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Spin and occupation number entanglement of Dirac fields for noninertial observers
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We investigate the Unruh effect on entanglement taking into account the spin degree of freedom of the Dirac
field. We analyze spin Bell states in this setting, obtaining their entanglement dependence on the acceleration
of one of the partners. Then, we consider simple analogs to the occupation number entangled state |00)
+|11) but with spin quantum numbers for [11). We show that, despite their apparent similitude, while the
spinless case is always qubit X qubit, for the spin case acceleration produces a qubit X four-level quantum
system state. We also introduce a procedure to consistently erase the spin information from our setting pre-
serving occupation numbers. We show how the maximally entangled state for occupation number emerges
from our setting. We as well analyze its entanglement dependence on acceleration, obtaining greater entangle-

ment degradation than in the spinless case.
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I. INTRODUCTION

Despite their apparently separated application areas, gen-
eral relativity and quantum information are not disjoint re-
search fields. On the contrary, following the pioneering work
of Alsing and Milburn [1] a wealth of works [2-13] has
considered different situations in which entanglement was
studied in a general relativistic setting, for instance, quantum
information tasks in the proximity of black holes [5,8,11,12],
entanglement in an expanding universe [7,13], entanglement
with noninertial partners [2,4,6,9], etc.

Entanglement behavior in noninertial frames was first
considered in [1] where the fidelity of teleportation between
relative accelerated partners was analyzed. After this, occu-
pation number entanglement degradation of scalar [4] and
Dirac [6] fields due to Unruh effect [14,15] was shown. Re-
cent works studied the effect of the instantaneous Wigner
rotations and Thomas spin precession on entanglement
[16,17].

The previous work [6] on Unruh effect for Dirac field
mode entanglement does not consider the spin of the parties.
Hence, only two occupation numbers n=(0, 1) are allowed
for each mode. Higher values of n are forbidden by Pauli
exclusion principle. However, addressing the effect of Unruh
decoherence on spin entanglement can only be done by in-
corporating the spin of the parties in the framework from the
very beginning. As a consequence, occupation number n=2
is also allowed. This fact will affect occupation number en-
tanglement which has to be reconsidered in this new setting.
For this purpose, in this work we will study the case of two
parties (Alice and Rob) sharing a general superposition of
Dirac vacuum and all the possible one particle spin states for
both Alice and Rob. Alice is in an inertial frame, while Rob
undergoes a constant acceleration a.

We will show that Rob—when he is accelerated with re-
spect to an inertial observer of the Dirac vacuum—would
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observe a thermal distribution of fermionic spin 1/2 particles
due to Unruh effect [14]. Next, we will consider that Alice
and Rob share spin Bell states in a Minkowski frame. Then,
the case is in which Alice and Rob share a superposition of
the Dirac vacuum and a specific one particle state in a maxi-
mally entangled combination. In both cases we analyze the
entanglement and mutual information in terms of Rob’s
acceleration a.

Finally, we will study the case when the information
about spin is erased from our setting by partial tracing, re-
maining only the occupation number information. Here, en-
tanglement is more degraded than in [6]. This comes about
because more accessible levels of occupation number are al-
lowed, so our system has a broader margin to become
degraded.

This paper is structured in the following sections. In Secs.
IT and IIT we introduce the basic formalism and notation to
deal with Dirac fields from the point of view of an acceler-
ated observer taking its spin structure into account. In Sec.
IV we study how the Minkowski vacuum state is expressed
by an accelerated observer when the spin of each mode is
included in the setting, discussing the implications of the
single-mode approximation often carried out in the literature
[6,18]. Also, we build the one particle state with spin s in
Rindler coordinates and analyze the Unruh effect when the
spin structure is included. Here we discuss the necessity of
tracing over Rindler’s region IV for Rob since it is causally
disconnected from region I in which we consider Rob’s lo-
cation. In Sec. V we analyze how entanglement of spin Bell
states is degraded due to Unruh effect. We show that, even in
the limit of @ — o0, some degree of entanglement is preserved
due to Pauli exclusion principle. Then we analyze Unruh
effect on a completely different class of maximally entangled
states (like |00)+|ss’), where s and s’ are z component of
spin labels) comparing it with the spin Bell states. In Sec. VI
we show that the erasure of spin information, in order to
investigate occupation number entanglement alone, requires
considering total spin states for the bipartite system. Finally,
our results and conclusions are summarized in Sec. VII.

©2009 The American Physical Society
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II. SETTING

We consider a free Dirac field in a Minkowski frame ex-
panded in terms of the positive (particle) and the negative
(antiparticle) energy solutions of Dirac equation notated ﬁ’s
and ¢ ,, respectively,

=3 f Pyt + b VL) (1)

Here, the subscript k notates momentum which labels the
modes of the same energy and s={T, |} is the spin label that
indicates spin-up or spin-down along the quantization axis.
ays and b ¢ are the annihilation operators for particles and
antiparticles, respectively, and they satisfy the usual anticom-
mutation relations.

For each mode of frequency k and spin s the positive and
negative energy modes have the form

+ 1 + +i(k-x—
Vis= 5o u; (k)e*ikxko, (2)

V2K

where uf (k) is a spinor satisfying the normalization relations
*it, (k)u,(k)=(ko/m) Sy, @1, (k)u,(k)=0.

The modes are classified as particle or antiparticle with
respect to d, (Minkowski-Killing vector directed to the fu-
ture). The Minkowski vacuum state is defined by the tensor
product of each frequency mode vacuum

0) = ® [0*]0)" (3)
k'

such that it is annihilated by a; ; and b, , for all values of s.

We will use the same notation as Ref. [6] where the mode
label will be a subscript inside the ket and the absence of
subscript outside the ket indicates a Minkowski-Fock state.

In this way and as a difference with previous works, we
will consider the spin structure for each mode, and hence, the
maximum occupation number is 2. This introduces the fol-
lowing notation:

af a0y =ss)d, . (4)

If s=s’ the two particles state is not allowed due to Pauli
exclusion principle, so our allowed Minkowski states for
each mode of particle-antiparticle are

{loo=. 1= L0 =. 1T L7} (5)

Consider that we have the following Minkowski bipartite
state:

|Br ) = 110k Y10 )T + @l T )| Ta ) + BITy )
X |lkR>+ + 7|lkA>+|TkR>+ + 5|lkA>+|lkR>+ (6)

with u=11-|a|*~|B]>*~|y]>~|6%. The subscripts A and R in-
dicate the modes associated with Alice and Rob, respectively.
All other modes of the field are unoccupied—that is to say
that the complete state would be |[D)=|dy )
® [®(k#kA,kR),k’ 10)*[0p71.

This state generalizes the Bell spin states (for instance, we
have |¢*) choosing a=68=1/2) or a mode entangled state
(for instance, choosing a=u=1/2). With this state [Eq. (6)]
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FIG. 1. (Color online) Rindler space-time diagram: lines of con-
stant position, z=const, are hyperbolae and all the curves of con-
stant proper time ¢ for the accelerated observer are straight lines that
come from the origin. A uniformly accelerated observer Rob travels
along a hyperbola constrained to region I.

we will be able to deal with two different and interesting
problems at once; (1) studying the Unruh decoherence of
spin entangled states and (2) investigating the impact of con-
sidering the spin structure of the fermion on the occupation
number entanglement and its Unruh decoherence.

Later on, under the single-mode approximation, we will
assume that Alice is stationary and has a detector sensitive
only to the mode k, and Rob moves with uniform accelera-
tion a taking with him a detector sensitive to the mode k.

III. RINDLER METRIC AND BOGOLIUBOV
COEFFICIENTS FOR DIRAC FIELDS

A uniformly accelerated observer viewpoint is described
by means of the well-known Rindler coordinates [19]. In
order to cover the whole Minkowski space time, two differ-
ent sets of coordinates are necessary. These sets of coordi-
nates define two causally disconnected regions in Rindler
space time. If we consider that the uniform acceleration a
lies on the z axis, the new Rindler coordinates (7,x,y,z) as a
function of Minkowski coordinates (7,x,y,Z) are

af=e“sinh(ar), aZ=e" cosh(at), X=x, y=y (7)
for region I and
af=-e¢“ sinh(ar), aZ=-e“cosh(ar), X=x, y=y
(8)

for region IV. As we can see from Fig. 1, although we have
covered the whole Minkowski space time with these sets of
coordinates, there are two more regions labeled II and III. To
map them we would need to switch cosh+« sinh in Egs. (7)
and (8). In these regions ¢ is a spacelike coordinate and z is a
timelike coordinate. However, the solutions of Dirac equa-
tion in such regions are not required to discuss entanglement
between Alice and an accelerated observer since he would be
constrained to either region I or IV, having no possible ac-
cess to the opposite regions as they are causally disconnected
[4,6,19,20].

The Rindler coordinates z,t go from —% to % indepen-
dently in regions I and IV. It means that each region admits a
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separate quantization procedure with their corresponding
positive and negative energy solutions' {5, ¥} and
ety b

Particles and antiparticles will be classified with respect to
the future-directed timelike Killing vector in each region. In
region I the future-directed Killing vector is

gt . 97 -
(9} = 5(9;+ 5(95= a(Zor+19;), 9)

whereas in region IV the future-directed Killing vector is
&) ==d.

This means that solutions in region I, having time depen-
dence t,b}(+~e‘”‘0’ with ky >0, represent positive energy solu-
tions, whereas solutions in region IV, having time depen-
dence " ~e o with k>0, are actually negative energy
solutions since (9[ points to the opposite direction of -
[6,20]. As regions I and IV are causally disconnected Lﬁ}”_
and lﬂ}( . only have support in their own regions, vanishing
outside them.

Let us denote (cIks,cI,”) the particle annihilation and
creation operators in region I and (d””,dlks) the corre-
sponding antiparticle operators. Analogously we define
(C1v ks Cly s+ v xss iy 1) the particle-antiparticle operators
in region IV.

These operators satisfy the usual anticommutation rela-
tions {cR’k,S,c;,’k,,s,}z SRR O Oy, Where the subscript R no-
tates the Rindler region of the operator R={I,IV}. All other
anticommutators are zero. That includes the anticommutators
between operators in different regions of the Rindler space
time.

Taking this into account we can expand the Dirac field in
Rindler coordinates analogously to Eq. (1),

_ 3 T Ve |t V-
p=2 f k(e + di psos + Cvistis + divastis )-
s

(10)

Equations (1) and (10) represent the decomposition of the
Dirac field in its modes in Minkowski and Rindler coordi-
nates, respectively. We can relate Minkowski and Rindler
creation and annihilation operators by taking appropriate in-
ner products [6,20-22]. The relationship between Minkowski
and Rindler particle-antiparticle operators is linear and the
coefficients that relate them are called Bogoliubov coeffi-
cients,

Qg5 =COS ICy 5= ' sin rdITV ks>

b =cos rdjy . + e sinre . (11)
where

tan r = ¢~k (12)
and ¢ is a phase factor that will turn out to be irrelevant for
our purposes. Notice that as we are working with two spatial-

1Throughout this work we will consider that the spin of each
mode is in the acceleration direction and, hence, spin will not un-
dergo Thomas precession due to instant Wigner rotations [6,21].
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temporal dimensions and with massless Dirac field, the rela-
tion between Rindler modes and Minkowski modes is given
in Eq. (11). We will discuss in the conclusions the implica-
tions of considering extra dimensions and massive fields,
where Minkowski modes are spread over all positive Rindler
frequencies [22].

Notice from Bogoliubov transformations [Eq. (11)] that
the Minkowski particle annihilator a; ; transforms into a Rin-
dler particle annihilator of momentum k and spin s in region
I and an antiparticle creator of momentum —k and spin —s in
region IV (in region IV all the magnitudes that are not in-
variant under time reversal change).

IV. UNRUH EFFECT FOR FERMION FIELDS OF SPIN 1/2

Now that we have the relationships between the creation
and annihilation operators in Minkowski and Rindler coordi-
nates, we can obtain the expression of the Minkowski
vacuum state for each mode |0,) in Rindler coordinates. For
notation simplicity, we will drop the k label in operators or
states when it does not give any relevant information, but we
will continue writing the spin label.

It is useful to introduce some notation for our states. We
will denote with a subscript outside the kets if the mode state
is referred to region I or IV of the Rindler space time. The
absence of subscript outside the ket will denote Minkowski
coordinates. The =* label of particle-antiparticle will be omit-
ted throughout the paper because, for the cases considered, a
ket referred to Minkowski space time or Rindler’s region I
will always denote particle states and a ket referred to region
IV will always notate antiparticle states.

Inside the ket we will write the spin state of the modes as
follows:

[Hi=cl|0)  [shy = dly,[ Oy, (13)

which will notate a particle state in region I and an antipar-
ticle state in region IV, respectively, both with spin s.
We will use the following definitions for our kets:

|T = CITTC1Z|O>1 == cthO)I,

1T Dv=d de1v1|O>1v = d[VldIVT|O>IV’ (14)

and being consistent with the different Rindler region opera-
tor anticommutation relations,

|S>I|S’>IV=CIY Vs’ |0>I|O>IV__ IVS’CIV|0>I|O>IV7

0)ry == [s)i]s v (15)

Now, it is useful to note that Eq. (11) could be expressed as
two-mode squeezing transformation for each k [4,6],

as,k) ( Cli.s ) ¥
=S S', (16)
<bz,s dIV —k,—s

S =exp[r (Cir,k,sdlv,—k,—xe_id) + Cl,k,sdITv,—k,—sei(b)]- (17)

+
dIVs !

where

So, analogously to [4,6], it is reasonable to postulate that the
Minkowski vacuum is a Rindler two-mode particle-
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antiparticle squeezed state with opposite spin and momentum
states in 1 and IV. Contrarily to [6], considering that the
modes have spin, occupation number for each k is allowed to
be 2, being higher occupation numbers forbidden by Pauli
exclusion principle. In the literature the analysis is restricted
only to one mode of the Minkowski field, but we can restrict
our analysis to some sector of the Minkowski vacuum [Eq.
(3)], defining for the particle sector

0= [0 (18)

Kpsee ook

Ie ol
such that the particle sector of Eq. (3) can be written as |0)

= |0> ® ®p#:k1,...,kn|0p>'

In this fashion we are considering a discrete number n of
different modes &, ... ,k,, so Minkowski vacuum should be
expressed as a squeezed state in Rindler coordinates which is
an arbitrary superposition of spins and momenta. This will be
useful to discuss what would happen if we relax the single-
mode approximation carried out often in the literature and let
our detectors have a small mode spread,

|6> = C0|O>I|0>IV + E C}*l,k1|l~>l|1~>lv
S
ky

kl,szf;ff§|2~>1|§>lv+

+> C

1°52>
S1.52
kyky
seenk

+ ) ZS Cgl,...,sn,kl,...,kn sll,“.,s:|ﬁ>l|ﬁ>IV+

152 %n

I

2 ko[ [y

+S ES Cs?,...,szn,kl,...,kzn sll,...,szz;:|2n>l|2n>IV' (19)

1>+ 520

ks ko

Here, the notation is

|y = [s1,kys s Spkl = S1= K5 oo 5= S Kty
(20)
with
|51’k1; ;Snskn>1=c£kn,sn CI,k],s,|0>1 (21)
being
E (" | 1]y = (m!)* (22)
o

and the symbol £ is

ek _{0 if §;=15; and ki:kj’ i#j

(23)

S

1 otherwise,

which imposes Pauli exclusion principle constraints on the
state (quantum numbers of fermions cannot coincide).

Notice a pair of aspects of this notation for the multimode
case. First, in the series in Eq. (19) all the possible orders of
the operators are implicitly written. Due to the anticommu-
tation relations of the fermionic operators, terms with differ-
ent orderings of the creation operators are related, i.e.,
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|51,k1 §52’k2>1|— s1=kys=s,= kohry
=|52,k2;S1,k1>I|—52,—k2;—S1,—k1>Iv- (24)

So, without loss of generality, we could choose not to write
all the possible orderings of the operators in Eq. (19). The
difference between taking all the possible orderings of the
operators into account and taking only one representant is a
factor m! in the constants C". From Eq. (24) we can also see
that the coefficients C" are symmetric with respect to s;,k;
index permutations.

Second, as there are only n different modes (ki,...,k,),
the last summation in Eq. (19) has only (2r)! terms due to
Eq. (23). These terms are all the different permutations of the
creation operators for pairs of opposed spins for each mode.
There would be only one summand—instead of (2n)!—in
the simplified notation where we do not write all the different
permutations of the operators but only one representant. It
means that, in this simplified notation, the series of terms
with n pairs has the same summands as the series with the
vacuum state (i.e., only one). Actually, in this notation—i.e.,
if we count all the different order permutations as only one
the series with C?" to C"*! has exactly the same number of
summands as the series with C? to C"~!.

To obtain restrictions on the values of the coefficients C"”
we demand that the Minkowski vacuum has to be annihilated
by the particle annihilator ak0350|0>=0. Translating this into
Rindler coordinates we have

[cos repg,.q,— € sin rdITV,_kO,_SO]|O> =0, (25)

where the vacuum state should be expressed in Rindler co-
ordinates using Eq. (19).

As the elements [Eq. (20)] form an orthogonal set, from
Eq. (25) we see that all the terms proportional to different
elements of the set should be zero simultaneously, which
gives the following conditions on the coefficients:

(i) C!, as a function of C°,

C%,ko cos r— C%'® sin r=0, (26)

Ciko cos r— C%'® sin r=0. (27)

Since Egs. (26) and (27) should be satisfied, Vk,, we obtain
that C%,k: Ci’k:const since C? does not depend on k or 5. We
will denote C,,=C".

(ii) Cfl%kl’kz as a function of C',
C'e'® sin r - 2C§S,’k’k0 cos r=0, (28)
C'e'® sin r— ZCi,’kO,k cos r=0. (29)

Since Egs. (28) and (29) should be satisfied, Vk,, we obtain
that C?mzskl,kfcz’ where C? does not depend on spins or
momenta since C' does not depend on k or s. The only de-
pendence of the coefficients [Eq. (19)] with k; and s, is given
by the Pauli exclusion principle; this dependence comes
through function (23).

In fact, it is very easy to show that all the coefficients are

independent of s; and k—apart from the Pauli exclusion
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principle constraint. Using the fact that C° does not depend
on s; and k; and noticing that by applying the annihilator on
the vacuum state and equaling it to zero, we will always
obtain the linear relationship between C" and C"~! given be-
low.

(iii) C™ as a function of C™ !,

C" e sin r—mC" cos r=0, (30)

C" e sin r— mC" cos r=0. (31)
We finally obtain that C™ is a constant which can be ex-
pressed as a function of C° as
c’
C"'=—¢"? tan™ r. (32)
m!
And then, vacuum state (19) can be expressed as
|6> = CY|0),|0)ry + CIE |T>I|T>IV +C? E 51;:?22|2~>1|§>1v +

51 51,82

k kyodey
+C" E §k' ’7}1 My + -
kl,. k
+C" > sll’m'];zz"|ﬁ>l|ﬁ>lv, (33)
e 2n
Slaee a8y
Ky ko

where the only parameter not fixed yet is C°.

We can now fix C° by imposing the normalization of the
Minkowski vacuum in Rindler coordinates (0]|0)=1 [4,6];
this condition can be written as

2n
ICOIZ[E Y, tan®" r+ 2 Yo, tan®"r|=1, (34)

m=n+1

where

km = (2m)™ = (m - 1)m? (35)

25’:;

kl,...,km

and we have defined Y,=1. This expression gives (for-
mally) the value of C° (except for a global phase) when
considering the populated levels in an arbitrary number of
modes of the field

2n —1/2
E Y,, tan®" r + > Y,,_,, tan®" r . (36)
m=0 m=n+1

We can see that if we take the limit a —0=r— 0 we recover
the Minkowski vacuum. We will come back to the behavior
at the limits below.

Notice that state (33) is only normalizable in this discrete
limit. This comes about because the Minkowski and Rindler
representations are not unitary equlvalent (there is not uni-
tary operator connecting the two Vacua) It prevents us from
taking the continuous limit in expression (19) but does not

’This is an old-known problem (see Chap. 2 of Ref. [22]).
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invalidate the treatment as Eq. (33) can be considered as a
superposition of a finite number of individual modes which
are perfectly well defined [22].

To address the problem of showing how the presence of
spin degrees of freedom affects the entanglement between
accelerated observers, it is useful to use the single-mode ap-
proximation [1,18] in the same way as that in [4,6]. This is
valid if we consider Rob’s detector so sensitive to a single
particle mode in region I that we can approximate the fre-
quency wAszA observed by Alice to be the same frequency
observed by Rob, w, ~ wg. As a consequence, the populated
levels we are looking at are in this single frequency [6] (see
also discussion in [18]) so we can consider the sums over k;
in Eq. (33) just like a sum of only one mode k=w,. This is
equivalent to restricting the analysis to the sector |0;) of the
complete vacuum [Eq. (3)]. Since the goal of this work is to
show the effect of spin degrees of freedom on the entangle-
ment for noninertial observers, this approximation allows us
to compare our results with previous literature on scalar and
spinless fermion fields [4,6].

We have to notice that since the observer Rob is acceler-
ated, his possible measurements are affected by a Doppler-
like effect. Given that the velocity of the observer is §=ar
=f/Z=tanh(at), the Doppler effect will shift the sensitivity
peak of the detector. Namely, if at the instant =0 his detec-
tor is sharply tuned to a frequency wp=w,, to compensate
this Doppler effect at some instant 7= 7 the detector should be
tuned to the frequency wp=e*"w,. This implies that any de-
tector will eventually become insensitive to the populated
levels of the Minkowski field. In order to do the theoretical
analysis in this work, we can consider either that his detector
can be sharply tuned to the frequency e¢“’w, for each instant
or that Rob has a set of individual detectors each one sharply
tuned to the proper frequency for each instant.

Carrying out this single-mode approximation, the
Minkowski vacuum for a single mode is a Rindler two-mode
particle-antiparticle squeezed state with opposite spin states
in regions I and IV. Considering that the modes have spin,
occupation number is allowed to be 2 for each k, being
higher occupation numbers forbidden by Pauli exclusion
principle. As a consequence

0) = VIOW|0)ry + A|Th| Dy + Bl il v + CIT Il Dy
(37)

Notice that V is the analogous to C°, A and B are analogous
to C% and Ci, respectively, and C is analogous to C? in ex-
pression (19) but considering only one representant of all the
two possible orders for the pair.

To obtain the values of the coefficients V,A,B,C we de-
mand that the Minkowski vacuum has to be annihilated by
the particle annihilator, a,|0)=0. Translating this into Rindler
coordinates we have

0 =[cos rep,— €' sin rd;V,—s][V|O>I|0>IV + Al Dy
+B|l>I|T>Iv+C|TUIHUIV], (38)

which implies
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0=cos r{A|0)] v + B6, |00 1)y + C(8 [ Il T Drv
- s1|T>I|T D)l - e sin r[V|O>I|_ SHv _A55¢|T>I|T D
+B§sT|l>I|T bl (39)
This equation gives four conditions (two for each value of )
although only three of them are independent,
A cos r—Ve'®sinr=0
A=B=Ve%tanr
= .
C=Ve*® tan’ r.

C cos r—Be'?sinr=0
(40)

B cos r—Ve'?sinr=0
Ccos r—Ae'®sinr=0
To fix V we impose the normalization relation for each field

mode (0]0)=1=>|V|>=1-|A]>~|B|>*~|C|*; imposing this we
finally obtain the values of the vacuum coefficients,

V =cos? r,

A=¢e'?sin rcosr,
B=¢"sin r cos r,

C=e*¢sin’ r. (41)

Notice that comparing this result with expressions (32) and
(36), as we have truncated the series in Eq. (36), the value of
V will be different from the case when more than one mode
is considered—C? instead of V. If we restrict the series on m
to only one mode n=1 in Eq. (34), we obtain that C°
— 1/(1+tan® r)=cos’ r and we get then proper values for
A=B=C"and C=2!C>

Since from Eq. (12) a—%=r— /4, comparing V with
Eq. (36), we can see that, while under the single-mode ap-
proximation the limit of infinite acceleration leads to a finite
distribution of the Minkowski vacuum over Rindler states,
when considering the multimode Rindler expression for
vacuum state (33) the combined limit of n—o and a
—o=r—m/4 leads to a complete fading away of the am-
plitudes over all the Rindler modes as C,— 0, which may not
be the case for finite a. This is beyond the scope of this paper
but we will discuss in Sec. VII that it may have very strong
implications on the entanglement of fermionic fields for ac-
celerated observers.

So finally, under the single-mode approximation, the
Minkowski vacuum state in Rindler coordinates is as fol-
lows:

|O> = cos’ r|O>I|O>IV +¢'® sin r cos ’”(|T>I|l>lv + |l>I|T>Iv)
+e*%sin? 1|1 D07 Dy (42)

Now we have to build the one particle (of spin s) state in
Rindler coordinates. It can be readily done by applying the
Minkowski particle creation operator to the vacuum state
|s)=a|0) and translating it into Rindler coordinates,
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|s) =[cos re] , — ™ sin rdyy _J[cos® r|0)|0)y

+e'sinr cos (|| Dy + [ il Div)
+ e sin’ r|T l>1|T Divl. (43)

That means

1) =cos )]0}y + €' sin [T [ ) Ty,

1) =cos || )]0y — €' sin 7|1 | )| Dy - (44)

The three Minkowski states |0),|1),||) correspond to the
particle field of mode k observed by Alice. However, since
Rob is experiencing a uniform acceleration he will not be
able to access to field modes in the causally disconnected
region IV, hence, Rob must trace over that inaccessible re-
gion as it is unobservable.

Specifically, when Rob is in region I of Rindler space time
and Alice observes the vacuum state, Rob could only observe
a nonpure partial state given by pg=Try(|0)0]|) that is

pr =cos* r|0)(0] + sin® r cos r(| (] +[L)(L])
+sin® [T (1 U (45)

But while Alice would observe the vacuum state of mode k,
Rob would observe certain statistical distribution of par-
ticles. The expected value of Rob’s number operator on the
Minkowski vacuum state is given by

(N} = (0[Ng|0)
= TrI,IV(NR|0><0|)
= Try rv(Ngpr)
= Trl[(cI-TCIT + Cﬁcli)pR]' (46)

Substituting expression (45) we obtain

(Ng) =2 sin’ r. (47)
Using Eq. (12) we obtain that

1
<N> = zeZﬂwc/a +1 = eﬁw/KBT+ 1 ’ (48)
where kjp is the Boltzmann constant and
fa
T= (49)
2mkge

is the Unruh temperature.

Equation (48) is known as the Unruh effect [14,23], which
shows that, for a two-dimensional space time, a uniformly
accelerated observer in region I detects a thermal Fermi-
Dirac distribution when he observes the Minkowski vacuum.
We obtain a factor 2 contrarily to Ref. [6] due to the degen-
eracy factor 25+1.

V. SPIN ENTANGLEMENT WITH AN ACCELERATED
PARTNER

In previous works [4,6] it was studied how Unruh deco-
herence affects occupation number entanglement in bipartite
states as
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1
E(|00>+|11>), (50)

W)=

where the figures inside the kets represent occupation num-
ber of Alice and Rob modes, respectively, barring any refer-
ence to the spin of the field modes.

Here, where we have included the spin structure of each
mode in our setting from the very beginning, it is possible to
study the effects of acceleration in spin entanglement deco-
herence, which is different from the mere occupation number
entanglement.

First of all, we build a general bipartite state that could be
somehow analogous to state (50) studied in [6], limiting the
occupation number to 1 but including the spins of each
mode. Here,

(W) = ul0,)|0R) + al T DITR) + BIT IR + AL TR + 8 14)
X|1&), (51)

with w=\1-|al*~|B|*~|y|*~|6]*>. The subscripts A and R in-
dicate the modes associated with Alice and Rob, respectively.
We will suppress the labels A,R from now on, and we will
understand that the first character in a ket or a bra corre-
sponds to Alice and the second to Rob: |s,s")=]s,)|sz)

This general setting [Eq. (51)] allows us to study in this
section what happens with spin entanglement under accelera-
tion of Rob and also what happens with the occupation num-
ber entanglement when considering sates analogous to Eq.
(50) but taking the spin structure into account. It will also
allow us to discuss, in Sec. VI, the implications of tracing
over spins and study only the entanglement on the occupa-
tion number degree of freedom compared with [6].

The density matrix in Minkowski coordinates for state
(51) is

0,0%0,0
0,01, 1
TN
+[BP1T, X1, T T+ B8 T, I L
+ AL LT Lo L+ 1P 1L
+ (H.c.)nondiag» (52)

0,01, 1
T 11T
T L

0,0XT, T+ up’
0,01, |
TIXLT

pM =’ + pa’
+uy
+af”

+|af?

+ad’

+ud

+ ay”

+ By
+ v

where (H.c.)ongia; Means nondiagonal Hermitian conjugate
and represents the Hermitian conjugate only for the nondi-
agonal elements.

Computing the density matrix, taking into account that
Rob is constrained to region I of Rindler space time, requires
to rewrite Rob’s mode in terms of Rindler modes and to trace
over the unobservable Rindler’s region IV.

In Appendix we compute each term of Eq. (52) in Rin-
dler’s coordinates and trace over the unobserved region IV.
Using Egs. (A2), (A4), and (A6) we can easily compute the
density matrix for Alice and Rob from Eq. (52) since pr
=Tryy py, resulting in the long expression

PHYSICAL REVIEW A 80, 012314 (2009)

+

0,1X0,7
0,710,711+ p cos® r[a0,0(T. 1
0,0)(], 1|+ &°0,0)(]., L]
0, IXT. 1L =870, TXT.T1]

+ 9700, DXL T = 6710, T T LT+ cos® ffaf?[T, 1)
XL+ @B, X L+ ey [ 1, T+ e80T, 1)
XL L+ BPIT, DX L+ BY 1T, UKL 11+ BST1, 1)
XLy L+ AP DXL T+ w871 K L+ 8P 1
XCL LT+ sin® (el + BRI T L + (A% + 16
X[LTIXLT L+ (ay' + B8N)IT,1 XL T L]

+ (H.C.)nondiag- (53)

+sin® r cos® (

0,0%(0,0

par = pcos* r 0,1)
%0, |
+ 70,01, |

+  sin® r cos

)+ sin* r

+ 9

Here the notation is the same as that in the right-hand side
(ths) of Eq. (A2): |a,r)a’,r'|=|as)|rg)ilay]{rkl. Notice that
the state, which in Minkowski coordinates is pure, gets
mixed when the observer Rob is accelerated.

Equation (53) will be our starting point, from which we
will study different entanglement settings and how Unruh
decoherence affects them.

To begin with we will compute how acceleration affects
the entanglement of spin Bell states when Alice and Rob
share a maximally entangled spin state and Rob accelerates.
In Minkowski coordinates, which means choosing specific
coefficients in Eq. (51), particularly, for Bell states we should
choose

1
%) = a= + 6= —, (54)
V2
. 1
ly)=pB==* =7 (55)
AY

and the rest of the other coefficients are equal to zero. For
such states in Minkowski coordinates, the density matrix of
Alice and Rob considering that Rob undergoes an accelera-
tion a is obtained from Eq. (53),

pe = eos? r(| T, T T) 2 11 L = 11 X TD + 1. 1)
X(L, L+ sin? /(11,1 LT+ LTI TLD], (56)
Pl = Heos? r( 1, DT L= 1T, DXL = 1L I L+ 1. 1)
X(LL D +sin? 7T LT+ 1110 TIDT. (57)

Notice that, in this case, Alice would have a qubit and Rob
would have a qutrit since for his mode he could have three
different possible orthogonal states: particle spin up, particle
spin down, and particle pair.

To characterize its entanglement we will use the negativ-
ity [24] normalized to 1 (we can multiply it by a constant in
order to have negativity equal to 1 for a maximally entangled
state). Therefore, to have negativity equal to 1 for a Bell state
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we define it as twice the addition of all the negative eigen-
values of the partial transpose density matrix, which consists
of transposing Rob’s qutrits,

P! = cos? (|1, X1, TI 1T, T = [T
(58)
PAprT
(59)
We can write p‘/’ PT matricially in the basis
{40001, D000 DL 1 DL T DY
cos’ r 0 0 0 0 0
0 0 +cos’r 0 0 0
l 0 +cos r 0 0 0 0
2 0 0 0 cos’r 0 0 ’
0 0 0 0 sin’r 0
0 0 0 0 0 sin? r
(60)

+
which have the same expression as pY.”" in the basis

Therefore the
four Bell states will have the same eigenvalues which are

1
)\1=)\2=)\3=5C0S2 r,

1 .
Ny=hs5= 551n2 r,

Ne=— %cos2 r. (61)

Since r=arctan(e”™*?) 4—0=r—0 and a—w=r
— /4, so N\ is negative for all values of the acceleration.
This implies, using Peres criterion [25], that the spin Bell
states will be always entangled even in the limit of infinite
acceleration.

We can readily evaluate the entanglement at the limits a
—0 and a— o0 if we compute the negativity (normalized to
one for maximally entangled states), that is to say

N=2> ]\l (62)

A<0
Applied to our states we obtain that
M(r) =cos? r. (63)

In the limit @ — 0 we obtain A/'=1 which is an expected result
since a— 0 is the inertial limit.

However, in the limit a — % we obtain N =%, which im-
plies that spin entanglement degrades due to the Unruh ef-
fect. Figure 2 shows the negativity as a function of the ac-
celeration of Rob.

The mutual information, which takes into account quan-
tum and classical correlations, is
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0 ‘ ‘ ‘ ‘ ‘ ‘ ‘
0 01 02 03 04 05 06 07
r = tan[exp(—T ® c/a)]

FIG. 2. (Color online) Negativity and mutual information as a
function of the acceleration of Rob when R and A share a maxi-
mally entangled state in Minkowski coordinates. Red dashed line is
mutual information for all the spin Bell states. Black dotted line is
mutual information for the Minkowski state —(|OO)+|TL)) and blue
solid line is negativity for both Bell spin states and —(\00)+|Tl>)

IAR=SA+SR_SAR’ (64)

where S,  are the Von Neumann entropies of the partial state
of Alice and Rob and S, is the entropy of the whole state.

For Egs. (56) and (57), the partial states of Alice and Rob
(pa=Trg par> Pr=Tr4 pag) can be expressed matricially as

1 (1 0) (65)
Pr=2\0 1
| cos’ r 0
PrR= 5 0 cos? r 0 (66)
0 0 2 sin® r
cos’r *cos’r 0 0
1| £cos’>r cos®r 0 0 67)
PAR=H1 o 0 sinr 0
0 0 0 sin’r
for ¢~
same expression for zﬁ— in the basis
are

1 . .
Sg=—cos> r logy(3cos? r) — sin? r logy(sin® ),

Sug = cos’  logy(cos® r) — sin rlogz( sin’ r) (68)

and the mutual information is
Iyg=2cos’ r. (69)

Again we see that in the limit ¢ — 0 mutual information goes
to 2 and in the limit of infinite acceleration it goes to 1. The
behavior of the mutual information as a function of a is
shown in Fig. 1.
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In [6] it is discussed that Pauli exclusion principle pro-
tects the on occupation number entanglement from decoher-
ence, and some degree of entanglement is preserved even at
the limit a — . Here we have obtained a similar result for
the spin Bell states, showing that spin entanglement is also
degraded by Unruh effect.

Next, we will study the case in which Alice and Rob share
a different class of maximally entangled state. We consider
that in Minkowski coordinates we have

W) = %(|OA>|OR> + 1T OlR)), (70)

which is a maximally entangled state that includes occupa-
tion number entanglement along with spin. We study this
kind of states as a first analog to the state considered in
previous literature [Eq. (50)]. This state corresponds to the
choice

1
-, 71
% (71)

B=p=

a=y=6=0 (72)

in Eq. (53). The density matrix of such a state is

p=3[cos* 7]0,0%0,0 0,10, 1

0,71)0,1 L] +cos® r(|0,0)T, L] +1, 1)0,0])
—sin 07T><T$Tl|+ T’Tl><05T T7l>
(1,1 T I T (73)

Notice the significant difference from the Bell spin states;
considering that Rob accelerates means that, this time, Alice
has a qubit and Rob has a four-level quantum system. Hence,
negativity acts only as a measure of distillable entanglement
and does not account for the possible bound entanglement
the system would have [26]. Since in Rindler coordinates
state (73) is qualitatively different from Minkowski Bell
states (56) and (57), it is therefore worthwhile to study its

O’ ~L><0’ \J/ )

+sin® r cos® r(

+

+sin* r +

2

) +cos® r

r cos r(

+sin’ r
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entanglement and the mutual information degradation as Rob
accelerates.
The partial transpose of Eq. (73), o=p7, is

0,0)(0,0 0,7X0,1[+10,])
0.1 10,1 1]+ cos® r(|0, | X1.,0
) —sin 0.7 XTI+ 11,170,171

TIXT. TTIXTL T, (74)

which is an 8 X 8 matrix. o is diagonal by blocks with eigen-
values

+sin® r cos® r(

o= %[0054 r +
X0, |
x40, |

+ 0082 r

1.0)

)+ sin* r

+
2

r cos r( +

+sin® r

A= %0054 r,

N, = %cos2 Fsin? r,
N3 = %sin2 T,
Ny= %cos2 r,

e .
Nso= ;(sin® r cos® r + \sin® r cos® r+4 cos® ),

Nyg= i(sin4 r = Vsin® r+4 sin* r cos? r). (75)

As we can see, \g is nonpositive and A4 is negative for all
values of a; therefore the state will always preserve some
degree of distillable entanglement. If we calculate the nega-
tivity we will obtain

M) =cos® r, (76)

which means that for this case, distillable entanglement be-
haves equally than in the previous case and negativity on
Fig. 1 is equally valid for this state.

Finally we compute the mutual information of the system
whose partial matrices are expressed as

1/1 0
“=§& J n

in the basis {|0),|1)}. Here,

cos* r 0 0 0
1 0 sin® r cos’ r 0 0 (78)
PR=5) o 0 cos? r(sin® r+ 1) 0
0 0 0 sin? r(sin® r+ 1)
|
in the basis {|0),]1),|]),|T])}. The eigenvalues of the whole A= %sin“ r
system 6 X 6 matrix p,p are
)\1 = )\2 = 0,
1.2 2
5 5 \s=3cos” r(1 +cos” r),

1 .
A3 =3sin” r cos” r,
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N¢= ;;sin2 r(1 +cos? r). (79)

In this case the mutual information as a function of a is not
proportional to the negativity. Hence, it is different from Bell
states (56) and (57). As it can be seen in Fig. 1 the values of
mutual information for Egs. (56), (57), and (73) coincide at
the limits a—0,a—  but are different in between, obtain-
ing that Ifqrjien bell 2I/rqnlci’)de be]].

To conclude this section we stress that the same results
will be obtained if the state |1, ) in Eq. (70) is replaced by
any other one particle bipartite spin state |s,s’).

VI. OCCUPATION NUMBER ENTANGLEMENT WITH AN
ACCELERATED PARTNER AND SPIN 1/2 FERMIONS

The previous work [6] on occupation number entangle-
ment between accelerated partners ignored the spin structure
of the Dirac field modes. It is not possible to straightfor-
wardly translate a state like Eq. (51) into mere occupation
number states. This comes about because for a state like Eq.
(51) the bipartite vacuum component does not have indi-
vidual spin degrees of freedom as the other components do.
In other words, by including the vacuum state in superposi-
tion (51), the Hilbert space ceases to be factorable in terms of
individual spin times particle occupation number subspaces.

On the other hand, the bipartite vacuum is a well defined
total spin singlet. Hence, the Hilbert space is factorable with
respect to the total spin of the system A—R and the occupa-
tion number subspaces. Accordingly, to reduce the spin in-
formation in general density matrix (53) we will be forced to
consider a factorization of the Hilbert space as the product of
the total spin and occupation number subspaces.

If we do such a factorization we could consider that we
are not able to access to the information of the total spin of
the system A—R and then we should trace over total spin
degree of freedom.

The equivalence between the standard basis (occupation
number-individual spin) and the new basis (occupation
number-total spin) is given3 in Egs. (80) and (81),

0,0)=100)[S) 10,1])=]02)[S),
0.1)=l0nIDyy o, [)=[01)[D.),
1,0y=[10)|D,) [1.0)=[10)}|D_),
11D =N12)D,) [L.11)=12)D),
L.D=NDITy (L, D=1DIT), (80)

1o)== Ty + 1)),
V2

The pair state in the same mode can only be a singlet of total spin
due to anticommutation relations of fermionic fields.
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L1y = =T - 9)], (81)
V2

where we are using the basis |n,n,)[J,J,) and the triplets,
doublets, and the singlet are denoted as

T)=l=1J.=1),
T)y=l=1J.=-1),
[To)=17=1,J.=0),
D,y =|J=1/2,0,=1/2),
|D_y=|J=1/2,J,=-1/2),

|S)=17=0,J.=0). (82)

If we rewrite general state (51) in this basis we obtain
B+
\2
+ O|11)[T.). (83)

And the general state when Rob is accelerated [Eq. (53)] in
terms of this new basis after reducing the information on the
total spin by tracing over this degree of freedom is

PXR = E <J’Jz|pAR
I,

(W)= ul00)|S) + ol 11)|T,) +

iz + £ lsy
V2

J,J.), (84)

which results in a state in the occupation number basis
whose entanglement decoherence could be studied and com-
pared with the results in Ref. [6] in which spin is ignored:

Phr= M2|:COS4 r[00)(00] + 2 sin® r cos® r[01)(01| + sin* 7|02)

B -7 B-y
5 |00)(11] + % |11><00|)}

x(02| + cos? r(

+ (1 = u?)[cos? r[11)(11] + sin® r|[12)(12]]. (85)
We can readily compute the partial transpose o”=(p/)"7,
o= ,uvz{cos4 r|00)00] + 2 sin® r cos? r|01)(01| + sin* 7|02)

%

(02| + cos r(ﬂ —Y jo1y(10] + Q|10><01|)}
V2 V2

+ (1 = u®)[cos? r[11)(11] + sin® r[12)(12

1. (86)

whose eigenvalues are

N = u? cost r,

N, = u? sin r,
A= (1 - u?)cos? r,

Ny = (1 = u?)sin’ r,

012314-10



SPIN AND OCCUPATION NUMBER ENTANGLEMENT OF...

2 2.2 2 i 4 2 18-+
Nsg=cos” r| u” sin® r = pw\/u” sin® r + cos )

All the eigenvalues are non-negative except Ng=0. The
negativity [Eq. (62)] is, in this case,

2 1B=o

N=2cos® r| u? sinzr—,u\/,ud2 sin* r+ cos? r

>

(87)

which depends on the proportion of singlet |8—|/12 of the
|11) component in state (51). When there is no singlet com-
ponent (B=7) the negativity is zero. Indeed in the limit a
—0 (Minkowskian limit),

No=\2]ullB- 1. (88)

That shows that the maximally entangled Minkowski occu-
pation number state (negativity=1) arises tracing over total
spin when the starting state is

vy = =

1
=[0,0) = [
V2 2

=111 (89)

or, in the occupation number-total spin basis,
1
|%=3mw$rmmn (90)
\!

That means that, for occupation number entanglement, the

only way to have an entangled state of the bipartite vacuum

|00) and the one particle state |11) of a Dirac field is through

the singlet component of total spin for the |11) component.
On the contrary, the state

|%=%mw®iMWmﬂ (1)

will become separable after tracing over total spin due to the
orthonormality of bases (80) and (81).

We have established that the Minkowski maximally en-
tangled state for occupation number arises after tracing over
total spin in a state as Eq. (89). Now we will compute the
limit of the negativity when the acceleration goes to « in
order to see its Unruh decoherence and to compare it with
the results for occupation number entanglement from [6].

Taking a —©=r— 7/4 in Eq. (87)

o
No=51p? =Vt + w2 B- v (92)

Therefore, for the maximally Minkowski entangled state we

have u=1/42, |8—9=1 and the negativity in the limit is
=
3-1
No=- - 93)

This result shows that when we are reducing the total spin
information, looking at the occupation number entanglement
alone, we see that it is more degraded by Unruh effect than
when we considered spin Bell states in Sec. V. More impor-
tantly, the occupation number entanglement is more de-
graded than in [6], where the spin structure of the modes was
considered nonexistent. This happens because considering
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r = tan[exp(—T ® c/a)]

FIG. 3. (Color online) Negativity (blue solid line) and mutual
information (red dashed line) as a function of the acceleration of
Rob when R and A share an occupation number maximally en-
tangled state (89) in Minkowski coordinates after tracing over total
spin.

spin structure of each mode, occupation number 2 is allowed.
Hence, Pauli exclusion principle protection of the entangle-
ment is weaker than in [6] where the spin is not considered.
The negativity dependence on the acceleration is shown in
Fig. 3

We can also compute the mutual information for state (85)
as we did in the rest of the cases. Its analytical expression is
quite long and has no special interest, but we can see the
dependence of I, for the Minkowski maximally entangled
state (89) with the acceleration in Fig. 3, obtaining that 9,
=2 and I}=1/2

VII. CONCLUSIONS AND COMMENTS

It is known [4,6] that Unruh decoherence degrades en-
tanglement of occupation number states of fields. Here we
have shown a richer casuistic that appears when we take into
account that each Dirac mode has spin structure. This fact
enables us to study interesting effects (such as Unruh deco-
herence for spin Bell states) and develop procedures to erase
spin information from the system in order to study occupa-
tion number entanglement.

Along this work we have analyzed how a maximally en-
tangled spin Bell state losses entanglement when one of the
partners accelerates. We have seen that, while in Minkowski
coordinates Alice and Rob have qubits, when Rob acceler-
ates the system becomes a nonpure state of a qubit for Alice
and a qutrit for Rob. In this case spin entanglement for a
Dirac field is degraded when Rob accelerates. However some
degree of entanglement survives even at the limit a — .

A first analog to the well studied state is (1/12)(]00)
+|11)) but including spin could be, for instance,
(1/+2)(J00)Y+|11)). This state, unlike the deceivingly similar
spin Bell states, becomes a qubit X four-level quantum sys-
tem when Rob accelerates. Nevertheless, distillable entangle-
ment degrades in the same way as for spin Bell states.

We have also introduced a procedure to consistently erase
spin information from our setting preserving the occupation
number information. We have done it by tracing over total
spin. The maximally entangled occupation number state is
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obtained from total spin singlet (89) after tracing over total
spin. Finally we have shown that its entanglement and mu-
tual information is more degraded than in [6] where the spin
structure of Dirac modes was neglected. A reasonable physi-
cal argument for this result is that, in our setting, occupation
number 2 is allowed for the Dirac field modes, and hence,
there is a broader margin for entanglement degradation by
Unruh effect.

Thermal noise (48) is obtained when dealing with a two-
dimensional space time and massless fields. Mass gap and
transverse degrees of freedom modified the counting statis-
tics that is no longer given by thermal noise but replaced by
the so-called Rindler noise [22], which depends on the
space-time dimension. In this work we were concerned with
the specific issues associated to the spin degree of freedom,
so the restriction to massless fields in two-dimensional space
time adopted here, as well as the single-mode approximation,
allows a direct comparison with the previous works [4,6]
which considered massless spinless fields in two dimensions
under those approximations.

As a matter of fact, having more than two space-temporal
dimensions and having massive fields may introduce relevant
effects. Allowing the possibility of having momentum of the
acceleration direction and having massive fields we would
obtain a spread of Minkowski modes over Rindler frequen-
cies [22]. If we carry out the single-mode approximation, the
spread of Minkowski modes into Rindler modes can be ne-
glected even for higher dimensions [1,6,18], but if we want
to relax such an approximation (as for the discussion in the
next paragraph), those effects should be considered in order
to account for the entanglement in noninertial frames. It
would be worthwhile to study those effects in future articles.

Another very interesting point that deserves further study
is the fact that when we consider more than one populated
mode of the complete Minkowski vacuum [Eq. (3)] instead
of the single-mode approximation, the margin for Unruh
degradation increases as we could have, in principle, a larger
number of levels that can be excited by the thermal and/or
Rindler noise. One could think that these cases would be
quite similar to the bosonic case [4] where the margin for
Unruh decoherence is so broad that no entanglement sur-
vives at the limit of a — . Something similar would apply as
well if we relax the single-mode approximation allowing a
small spread in both Rob’s detector and populated levels
such that we consider a continuum of accessible levels.
These topics will be the inspiration for future works.
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APPENDIX: SOME MINKOWSKI OPERATORS
EXPRESSED IN RINDLER’S REGION I

To help with the calculations of the density matrix asso-
ciated with Eq. (51) it is useful to compute first the trace over
region IV on all the operators that compose Eq. (52). Using
Eq. (42) we have

0,0)0,0| = |OA>[0052 r|0>I|O>IV +¢'% sin r cos r(|T>I|l>1V

+ |l>l|T>1v) +e%? sin? ”|T l>l|T Div®Hel],
(A1)

tracing over region IV,
0,0)0,0

+sin® r cos® r(

0,0)(0,0 0,7X0,7
+[0,1)€0, []) +sin* 70,7 [0, T[],  (A2)

where notation is different in each side of the equality: bras
and Kkets in left-hand side are referred to Minkowski coordi-
nates for Alice and Rob |s,s")=|s,)|sg) and in the rhs they
are referred to Alice’s mode in Minkowski coordinates and
Rob’s mode in Rindler’s region I [s,s")=|s4)|sp-

In the same way, using expressions (42) and (44) we have

070><S,S'| = |0A>[0052 "|0>1|0>1v +¢'? sin r cos V(|T>1|l>1v
+ | Il ) + €2 sin? #{T |1 DivI(sal

X (cos ri{s’|ry(0] + &’ €™ sin r(T ||y (s’

= COS4 r

TrIV

),
(A3)

where ¢'=1 if s=7 and ¢’=-1 if s=|. Now, tracing over
region IV,

0,0)(s,s'| = cos® r{0,0)(s,s’| + sin® r cos (&,
X(T,TH - 55’1 01T><S5Tl

notation here is the same as in Eq. (A2).
Again, using expression (44) we get

0.1)
), (A4)

Try

Is1,52)(s2,53] = [s1)[cos rlso)i|O)ry + £2¢7 sin r
X1 Dils2hvIissalleos ridsaln(O]
+e4e7 sin (T || rv(s4l] (AS5)

and tracing over region IV gives

Trivlsy,$2)(s3,54] = c0s rlsy,55)(s3,54] + &

X<S37Tl

again, notation here is the same as in Eq. (A2).

i a2
o Sin? s, 7 1)

) (A6)
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