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Fisher information, which lies at the heart of parameter estimation theory, was recently found to have a close
relation with multipartite entanglement �L. Pezzé and A. Smerzi, Phys. Rev. Lett. 102, 100401 �2009��. We use
Fisher information to distinguish and characterize behaviors of ground state of the Lipkin-Meskhov-Glick
model, which displays a second-order quantum phase transition between the broken and symmetric phases. We
find that the parameter sensitivity of the system attains the Heisenberg limit in the broken phase, while it is just
around the shot-noise limit in the symmetric phase. Based on parameter estimation, Fisher information pro-
vides us a useful approach to the quantum phase transition.
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I. INTRODUCTION

Parameter estimation of probability distributions is one of
the most basic tasks in information theory and has been gen-
eralized to quantum regime �1,2� since the description of
quantum mechanics is essentially probabilistic. How to im-
prove the precision of parameter estimation has been focused
for many years and is of important applications in quantum
technology such as quantum frequency standards �3,4�, mea-
surement of gravity accelerations �5�, clock synchronization
�6�, etc.

Consider a quantum state ��=U��inU�
†, where U�

=exp�i�K̂�, K̂ is a generator. We estimate parameter �
through proper measurements. However, the precision of our
estimation is limited by the quantum Cramer-Rao �QCR�
bound �1,2�,

��̂ � ����QCR =
1

��F��in,K̂�
, �1�

where � is the number of trails, �̂ is the so-called unbiased

estimator, and F��in , K̂� is the quantum Fisher information
�QFI� �1,2,7,8�. In a sense, parameter estimation is equiva-
lent to distinguishing neighboring states along the path in
parameter space. We know QFI has close relation with Bures
distance �9�, the most studied distance in quantum-state
space, and Bures distance is directly related to the Uhlmann
fidelity �10�. The QFI is proportional to the Bures distance
�11,12�. For pure states, the QFI, as well as the Bures dis-

tance dsB
2 , is just proportional to the variance of K̂ �8�, that is

F��in , K̂�=4dsB
2 =4��K̂�2. Therefore, besides increasing ex-

perimental times �, we can improve the estimation precision

��̂ by choosing a proper state �in for a given K̂. In general,
entangled states are more sensitive than separable states, i.e.,

the variance of K̂ is large. In the past, many works have been
devoted to improvement of parameter sensitivity by using
entangled states �13–24�.

Quite recently, Pezzé and Smerzi �25� found an interesting
application of QFI in multipartite entanglement and the sub-
shot-noise phase sensitivity in the estimation of a collective

rotation angle. Consider an ensemble of spin-half particles in
the state �in. They introduced a quantity

�2 =
N

F��in,Sn��
�2�

and prove that �2�1 implies multipartite entanglement.
Here, the generator of � is Sn� =S� ·n� , which denotes the col-
lective spin operator along direction n� . Namely, a sufficient
condition is given for quantum entanglement. We may define
a mean Fisher information as Fm=F��in ,Sn�� /N. Then, �2 and
Fm are reciprocal to each other. The relation between � and
QCR bound is

��̂ �
1

�F��in,Sn��
=

�

�N
= �����SN, �3�

where ����SN=1 /�N is the shot-noise limit and we set �
=1. Thus, it is evident that �2�1 becomes a necessary and
sufficient condition for sub-shot-noise phase estimation.

In this work, we study the Fisher information of the
ground state of the Lipkin-Meshkov-Glick �LMG� model
�26�, which has a second-order quantum phase transition
�QPT� �27�, between a symmetric �polarized, h�1� phase
and a broken �collective, h�1� phase. The QPT in this
model is interesting and was studied in field of entanglement
by using concurrence �28�, spin squeezing �29�, entangle-
ment entropy �30�, single-copy entanglement, and geometric
entanglement �31�. Furthermore, in Refs. �32,33�, the results
indicate that QPT can be viewed as a resource for high-
precision quantum estimation. Around the critical point, the
estimation of the driving parameter, which induces the QPT,
is enhanced. In our work, we find that besides indicating the
critical point and entanglement, �2 reflects the performances
of ground states of these two phases in the sense of param-
eter sensitivity. In the symmetric phase, �2 approaches to 1
with the increasing of h and is independent of N, which
means ����QCR�����SN. In the broken phase, we find �2

�1 /N, thus ����QCR�1 /N attaining the Heisenberg limit.
This paper is organized as follows. In Sec. II, we give

brief discussions about the relations between spin squeezing
and �2. Then in Sec III, we study �2 and spin squeezing
for the ground state of the LMG model in both isotropic
�	=1� and anisotropic �	�1� cases. In isotropic case, the
LMG model is diagonal in Dicke states. For Dicke states, we*xgwang@zimp.zju.edu.cn

PHYSICAL REVIEW A 80, 012318 �2009�

1050-2947/2009/80�1�/012318�6� ©2009 The American Physical Society012318-1

http://dx.doi.org/10.1103/PhysRevA.80.012318


find that �2 and the spin squeezing parameter defined by
Kitagawa and Ueda �34� are reciprocal to each other. In an-
isotropic case, we use Holstein-Primakoff transformation and
derive �2 in the thermodynamic limit. The finite-size behav-
iors of �2 and the spin-squeezing parameter in the critical
point are also obtained. The numerical results coincide well
with the analytical ones.

II. FISHER INFORMATION AND SPIN SQUEEZING
PARAMETERS

Fisher information is related to spin squeezing and there
are two spin squeezing parameters, respectively, given by
Kitagawa and Ueda �34� and Wineland �35�,


1
2 =

4��Sn��
�2

N
, 
2

2 =
N��Sn��

�2

�	Sn�
�
2 , �4�

where subscript n�� refers to an arbitrary axis perpendicular
to the mean spin 	S�
, where the minimum value of ��S�2 is
obtained. The inequality 
i

2�1 �i=1,2� indicates that the
state is spin squeezed. Spin-squeezed states can be used to
reduce the measurement uncertainty �34,36� and improve the
measurement precision of the atomic clock transition
�37,38�. The spin-squeezing inequality is a criterion for mul-
tipartite entanglement �39,40�. For an arbitrary multiqubit
separable state, it was found that 
2

2�1 and thus 
2
2�1 im-

plies quantum entanglement.
As proved in �25�,

F��,Sn���
���Sn��

�2 � �	Sn�
�
2, �5�

where directions n��� , n��, n� are orthogonal to each other.

F�� ,Sn���
�=4��R̂�2, where R̂ is determined by R̂�+�R̂

= i��Sn���
−Sn���

��. In general, ��R̂�2� ��Sn���
�2 and the equality

is obtained only for pure states. Then Eq. �5� reduces to the
usual uncertainty relation,

��Sn���
�2��Sn��

�2 �
�	Sn�
�

2

4
, �6�

for pure states. The above inequality can be written in terms
of the inverse of the mean QFI and the squeezing parameter

2

2 as


2
2 =

N��Sn��
�2

�	Sn�
�
2 �

N

4��Sn���
�2 =

1

Fm
= �2. �7�

Both the inequalities 
2
2�1 and the mean QFI Fm�1

��2�1� indicate the presence of entanglement.
Furthermore, 
1

2�
2
2 and there is no similar relation be-

tween 
1
2 and �2 like Eq. �7�. However, we find that


1
2�2 =

��Sn��
�2

��Sn���
�2 � 1, �8�

since ��Sn���
�2 ���Sn��

�2� is the maximum �minimum� vari-
ance. As proved in �40�, if the pure state is of exchange
symmetry, 
1

2�1 implies entanglement. Then, from the
above equation, �2�1 implies entanglement. We know that

�2�1 indicates entanglement too. Therefore, a pure sym-
metric state is entangled when �2�1 �
1

2�1�.
When the mean spin direction is along z direction, the

squeezing parameters 
1
2 and �2 become


1
2 =

4 min	S�
2 


N
, �2 =

N

4 max	S�
2 


, �9�

where
S� = cos �Sx + sin �Sy . �10�

Furthermore, if 	�Sx ,Sy�
=0, for instance, in the LMG model
�28�, we have


1
2 =

4 min�	Sx
2
,	Sy

2
�
N

, �2 =
N

4 max�	Sx
2
,	Sy

2
�
, �11�

thus we only need to derive 	Sx
2
 and 	Sy

2
 to determine the
squeezing parameter and quantity �2 in the following discus-
sions of QPTs in LMG model.

III. FISHER INFORMATION AND SQUEEZING
IN THE LMG MODEL

The LMG model, originally introduced in nuclear phys-
ics, has been widely studied in other fields: statistical me-
chanics of quantum spin system �41�, Bose-Einstein conden-
sates �42�, and magnetic molecules such as Mn12 acetate
�43�. Recently, some quantum-information concepts, such as
entanglement entropy �30�, single-copy entanglement and
geometric entanglement �31�, and quantum fidelity �44,45�,
have been studied in this model, aiming at characterizing its
QPT. It is an exactly solvable �46,47� many-body interacting
quantum system as well as one of the simplest to show a
quantum transition in the regime of strong coupling.

A. LMG Hamiltonian

The Hamiltonian of the LMG model reads

H = −


N
�Sx

2 + 	Sy
2� − hSz, �12�

where S�=i=1
N ��

i /2 ��=x ,y ,z� are the collective spin opera-
tors, ��

i are the Pauli matrices, N is the total spin number,
and 	 is the anisotropic parameter.  and h are the spin-spin
interaction strength and the effective external field, respec-
tively. Here, we focus on the ferromagnetic case ��0� and
without loss of generality, we set =1 and 0�	�1. As the
spectrum is invariant under the transformation h↔−h, we
only consider h�0.

The QPT of this model roots in the competition between
the spin-spin interaction and the external field. To understand
this in an easy picture, by using a mean-field approach �28�,
we can see that when h�1, all spins tend to be polarized in
the external field direction, when h�1, the interaction en-
ergy is dominant, the system is twofold degenerate. There-
fore, a spontaneous symmetry breaking occurs at h=1, which
is a second-order QPT point between the so-called symmet-
ric �h�1� phase and broken �h�1� phase. However, by con-
sidering the quantum effects, the exact ground state is not
degenerate �	�1� in the broken phase, since the Hamil-
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tonian is of spin-flip symmetry, i.e., �H ,�i=1
N �z

i�=0. We have

	Sx
 = 	Sy
 = 0, 	SxSz
 = 	SySz
 = 0, �13�

the mean spin direction is along the z axis. In addition,
�H ,S2�=0 and the ground state lies in the S=N /2 symmetric
section.

B. Isotropic case and Dicke state

We begin with the simple isotropic case, 	=1. The Hamil-
tonian reduces to

H = −
1

N
�S2 − Sz

2� − hSz, �14�

which is diagonal in the standard eigenbasis ��S ,M
� of S2

and Sz. For S=N /2, the energy eigenvalue is

E�M,h� =
2

N
�M −

hN

2
�2

−
N

2
�1 + h2� , �15�

and the ground state �S ,M0
 is readily obtained when �45,48�

M0 = �N/2 for h � 1

N/2 − R�N�1 − h�/2� for 0 � h � 1,
� �16�

where R�x�� round�x� gives the nearest integer of x.
Then one can see level crossings exist at h=hj, where hj
=1− �2j+1� /N, between the two states �S ,S− j
 and �S ,S− j
−1
.

As the ground state is actually a Dicke state �S ,M
, 	Sx
2


= 	Sy
2
= �S2+S−M2� /2, then

�2 =
N

2�S2 + S − M2�
=

1

N/2 + 1 − 2M2/N
� 1, �17�

the equality is obtained for M = �S. Immediately, we have


1
2 = 1/�2 � 1. �18�

As we know that, when M � �S, the Dicke states are en-
tangled but not spin squeezed, since 
2

2�
1
2�1. Numerical

results of 
1
2 and �2 for the isotropic LMG model are shown

in Fig. 1�d�. We can see that, in the broken phase, M �S,

1

2=1 /�2, while in the symmetric phase, the ground state is
�S ,S
, thus �2=
1

2=1.
By considering �2 in Eq. �17�, when M is close to �S, �2

is just a bit lower than 1, thus �� is not improved much than
����SN. When �M���S, we have

2/�N + 2� � �2 � 2/N , �19�

and thus

����QCR = �/�N � 1/N , �20�

which attains the Heisenberg limit. Although �S , �S
 is not
entangled, the Schrödinger “cat state” �or GHZ state�

��
 = ��S,S
 + �S,− S
�/�2 �21�

is entangled and is useful in phase estimation �16�. Under
��
, 	S�
=0, for �=x ,y ,z, thus there is no spin squeezing.
We find the maximum variance ��Sz�2=S2, then

���

2 = 1/N, ����QCR = 1/N , �22�

beating the Heisenberg limit. From the above analysis we
know that, for typical symmetry multipartite states, Dicke
states, there are no spin squeezings, while �2�1 indicates
that they are entangled and are useful resources for phase
estimation.

C. Anisotropic case

Now we consider the anisotropic case, 0�	�1. The spin
expectation values 	S�

2
 cannot be obtained analytically. By
treating the quantum effect as small fluctuations, approxi-
mate results can be obtained by using the Holstein-Primakoff
�H-P� transformation �49� in the thermodynamic limit and by
using the continued unitary transformation method �50–52�
for finite-size case.

In the thermodynamic limit, the quantum fluctuations are
small, we can use the H-P approximation. This method re-
quires one to determine the semiclassical magnetization 	S�
,
which is not along z axis in the broken phase in the thermo-
dynamic limit. Following conventional steps, we first employ
a mean-field approach and define a spin coherent state

��,�
 = �
l=1

N �e−i�/2 cos
�

2
�0
l + ei�/2 sin

�

2
�1
l� , �23�

under which

	�,��S� ��,�
 =
N

2
�sin � cos �,sin � sin �,cos �� . �24�

The Hamiltonian is rewritten as

H = −
N

4
�sin2 ��cos2 � + 	 sin2 �� + 2h cos �� . �25�

As max�cos2 �+	 sin2 ��=max�1,	�=1, �	�1�, we have

min H = −
N

4
max�sin2 � + 2h cos �� , �26�

then we conclude: �i� symmetric phase, h�1, �0=0, for all
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FIG. 1. �Color online� 
1
2 and �2 as functions of h for various 	,

with system size N=100. The crossing points of 
1
2 and the horizon-

tal line in the broken phase are h=�	.
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	; �ii� broken phase, 0�h�1, �0=arccos h, �=0,�, for
	�1. We emphasize that the mean spin direction is along
the z axis when the system is finite.

We rotate the z axis to the semiclassical magnetization

�Sx

Sy

Sz
� = � cos �0 0 sin �0

0 1 0

− sin �0 0 cos �0
��S̃x

S̃y

S̃z

� . �27�

As presented in �28�, �0=0 for h�1 so that S= S̃ and �0
=arccos h for h�1. The transformed Hamiltonian reads

H̃ = − hmS̃z −
1

N
�m2 + 	

2
S̃2 −

3m2 + 	 − 2

2
S̃z

2�
+

h�1 − m2

2
�S̃+ + S̃−� −

m2 − 	

4N
�S̃+

2 + S̃−
2�

−
m�1 − m2

2N
�S̃+S̃z + S̃zS̃+ + S̃−S̃z + S̃zS̃−� , �28�

where m=cos �0. Then we introduce the H-P transformation

S̃z = N/2 − a†a, S̃− = �Na†�1 − a†a/N = �S̃+�†. �29�

The Hamiltonian can be written as

H̃�0� =
2hm − 3m2 − 	 + 2

2
a†a −

m2 − 	

4
�a†2 + a2� +

1 − m2

4

�30�

up to the 0th order of N. We neglect the terms of the 1th
order of N as they are constant. Now we use the Bogoliubov
transformation

a† = cosh��

2
�b† + sinh��

2
�b . �31�

To diagonalize H̃�0�, we find

tanh � = � =
m2 − 	

2hm − 3m2 − 	 + 2
. �32�

The rotated spins are written under the H-P representa-
tion,

S̃x =
�N

2
�1 + �

1 − �
�1/4

�b† + b� + O�1/N� ,

S̃y =
i�N

2
�1 − �

1 + �
�1/4

�b† + b� + O�1/N� ,

S̃z =
N

2
+

1

2�1 −
1

�1− �2�−
1

�1− �2�b†b +
�

2
�b†2 + b2�� . �33�

For symmetric phase, m=1, S�= S̃�, we have

	Sx
2
 = 	S̃x

2
 =
N

4
�h − 	

h − 1
,

	Sy
2
 = 	S̃y

2
 =
N

4
�h − 1

h − 	
, �34�

while for broken phase, m=h, we need to rotate S̃x back to Sx
as

Sx = S̃x cos �0 + S̃z sin �0 = hS̃x + �1 − h2S̃z, �35�

then we have

	Sx
2
 = �1 − h2�	S̃z

2
 + h2	S̃x
2
 = �N2

4
+

N

2
��1 − h2�

+
N

4

�1 − 	�h2 − �2 − h2 − 	��1 − h2�
��1 − h2��1 − 	�

. �36�

We insert the above results into Eq. �11�. For polarized
phase, h�1, we have


1
2 = �2 =�h − 1

h − 	
� 1. �37�

When h is far from the critical point, 
1
2 and �2 approach to

1, then �������SN. For broken phase, h�1, we get the spin
squeezing parameter,


1
2 =�1 − h2

1 − 	
, �38�

while

�2 =
N

4	Sx
2


�
1

�N + 2��1 − h2�
�

1

N
. �39�

Thus ����QCR�1 /N. When h approaches to the critical
point hc=1, there are two limits in Eq. �36�, that is, �1−h�
tends to be zero and N tends to be infinite. To overcome this
problem, we need to expand the Hamiltonian in higher order
of 1 /N. Fortunately, the finite-size behaviors of the spin
squeezing and �2 at the critical point can be derived by using
the results obtained in �28�, where the authors employ the
continued unitary transformations and get

�4	Sx
2


N2 �
h=1

�
axx

�0�

N2/3 , �4	Sy
2


N2 �
h=1

�
ayy

�0�

N4/3 , �40�

where axx
�0� and ayy

�0� are constant independent of N. Now we
have


2�h=1 �
ayy

�0�

N2/3 , �2�h=1 �
axx

�0�

N2/3 , �41�

then for large N, 
2 and �2 converge to zero as 1 /N2/3 and
����QCR�1 /N5/6.

To verify these analytical predictions, in Figs. 1 and 2, we
show numerical results for 
1

2 and �2 as functions of h with
different 	 for finite-size system. As shown in Fig. 1, in the
symmetric phase, 
1

2=�2�1, while in the broken phase, �2

and 
1
2 behave very differently. In most of parameter ranges,

�2�1, which indicates entanglement, while for h��	, 
1
2

�1, and thus the system is not spin squeezed �Fig. 1�d��. For
the isotropic case, there is no spin squeezing. In Fig. 2, we
plot �2 and 
1

2 for N=500 and the thermodynamic limit and
find that the numerical results coincide well with the analyti-
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cal ones obtained by H-P transformation method.
As shown in Figs. 3 and 4, �2 is nearly independent of

larger N in the symmetric phase and approaches to 1 /N as h
being away from the critical point in the broken phase.
Therefore, entanglement characterized by �2 is very different
in the two phases, especially when we treat them as re-
sources for quantum estimation. In the symmetric phase, as
shown in Fig. 3, �2 is nearly independent of N and the pa-
rameter sensitivity is at the level of ����SN, while in the
broken phase, the ground states are more sensitive to param-
eter. In Fig. 4, we show numerical results for �2 in the bro-
ken phase at h=1 /2, 	=1 /2, and we see clearly that
�2�1 /N. Therefore, the parameter estimation in the broken
phase is enhanced to the Heisenberg limit.

One can use concurrence �28�, entanglement entropy �30�,
single-copy entanglement, and geometric entanglement �31�

to quantity the entanglement in the LMG model, while these
quantities cannot tell us whether the entanglement of the
ground state is useful in parameter estimation. From the re-
sults of �2, we can see that the entanglements in these two
phases are different according to their performances in esti-
mation. On one hand, we can use the collective behavior of
the LMG model to improve the phase estimation precision
and on the other hand, the differences of the parameter sen-
sitivities can be used to characterize and distinguish the two
quantum phases.

IV. CONCLUSION

We have analyzed �2 and spin squeezing parameters 
i
2 in

the ground state of the LMG model. For isotropic case, the
Hamiltonian is diagonal in Dicke states, for which we have

2

2�
1
2=1 /�2. For anisotropic case, our results indicate that

�2 classifies states in different phases in the sense of quan-
tum phase estimation. Hence we can use �2 to distinguish
and characterize the behaviors of the two phases of the LMG
model. In the symmetric phase, �2 is independent of N and
approaches to 1 with the increase of h, thus ����QCR
�����SN, that is just a bit lower than the shot-noise limit. In
the broken phase, we find �2�1 /N and ����QCR�1 /N,
which attains the Heisenberg limit.

Fisher information, being related to the Cramer-Rao in-
equality, is used to measure how much information that we
know about some certain parameters in a probability distri-
bution. From present results, we see that Fisher information
can also characterize the QPT by distinguishing the en-
tangled ground states in the sense of parameter sensitivity.
This approach is promising and expected to be applicable to
other spin systems undergoing a QPT.
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