, �16�

which indicates that Tc is proportional to J, i.e., Tc=�J with
��0.484 3. At Tc, ��
c ,h� is independent of h, i.e.,
���
c ,h� /�h=0, yielding the equation

2�1 + �2Zi�
�Zi

�h
= �2�2�ni� − 1�

��ni�
�h

, �17�

which is satisfied at Tc for any fields. This equation, as well
as Eq. �14�, determines the fixed point completely. In Ref.
�9�, the CT for the S=1 /2 two cyclic XY qubits is 0.567 3J,
which is larger than the CT 0.484 3J in the thermodynamic
limit. This is consistent with the result in Ref. �8�, where the
CT of the spin-1/2 Heisenberg chains with N=5�10 is
smaller than that with N=2.

In terms of the spin operators, the finite pairwise TE sur-
vives when


�Si
+Si+1

− � +
�2

2
�2

�
1

4
+ �Si

z�2, �18�

which indicates that the concurrence of TE is determined by
the competition between the spin fluctuations and local mag-
netic moment at finite temperature. As the quantities in Eq.
�9� can be expressed as thermodynamic observables as

Zi =
U + Mh

NJ
+

h

2J
, �ni� =

M

N
+

1

2
, �19�

where U= �H� is the internal energy, and M =�i�Si
z� is the

total magnetization, the TE can be witnessed by the negative
thermal quantity

��U,M,h� = 
U + Mh

NJ
+

h

2J
+

�2

2
�2

− 
M

N
�2

−
1

4
,

�20�

which can be measured in experiment. Without the field, the
magnetization M vanishes, and the TE survives when

�U�
NJ

�
�2 − 1

2
, �21�

which includes a wider parameter region than the sufficient
condition �U� /NJ�1 /4 for the entangled state that is pro-
posed for the spin chains with Heisenberg or XY interactions

�5�. In a magnetic field, Eq. �20� also implies that the witness
�U+Mh� /NJ�1 /4 proposed in Ref. �5� can be improved to
cover a wider parameter region for the entangled state. The
exact solution not only confirms that the CT of the intrinsic
TE which survives in the absence of field is a fixed point, but
also reveals some features at the fixed point from the per-
spectives of the local spin competition and macroscopic ther-
modynamic behavior.

To investigate the possible exceptions of the field inde-
pendence of the CT, we study the TE in an S=1 /2 AF-F
alternating Heisenberg chain by means of the TMRG. The
Hamiltonian of this alternating chain is given by

H = �
j

�JaS2j−1 · S2j + JfS2j · S2j+1� − h�
j

Sj
z, �22�

where Ja�0, Jf �0 denote the AF and F couplings, respec-
tively. Ja is taken as the energy scale and Jf /Ja=−1. This
AF-F chain has a Haldane gap ��0.6Ja in the ground state
�11�, and the saturation field hs�1.1Ja. In experiment, this
model has been realized and studied extensively �12�. The
TMRG �13� method is a powerful tool for studying the ther-
modynamics of one-dimensional quantum systems in the
thermodynamic limit �14�. In our calculations, the width of
the imaginary time slice is taken as 	=0.1, and the error
caused by the Trotter-Suzuki decomposition is less than 10−3.
During the TMRG iterations, 60 states are retained, and the
truncation error is less than 10−6.

Owing to the alternation of the couplings, the TEs of the
spins coupled by Ja and Jf, which are denoted as Ca and Cf,
respectively, are expected to be distinct. Figure 2�a� shows
the temperature dependence of the TE Ca at different fields.
It is shown that in the absence of the field, the intrinsic TE
survives, and Ca vanishes at Tc

a�0.85Ja due to thermal fluc-
tuations. In the presence of the field, the CT keeps invariant.
Although the alternation is involved, the CT of the intrinsic
TE is still a fixed point.

However, the entanglement induced by the field does not
comply to such rule. For the F couplings, the TE of the spins
coupled by Jf is absent without a field. When the applied
field closes the gap and increases up to about 0.9Ja, the TE is
induced by the field, as shown in Fig. 2�b�. With further
increasing the field, the CT of the field-induced TE enhances
to reach the maximum at the saturation field. A further in-
crease in the field makes the field-induced TE vanish as the
spins are fully polarized at zero temperature. It can be seen
that—different from the intrinsic TE—the CT of the field-
induced TE is dependent on the magnetic field.

Furthermore, the intrinsic TE of the S=1 /2 AF-AF-AF-F
tetrameric Heisenberg chain �15� is studied using the TMRG,
which are not presented here. It is shown that the CT retains
a fixed point, which is also observed in the trimerized
F-F-AF chain �16�. The observations suggest that the CT of
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the intrinsic TE in one-dimensional Heisenberg antiferro-
magnets might be a fixed point.

Next, we treat the AF-F chain within the mean-field
framework, which may extend the discussions to the general
S=1 /2 alternating Heisenberg antiferromagnetic chains with
nearest-neighbor interactions. Following the steps in Ref.
�17�, we make the Hartree-Fock approximation to the Hamil-
tonian �22� after the JW and Fourier transforms and obtain
the mean-field Hamiltonian after omitting a constant,

HHF = �
k
���Ja + Jf�
db −

1

2
� − h�ak

†ak

+ ��Ja + Jf�
da −
1

2
� − h�bk

†bk�
+ �

k
�Ja
1

2
− pab�eik/2ak

†bk + H.c.

+ Jf
1

2
− pba�eik/2bk

†ak + H.c.� , �23�

where da= �aj
†aj�, db= �bj

†bj�, pab= �bj
†aj�, and pba= �aj+1

† bj�,
which are obtained by self-consistent calculations. Then the
Bogoliubov transformation is taken to diagonalize the above
Hamiltonian. Thus, the TE can be calculated from the quasi-
particle representation. Figure 3 shows the mean-field results
of the TE Ca and Cf. It is shown that although the values of
the critical fields and CT are not accurate, the mean-field
results still preserve the features of the CT. The intrinsic TE
Ca vanishes at a common CT, while the field-induced TE Cf
is dependent on the field. As shown in Fig. 3�b�, the CT of Cf
enhances with increasing the field until to the maximum at
the saturation field, which is analogous to the TMRG result.

In this fermion mapping Zab= pab
� and Xab

+ =dadb−Zab
2 ,

where Zab and Xab
+ are the values defined in Eq. �3� of the

spins coupled by Ja. Thus, the concurrence Ca can be ex-
pressed by Eq. �6� using these quantities. At the CT �Tc

a�, we
have

��pab�2 − da�db − 1����pab�2 − da�db − 1�� = 2�pab�2. �24�

The calculations show that pab is real and da=db. Thus, the
above equation can be simplified as

da − da
2 = − �2pab − pab

2 , �25�

which has the same form as that of the XY chain �Eq. �14��,
yielding the following inequality:


�S2j−1
+ S2j

− � +
�2

2
�2

�
1

4
+ �S2j−1

z �2, �26�

for the entangled Ca. For the field-induced TE Cf, we have
da−da

2=−�2pba− pba
2 at the CT, which is satisfied at different

CTs for different fields. The entangled Cf is described by
��S2j

+ S2j+1
− �+

�2
2 �2�

1
4 + �S2j

z �2. Note that the thermal quantity
witness cannot be written in a form as simple as Eq. �20�
within the present self-consistent calculations.

In summary, we have studied the field dependence of the
CT of TE in the S=1 /2 spin chains within the thermody-
namic limit N→�. The concurrence of the TE in the spin-
1/2 XY chain is exactly resolved. It is found that the CT of
the TE is a fixed point. An equation is given to determine the
CT, which is found to be Tc�0.484 3J and smaller than that
of the two-qubit system. The thermal witness for the en-
tangled state is also proposed. Furthermore, the TE of an S
=1 /2 AF-F chain is studied by means of the TMRG method
and mean-field treatment, which indicates that the CT of the
intrinsic TE of the spins coupled by AF couplings is a fixed
point, while that of the field-induced TE of the spins coupled
by F couplings changes with the field. The exact solution of
the XY chain as well as the mean-field result of the AF-F
chain indicates that the disappearance of the TE is deter-
mined by the competition between the spin fluctuations and
local magnetic moment at finite temperatures. The observa-
tions suggest that it may be a general phenomenon in one-
dimensional Heisenberg antiferromagnets that the CT of the
intrinsic TE is a fixed point independent of the magnetic
field.
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FIG. 2. �Color online� Temperature dependence of the thermal
entanglement of �a� Ca and �b� Cf for the S=1 /2 AF-F chain at
various fields obtained by means of the TMRG.

FIG. 3. �Color online� Temperature dependence of the thermal
entanglement of �a� Ca and �b� Cf for the S=1 /2 AF-F chain at
various fields obtained by the mean-field theory.

SHOU-SHU GONG AND GANG SU PHYSICAL REVIEW A 80, 012323 �2009�

012323-4



�1� M. A. Nielsen and I. Chuang, Quantum Computation and
Quantum Information �Cambridge University Press, Cam-
bridge, England, 2000�.

�2� C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres,
and W. K. Wootters, Phys. Rev. Lett. 70, 1895 �1993�; C. H.
Bennett, G. Brassard, S. Popescu, B. Schumacher, J. A. Smo-
lin, and W. K. Wootters, ibid. 76, 722 �1996�.

�3� A. K. Ekert, Phys. Rev. Lett. 67, 661 �1991�; Nature �London�
358, 14 �1992�.

�4� L. Amico, R. Fazio, A. Osterloh, and V. Vedral, Rev. Mod.
Phys. 80, 517 �2008�.

�5� C. Brukner and V. Vedral, e-print arXiv:quant-ph/0406040; G.
Tóth, Phys. Rev. A 71, 010301�R� �2005�; L.-A. Wu, S. Ban-
dyopadhyay, M. S. Sarandy, and D. A. Lidar, ibid. 72, 032309
�2005�; S. I. Doronin, E. B. Fel’dman, and A. N. Pyrkov, JETP
Lett. 85, 519 �2007�; L. Amico and D. Patanè, EPL 77, 17001
�2007�; J. Hide, W. Son, I. Lawrie, and V. Vedral, Phys. Rev. A
76, 022319 �2007�.

�6� S. Ghosh, T. F. Rosenbaum, G. Aeppli, and S. N. Coppersmith,
Nature �London� 425, 48 �2003�; C. Brukner, V. Vedral, and
A. Zeilinger, Phys. Rev. A 73, 012110 �2006�.

�7� T. Vértesi and E. Bene, Phys. Rev. B 73, 134404 �2006�; M.
Continentino, J. Phys.: Condens. Matter 18, 8395 �2006�; T.
G. Rappoport, L. Ghivelder, J. C. Fernandes, R. B. Guimarães,
and M. A. Continentino, Phys. Rev. B 75, 054422 �2007�.

�8� M. C. Arnesen, S. Bose, and V. Vedral, Phys. Rev. Lett. 87,
017901 �2001�.

�9� X.-G. Wang, Phys. Rev. A 64, 012313 �2001�.
�10� A. L. Fetter and J. D. Walecka, Quantum Theory of Many-

Particle Systems �McGraw-Hill, New York, 1971�.
�11� K. Hida, Phys. Rev. B 45, 2207 �1992�.
�12� M. B. Stone, W. Tian, M. D. Lumsden, G. E. Granroth, D.

Mandrus, J.-H. Chung, N. Harrison, and S. E. Nagler, Phys.
Rev. Lett. 99, 087204 �2007�; A. Zheludev, V. O. Garlea, L.-P.
Regnault, H. Manaka, A. Tsvelik, and J.-H. Chung, ibid. 100,
157204 �2008�.

�13� R. J. Bursill, T. Xiang, and G. A. Gehring, J. Phys.: Condens.
Matter 8, L583 �1996�; X. Wang and T. Xiang, Phys. Rev. B
56, 5061 �1997�.

�14� For instance, B. Gu, G. Su, and S. Gao, J. Phys.: Condens.
Matter 17, 6081 �2005�; B. Gu, G. Su, and S. Gao, Phys. Rev.
B 73, 134427 �2006�; B. Gu and G. Su, Phys. Rev. Lett. 97,
089701 �2006�; B. Gu and G. Su, Phys. Rev. B 75, 174437
�2007�; S. S. Gong, B. Gu, and G. Su, Phys. Lett. A 372, 2322
�2008�.

�15� S.-S. Gong and G. Su, Phys. Rev. B 78, 104416 �2008�.
�16� Z.-Y. Sun, K.-L. Yao, W. Yao, D.-H. Zhang, and Z.-L. Liu,

Phys. Rev. B 77, 014416 �2008�.
�17� S. Yamamoto and K. Funase, Low Temp. Phys. 31, 740

�2005�.

THERMAL ENTANGLEMENT IN ONE-DIMENSIONAL… PHYSICAL REVIEW A 80, 012323 �2009�

012323-5


