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Recently Sagawa and Ueda �Phys. Rev. Lett. 100, 080403 �2008�� derived a bound on the work that can be
extracted from a quantum system with the use of feedback control. For many quantum measurements their
bound was not tight. We show that a tight version of this bound follows straightforwardly from recent work on
Maxwell’s demon by Alicki et al. �Open Syst. Inf. Dyn. 11, 205 �2004��, for both discrete and continuous
feedback control. Our analysis also shows that bare, efficient measurements always do non-negative work on
a system in equilibrium, but do not add heat.

DOI: 10.1103/PhysRevA.80.012322 PACS number�s�: 03.67.�a, 05.30.�d, 05.70.Ln, 03.65.Ta

I. INTRODUCTION

The amount of work that can be extracted from a thermo-
dynamical system, when it undergoes a process taking it
from an initial equilibrium state S1 at temperature T1, to a
final equilibrium state S2 at temperature T2, is given by the
difference in the �Helmholtz� free energy, F, between these
states, where

F � E − TS , �1�

with E, T, and S being, respectively, the average internal
energy, temperature, and entropy of the system. For quantum
systems the entropy is the von Neumann entropy,
S=−Tr�� ln ��, where � is the density matrix of the state.
The simplest example of this is the work obtained by
the �quasiequilibrium� expansion of a gas at a fixed
temperature �isothermal�. In this case the internal energy of
the gas remains constant, and the work done by the gas is
�S1−S2� /T=F1−F2=�F �1�.

This relation between maximum work and free energy is
true for the traditional thermodynamic processes—that is,
ones that do not have access to the microstates of the system.
If we measure the system, so as to obtain information about
the underlying microstate, and perform actions based on this
information, then we can extract more work. This is a pro-
cess of feedback control �2�. Of course, in this situation, a
feedback controller is merely a Maxwell demon �3–11�. Sa-
gawa and Ueda �12� recently showed that the amount of
extra work that can be extracted by a feedback controller,
over and above the free-energy difference, is bounded by a
measure of the information extracted by the controller. In
their analysis this bound was only achieved for certain
special classes of measurements �e.g., von Neumann mea-
surements�. Here we show, by generalizing the protocol of
Alicki et al. �9�, that feedback controllers can always saturate
the bound, irrespective of the measurement they make.

The following analysis is divided into three parts. The
first part introduces some important thermodynamic defini-
tions. In the second part we derive the relationship between
free energy and work extraction with feedback control,
building upon previous results by Alicki et al. �9� on Max-
well’s demon. Lastly, we treat the feedback controller as
purely quantum mechanical, eliminating the use of quantum

measurement theory, to show that the second law is pre-
served by the control process, in agreement with Landauer’s
erasure principle �4,13–17�.

II. QUANTUM MECHANICS, WORK, AND HEAT

The average energy of a quantum system is given by
E=Tr�H��, where H is the Hamiltonian. We can therefore
write dE=Tr�dH��+Tr�Hd��. In the past the work done on
the system has been equated with the first term,
dW�Tr�dH��, and the heat entering the system with the
second: dQ�Tr�Hd�� �9,10�. These identifications are not
subtle enough for our analysis here, however, because of
transformations induced by the measurement. This necessi-
tates splitting d� into a number of parts. Transformations that
change the eigenbasis of �, such as unitary operations, and
preserve the populations of the eigenstates �and thus the en-
tropy of the system� correspond to work done on or by the
system. Alternatively, processes that leave the eigenbasis of
� fixed, but change the populations correspond to adding or
subtracting heat, or information extraction.

To examine the work done on a system by a quantum
measurement, note first that the transformation of � caused
by any efficient measurement can be written as

� → A�A†/Tr�A†A�� �2�

for some operator A. The polar decomposition theorem al-
lows us to write A=UP, where U is unitary and P is positive
and this allows us to break up the transformation into a uni-
tary part �work done� and an information extraction part that
reduces, on average, the entropy. The operator U can also
include a unitary feedback operation based upon the mea-
surement result, and, therefore, can also be undone by the
use of feedback. We will refer to measurements that have no
unitary part as “bare” measurements �18�.

To fully isolate the work done by the measurement we
must consider the action of a positive operator P in a little
more detail. If P commutes with the density matrix, the only
change is to the entropy. But if P does not commute with �,
then the action of the measurement changes both the eigen-
basis of the density matrix, doing work, and generates the
entropy change �extracting information�. We will show in the
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analysis below that the average work done on a system in
thermal equilibrium by a bare measurement is always non-
negative.

The thermal equilibrium state of a system at temperature
T is

�T = e−H/�kT�/Tr�e−H/�kT�� , �3�

where H is the system Hamiltonian. This state captures the
fundamental assumption of statistical mechanics �that all ac-
cessible microstates are equally likely�. Given this assump-
tion, it tells us how the entropy will change with other quan-
tities in a quasiequilibrium process.

III. EXTRACTING WORK WITH FEEDBACK CONTROL

To obtain the amount of work that can be extracted by a
feedback controller, we will start our system in an equilib-
rium state �T denoting the initial average energy by E and the
initial entropy by S. The first action of the controller is to
measure the state, using an arbitrary quantum measurement
described by a set of operators �Pn�, satisfying �nPn

2=1. The
operators Pn are all positive, since the unitary operator asso-
ciated with each measurement outcome will be determined
by the feedback chosen by the controller. After the measure-
ment result, which occurs with probability pn=Tr�Pn

2��, the
state is

�n = Pn�Pn/pn. �4�

This is no longer an equilibrium state, but its entropy and
average energy are well defined �its temperature is not�. Call
its entropy Sn and its average energy En. Note that in general
En�E because the energy will have been changed by the
measurement; this is the work done on the system by the
measurement process. We will return to this later.

Now comes the first part of the feedback control process.
The controller performs work �reversible operations� on the
system to transform �n to an equilibrium state at temperature
T. This is achieved by �i� performing a unitary operation to
transform the eigenbasis of �n to the energy eigenbasis; �ii�
reordering the populations of the energy states so that these
populations decrease monotonically with increasing energy.
We will denote the populations �the eigenvalues of �n�
as �nj, and the corresponding energy levels of the system,
�nj; �iii� adjusting the Hamiltonian so that the separations
between adjacent energy levels are such as to set
Pnj �exp�−�nj / �kT�� /Z=�nj, where Z=� jexp�−�nj / �kT�� is
the partition function. This places the system in equilibrium
at temperature T; �iv� adjusting the Hamiltonian to produce
an overall energy shift of the levels so as to return the aver-
age value of the energy to the initial value, E. This leaves the
Pnj, and hence the temperature, unchanged.

The above feedback extracts net work from the system of
�En=En−E, preserves the entropy of the state, Sn, and leaves
the state in equilibrium at temperature T.

In the second part of the feedback process, the controller
performs an isothermal expansion of the system �decreasing
the separation of the energy levels at fixed temperature�, so
as to return the entropy to the initial value, S. This brings the
system precisely back to its initial thermal state, since the

energy, temperature, and entropy of the system have all re-
turned to their initial values. The isothermal expansion ex-
tracts �Wn=T�S−Sn� of work from the system. The total
work extracted by the feedback controller in this cycle, given
the measurement result n, is thus �Wn=T�S−Sn�+�En. Of
course, the important quantity is the total average work ex-
tracted by the feedback, where the average is over the pos-
sible measurement results. This is

�W = T	S − �
n

pnSn
 + �
n

pn�En. �5�

We now examine the second contribution, the work extracted
deterministically by the feedback, �npn�En. This is simply
the average increase in the energy of the system caused by
the measurement, �Emeas=�npn�En−E�, being extracted
back by the controller. If the measurement is classical, so
that all the measurement operators, Pn, commute with the
initial state �T �that is, the controller measures the systems
energy�, then the average density matrix after the measure-
ment is the same as the initial state: �after=�npn�n=�T. From
this it follows immediately that �Emeas=0. Thus, as expected
from our previous discussion of work and energy, when the
measurement does not change the eigenbasis of the density
matrix, then it does not, on average, add energy to the sys-
tem. When the measurement operators do not commute with
�T, then one has S��after��S��T�, a result shown by Ando
�19�. Because the equilibrium state, �T, is the state with the
maximum entropy given a fixed value of the average energy,
it follows that Eafter�E. We therefore have

�Emeas = Eafter − E � 0. �6�

Because the controller can always extract back as work all
the energy added to the system by the measurement in a
closed cycle �Eq. �5��, to preserve the second law of thermo-
dynamics we must interpret �Emeas as work added to the
system, not heat. This is consistent with our observation that
the action of a positive measurement operator induces a
transformation of the density matrix eigenbasis.

The total work extracted by the controller in a single cycle
is the work extracted by the feedback process, minus the
work done on the system by the measurement, and is there-
fore �Wfb=T�S−�npnSn�. This is for a cycle in which the
system starts in equilibrium with a given free energy and
returns back to its initial state. It now follows immediately
that the work extractable by a feedback controller when start-
ing in state S1 with free energy F1, and ending in state S2
with free energy F2, is

�Wfb = �F + T	S − �
n

pnSn
 , �7�

where �F=F1−F2. The right-hand side of this equation is
the upper bound derived in �12�.

The quantity �Smeas�S−�npnSn, being the average en-
tropy reduction provided by the measurement, is always non-
negative for efficient measurements, a result due to Ozawa
�20–22�. This is a key quantity in quantum feedback control
even outside thermodynamical considerations �23� and re-
duces to the classical mutual information when the measure-
ment is classical.
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IV. THE SECOND LAW

The feedback control process we have just described re-
duces the entropy of the bath, on average, by �Smeas during
the isothermal expansion of the system �the system gains this
amount of entropy from the bath�. Since the final entropy of
the system is the same as its initial entropy, the whole pro-
cess will break the second law of thermodynamics �reduce
the entropy of the universe� if the entropy of the controller
does not increase by at least �Smeas. The simplest way to
show that the entropy of the controller does increase by the
required amount is to treat the controller fully quantum me-
chanically. This allows us to treat the whole feedback pro-
cess without using quantum measurement theory. As pointed
out by Wiseman �24�, any feedback control process based on
explicit measurements �that is, with a controller whose states
are classically distinguishable and thus do not exist in super-
position states� can always be implemented with a quantum
controller, without any explicit measurements.

We will denote the controller as C and the system as S.
The measurement process is completely described by a uni-
tary operation acting on the space of both systems. The con-
troller has N states, �n�, n=0, . . . ,N−1, where N is the num-
ber of measurement results. The initial state of the controller
is �0� and that of the system is, of course, �T. A joint unitary
operation correlates the systems so that the joint state be-
comes

�CS = �
n

pn�n�n� � �n + �
n,m�n

�n�m� � �nm. �8�

That this is possible is guaranteed by the fact that the �n are
given by Eq. �4� �25�. The �nm are matrices with the same
dimension as the �n, but we will not require any further
details about them. A second joint unitary operation now
performs feedback, applying a different unitary transforma-
tion to S depending on the state of the controller �each state,
�n�, of the controller is the equivalent of measurement result
n in our previous analysis�. This unitary has the form

Ufb = �
n

�n�n� � Un, �9�

where Un acts on the system. These unitaries perform the
reordering of the eigenvalues of �n and the change in the
system Hamiltonian �the energy levels� to bring the system
into a thermal equilibrium state and adjust the average en-
ergy.

The controller then performs the final part of the feedback
in which it expands S isothermally to extract the work. This
cannot be described purely as a unitary operation because it
leaves the bath in a state of different entropy for each value
of n. Because these different states of the bath are macro-
scopically distinct, this fully decoheres the controller in the
basis �n�. This can be described using a unitary of the form
given in Eq. �9� that maximally entangles the controllers ba-
sis states, �n�, with an auxiliary system of the same size
followed by tracing over the auxiliary system.

Now, the result of the feedback operation on each state �n
is to transform it to a final state �n

final with entropy S, tem-
perature T, and average energy E. Since the temperature and

entropy of all the �n
final are the same, they have the same set

of eigenvalues �the same distribution of populations.� Since
the average energy is also the same for all these states, they
must also have the same set of energy levels. Thus for every
value of n �for each state �n� of the controller� the system has
the same final Hamiltonian and the same final state, �T. Be-
cause of this the state of the system and controller factor, and
we can write the final joint state as �C

final
� �T. Because the

system is at thermal equilibrium, the joint state of the system
and bath also factors. However, the state of the controller and
the bath does not factor—this is because, in general, the bath
transfers a different amount of entropy to the system for each
value of n, and is thus left in a different state for each value
of n �as discussed above�. Since the probability is pn that the
state of the controller is �n�, and since the different states of
the bath are classically distinguishable, the final state of the
three systems is

�final = 	�
n

pn�n�n� � �n
bath
 � �T. �10�

If we denote the initial entropy of the bath as SB, the entropy
of each final bath state �n

bath is SB− �S−Sn�. The total entropy
of the final state is therefore

S��final� = S��pn�� + �
n

pnSn + SB, �11�

where S��pn���−�npn ln pn is the entropy of the distribution
of measurement results. Since the total initial entropy of all
three systems is S+SB, the total change in the entropy of the
universe for the cycle is

�Stot = S��pn�� − �Smeas. �12�

The second law then follows from Nielsen’s result �21�,
which states that for every measurement, S��pn�� is an upper
bound on �Smeas, and thus �Stot�0.

For the controller to start the cycle again, it must return to
the state �0�. To do this it simply connects itself to a fourth
system with dimension N in a fixed state, �0�, performs a
�unitary� SWAP operation between itself and this fourth sys-
tem, and then dumps the fourth system into the thermal bath.
This leaves the controller in state �0� with zero entropy and
increases the entropy of the bath by S��pn��. The feedback
control cycle is now complete: work �W=T�Smeas has been
extracted, the controller and system are back in their initial
states, and the entropy of the bath has increased by �Stot.

We note that the feedback control cycle is only thermo-
dynamically efficient �preserves the entropy of the universe
on average� when S��pn��=�Smeas. This is only true if the
measurement operators Pn commute with �T �21�, so that the
measurement is classical. This means that the feedback con-
troller only preserves the entropy of the universe when it
makes measurements of energy.

We have so far only explicitly considered feedback con-
trol with efficient measurements. An inefficient measurement
is one in which the controller makes an efficient measure-
ment, but throws away some information about the measure-
ment result �25�. All inefficient measurements can be de-
scribed by the set of operators Anj, where �njAnj

† Anj = I, and
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as before n labels the measurement results. The final state of
the system given result n is �n=� jAnj�TAnj

† / pn, with
pn=� jTr�Anj

† Anj�T�. With these new definitions of �n and pn,
the above analysis of the feedback cycle goes through un-
changed, except that Sn is not necessarily less than S. In this
case, the ability of the controller to extract work from the
system can be reduced by the measurement rather than in-
creased. Because of this, inefficient measurements can add
heat to a system, as well as doing work.

Lastly, we note that we have performed all our analysis
with feedback from a “single-shot” measurement. This is

usually referred to as “discrete” feedback control to distin-
guish it from feedback control that uses continuous measure-
ment �26�. However, the analysis we have presented can be
easily modified to derive the same result for continuous feed-
back control. All we have to do is observe that each step in
the feedback cycle can be performed infinitesimally. �A
single infinitesimal time step of a continuous measurement is
described by a measurement in which all the operators, An,
are infinitesimally close to the identity �26�.� Our results
above thus apply to all feedback control, whether discrete or
continuous.
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