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For certain joint measurements on a pair of spatially separated particles, we ask how much entanglement is
needed to carry out the measurement exactly. For a class of orthogonal measurements on two qubits with
partially entangled eigenstates, we present upper and lower bounds on the entanglement cost. The upper bound
is based on a recent result by Berry �Phys. Rev. A 75, 032349 �2007��. The lower bound, based on the
entanglement production capacity of the measurement, implies that for almost all measurements in the class we
consider, the entanglement required to perform the measurement is strictly greater than the average entangle-
ment of its eigenstates. On the other hand, we show that for any complete measurement in d�d dimensions
that is invariant under all local generalized Pauli operations, the cost of the measurement is exactly equal to the
average entanglement of the states associated with the outcomes.
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I. INTRODUCTION

In this paper we ask how much entanglement is required
to perform a measurement on a pair of spatially separated
systems if the participants are allowed only local operations
and classical communication �LOCC�. That is, we want to
find the “entanglement cost” of a given measurement. �We
give a precise definition of this term in Sec. I A.� Our moti-
vation can be traced back to a 1999 paper entitled “Quantum
nonlocality without entanglement,” which presents a com-
plete orthogonal measurement that cannot be performed us-
ing only LOCC, even though the eigenstates of the measure-
ment are all unentangled �1�. That result shows that there can
be a kind of nonlocality in a quantum measurement that is
not captured by the entanglement of the associated states.
Here we wish to quantify this nonlocality for specific mea-
surements. Though the measurements we consider here have
outcomes associated with entangled states, we find that the
entanglement cost of the measurement often exceeds the en-
tanglement of the states themselves.

The 1999 paper just cited obtained an upper bound on the
cost of the specific nonlocal measurement presented there, a
bound that has recently been improved and generalized by
Cohen �2�. In addition, there are in the literature at least three
other avenues of research that bear on the problem of finding
the entanglement cost of nonlocal measurements. First, there
are several papers that simplify or extend the results in Ref.
�1�, for example, by finding other examples of measurements
with product-state outcomes that cannot be carried out lo-
cally �2–12�. A related line of research asks whether or not a
given set of orthogonal bipartite or multipartite states �not
necessarily a complete basis and not necessarily unen-
tangled� can be distinguished by LOCC �7,13–31�, and if
not, how well one can distinguish the states by such means
�32–36�. Finally, a number of authors have investigated the
cost in entanglement or the entanglement production capac-
ity of various bipartite and multipartite operations �37–54�.

In this paper we consider three specific cases: �i� a class
of orthogonal measurements on two qubits, in which the four
eigenstates are equally entangled, �ii� a somewhat broader

class of orthogonal measurements with unequal entangle-
ments, and �iii� a general, nonorthogonal, bipartite measure-
ment in d�d dimensions that is invariant under all local
generalized Pauli operations. For the first of our three cases
we present upper and lower bounds on the entanglement
cost. For the second case we obtain a lower bound, and for
the last case we compute the cost exactly: it is equal to the
average entanglement of the states associated with the out-
comes. Throughout the paper, we mark our main results as
propositions.

The upper bound in case �i� can be obtained directly from
a protocol devised by Berry �40�—a refinement of earlier
protocols �39,44�—for performing a closely related nonlocal
unitary transformation. Our bound is therefore the same as
Berry’s bound. However, because we are interested in per-
forming a measurement rather than a unitary transformation,
we give an alternative protocol consisting of a sequence of
local measurements.

To get our lower bounds, we use a method developed in
papers on the local distinguishability of bipartite states
�15,16,55�. The average entanglement between two parties
cannot be increased by LOCC, so in performing the mea-
surement, the participants must consume at least as much
entanglement as the measurement can produce. This fact is
the basis of all except one of our lower bounds. The one
exception is in Sec. III, where we use a more stringent con-
dition, a bound on the success probability of local entangle-
ment manipulation, to put a tighter bound on the cost for a
limited class of procedures.

A. Statement of the problem

To define the entanglement cost, we imagine two partici-
pants, Alice and Bob, each holding one of the two objects to
be measured. We allow them to do any sequence of local
operations and classical communication, but we do not allow
them to transmit quantum particles from one location to the
other. Rather, we give them, as a resource, arbitrary shared
entangled states, and we keep track of the amount of en-
tanglement they consume in performing the measurement.
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At this point, though, we have a few options in defining
the problem. Do we try to find the cost of performing the
measurement only once or do we imagine that the same mea-
surement will be performed many times �on many different
pairs of qubits� and look for the asymptotic cost per trial?
And how do we quantify the amount of entanglement that is
used up? In this paper we imagine that Alice and Bob will
perform the given measurement only once. �In making this
choice we are following Cohen �2�.� However, we suppose
that this measurement is one of many measurements they
will eventually perform �not necessarily repeating any one of
the measurements and not necessarily knowing in advance
what the future measurements will be�, and we assume that
they have a large supply of entanglement from which they
will continue to draw as they carry out these measurements.
In this setting it makes sense to use the standard measure of
entanglement for pure states, namely, the entropy of either of
the two parts �56�. Thus, for a pure state ��� of a bipartite
system AB, the entanglement is

E����� = − tr �A log �A, �1�

where �A is the reduced density matrix of particle A:
�A=trB������. In this paper, the logarithm will always be base
two, so the entanglement is measured in ebits. By means of
local operations and classical communication, Alice and Bob
can create from their large supply of entanglement any spe-
cific state that they need. For example, if they create and
completely use up a copy of the state ��c

+�=c�00�+d�11�, this
counts as a cost of E���c

+��=−�c2 log c2+d2 log d2�. On the
other hand, if their procedure converts an entangled state into
a less entangled state, the cost is the difference, that is, the
amount of entanglement lost.

A general measurement is specified by a positive-
operator-valued measure �POVM�, that is, a collection of
positive semidefinite operators �i that sum to the identity,
each operator being associated with one of the outcomes of
the measurement. In this paper we restrict our attention to
complete measurements, that is, measurements in which each
operator is of rank one, so each �i is of the form �i��i���i�
for some �i in the range 0��i�1. In a complete orthogonal
measurement, each operator is a projection operator ��i=1�
that projects onto a single vector �an eigenvector ��i� of the
measurement�. Now, actually performing a measurement will
always entail performing some operation on the measured
system. All that we require of this operation is that Alice and
Bob both end up with an accurate classical record of the
outcome of the measurement. In particular, we do not insist
that the measured system be collapsed into some particular
state or even that it survive the measurement.

We allow the possibility of probabilistic measurement
procedures, in which the probabilities might depend on the
initial state of the system being measured. However, we do
not want our quantification of the cost of a measurement to
depend on this initial state; we are trying to characterize the
measurement itself, not the system on which it is being per-
formed. So we assume that Alice and Bob are initially com-
pletely ignorant of the state of the particles they are measur-
ing. That is, the state they initially assign to these particles is
the completely mixed state. This is the state we will use in

computing any probabilities associated with the procedure.
Bringing together the above considerations, we now give

the definition of the quantity we are investigating in this
paper. Given a POVM M, let P�M� be the set of all LOCC
procedures P such that �i� P uses pure entangled pairs, local
operations, and classical communication and �ii� P realizes
M exactly in the sense that for any initial state of the system
to be measured, P yields classical outcomes with probabili-
ties that agree with the probabilities given by M. Then C�M�,
the entanglement cost of a measurement M, is defined to be

C�M� = inf
P�P�M�

�Einitial − Dfinal� , �2�

where Einitial is the total entanglement of all the resource
states used in the procedure, Dfinal is the distillable entangle-
ment of the state remaining at the end of the procedure
�57,58�, and �¯ � indicates an average over all the possible
results of P when the system on which the measurement is
being performed is initially in the completely mixed state
�59�. �Though we allow and take into account the possibility
of some residual entanglement Dfinal, in all the procedures
we consider explicitly in this paper, the entanglement in the
resource states will, in fact, be used up completely.�

A different notion of the entanglement cost of a measure-
ment is considered in Ref. �54�, namely, the amount of en-
tanglement needed to effect a Naimark extension of a given
POVM. In that case the entanglement is between the system
on which the POVM is to be performed and an ancillary
system needed to make the measurement orthogonal. For any
orthogonal measurement, and indeed for all the measure-
ments considered in this paper, the entanglement cost in the
sense of Ref. �54� is zero.

B. Measurements and unitary transformations

One way to perform a nonlocal orthogonal measurement
on a bipartite system is to perform a nonlocal unitary trans-
formation that takes the eigenstates of the desired measure-
ment into the standard basis, so that the measurement can
then be finished locally. �We will use this fact in Sec. II.� So
one might wonder whether the problem we are investigating
in this paper, at least for the case of orthogonal measure-
ments, is equivalent to the problem of finding the cost of a
nonlocal unitary transformation. A simple example shows
that the two problems are distinct.

Suppose that Alice holds two qubits, labeled A� and A,
and Bob holds a single qubit labeled B. They want to per-
form an orthogonal measurement having the following eight
eigenstates:

�1/�2���000� + �011��, �100� ,

�1/�2���000� − �011��, �101� ,

�1/�2���001� + �010��, �110� ,

�1/�2���001� − �010��, �111� . �3�

Here the order of the qubits in each ket is A�, A , B. Alice
and Bob can carry out this measurement by the following

BANDYOPADHYAY et al. PHYSICAL REVIEW A 80, 012313 �2009�

012313-2



protocol: Alice measures qubit A� in the standard basis. If
she gets the outcome �1�, she and Bob can finish the mea-
surement locally. If, on the other hand, she gets the outcome
�0�, she uses up 1 ebit to teleport the state of qubit A to Bob,
who then finishes the measurement. The average cost of this
protocol is 1/2 ebit because the probability that Alice will
need to use an entangled pair is 1/2.

On the other hand, one can show that any unitary trans-
formation that could change the above basis into the standard
basis would be able to create 1 ebit of entanglement and
must therefore consume at least 1 ebit. So the cost of the
measurement in this case is strictly smaller than the cost of a
corresponding unitary transformation.

The crucial difference is that when one does a unitary
transformation, one can gain no information about the sys-
tem being transformed. So there can be no averaging be-
tween easy cases and hard cases.

C. Two general bounds on the cost

There are two general bounds on C�M�, an upper bound
and a lower bound, that apply to all complete bipartite mea-
surements. These bounds are expressed in the following two
propositions:

Proposition 1. Let M be a POVM on two objects A and B,
having state spaces of dimensions dA and dB, respectively.
Then C�M��min	log dA , log dB
.

Proof. Let Alice and Bob share, as a resource, a maxi-
mally entangled state of two dA-dimensional objects. They
can use this pair to teleport the state of A from Alice to Bob
�60�, who can then perform the measurement M locally. The
entanglement of the resource pair is log dA. So log dA ebits
are sufficient to perform the measurement. Similarly, log dB
ebits would be sufficient to teleport the state of B to Alice. So
the cost of M is no greater than min	log dA , log dB
. �

As we have mentioned, most of our lower bounds are
obtained by considering the entanglement production capac-
ity of our measurements. Specifically, we imagine that in
addition to particles A and B, Alice and Bob hold, respec-
tively, auxiliary particles C and D. We consider an initial
state of the whole system such that the measurement M on
AB collapses CD into a possibly entangled state �15,16,55�.
The average amount by which the measurement increases the
entanglement between Alice and Bob is then a lower bound
on C�M�. That is,

C�M� 	 �average final entanglement of CD�

− �initial entanglement between AC and BD� .

�4�

In the proof of the following proposition, the initial entangle-
ment is zero.

Proposition 2. Let M be a bipartite POVM consisting of
the operators �i��i���i�, where each ��i� is a normalized state
of particles A and B, each of which has a d-dimensional state
space. Then C�M� is at least as great as the average entangle-
ment �E� of the states ��i�. That is,

C�M� 	 �E� �
1

d2�
i

�iE���i�� . �5�

Proof. Let the initial state of ABCD be

�
� =
1

d
�
kl

�kk�AC�ll�BD, �6�

a tensor product of two maximally entangled states. Note
that the reduced density matrix of particles A and B is the
completely mixed state, in accordance with our definition of
the problem. When the measurement yields the outcome i, its
effect on �
� can be expressed in the form �61�

�
��
� → �
j

�Aij � ICD��
��
��Aij
†

� ICD� , �7�

where ICD is the identity on CD and the operators Aij act on
the state space of particles A and B, telling us what happens
to the system when the ith outcome occurs. The trace of the
right-hand side of Eq. �7� is not unity but is the probability of
the ith outcome. �Note that Aij may send states of AB to a
different state space, including, for example, the state space
of the system in which the classical record of the outcome is
to be stored. The index j is needed because the final state of
the system when outcome i occurs could be a mixed state.�
The operators Aij satisfy the condition

�
j

Aij
† Aij = �i = �i��i���i� . �8�

Applying the operation of Eq. �7� to the state of Eq. �6� and
then tracing out everything except particles C and D, one
finds that these particles are left in the state

���i���i���, �9�

where the asterisk indicates complex conjugation in the stan-
dard basis. This conjugation does not affect the entangle-
ment, so, when outcome i occurs, particles C and D are left
in a state with entanglement E���i��. The probability of this
outcome is �i /d2. So the average entanglement of CD after
the measurement has been performed is the quantity �E� of
Eq. �5�. But the average entanglement between the locations
of Alice and Bob cannot have increased as long as Alice and
Bob were restricted to local operations and classical commu-
nication. So in the process of performing the measurement,
Alice and Bob must have used up an amount of entangle-
ment equal to or exceeding �E�. �

In Secs. II–IV we improve these two bounds for a specific
measurement that we label Ma, an orthogonal measurement
on two qubits with eigenstates given by

��a
+� = a�00� + b�11�, ��a

−� = b�00� − a�11� ,

��a
+� = a�01� + b�10�, ��a

−� = b�01� − a�10� . �10�

Here a and b are non-negative real numbers with a	b and
a2+b2=1. Section II presents an improved upper bound for
this measurement, Sec. III derives a lower bound for a re-
stricted class of procedures, and Sec. IV derives an absolute
lower bound. We then consider a somewhat more general
measurement in Sec. V.

In Sec. VI we exhibit a class of bipartite measurements, in
dimension d�d, for which we can find a procedure that
achieves the lower bound of Eq. �5�. As noted earlier, these
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are the POVMs that are invariant under all local generalized
Pauli operations.

II. UPPER BOUND FOR Ma

One way to perform the measurement Ma is to perform
the following unitary transformation on the two qubits:

U = ei��y��x =
a 0 0 b

0 a b 0

0 − b a 0

− b 0 0 a
� , �11�

where cos �=a and sin �=b; the matrix is written in the
standard basis and the �’s are the usual Pauli matrices,

�x = �0 1

1 0
� and �y = �0 − i

i 0
� . �12�

Under this transformation, the four orthogonal states that de-
fine the measurement Ma are transformed into

��a
+� = a�00� + b�11� → �00� ,

��a
−� = b�00� − a�11� → − �11� ,

��a
+� = a�01� + b�10� → �01� ,

��a
−� = b�01� − a�10� → − �10� . �13�

So once the transformation has been done, the measurement
Ma can be completed locally; Alice and Bob both make the
measurement �0� versus �1� and tell each other their results.

The transformation U is equivalent to one that has been
analyzed in Refs. �39,40,44,48,52�, all of which give proce-
dures that are consistent with the rules we have set up for our
problem; that is, the procedures can be used to perform the
measurement once, rather than asymptotically, using arbi-
trary entangled states as resources. �Some of those papers
consider the asymptotic problem, but their procedures also
work in the setting we have adopted here.� It appears that the
procedure presented by Berry in Ref. �40� is the most effi-
cient one known so far. It is a multistage procedure, involv-
ing at each stage a measurement that determines whether
another stage and another entangled pair are needed.

We now present a measurement-based protocol for per-
forming Ma. The protocol can be derived from Berry’s and
yields the same upper bound on the cost, but we arrive at it
in a different way that may have conceptual value in the
analysis of other nonlocal measurements.

The construction of the protocol begins with the following
observations. If Alice were to try to teleport her qubit to Bob
using as a resource an incompletely entangled pair, she
would cause a nonunitary distortion in its state. With his
qubit and Alice’s distorted qubit, Bob could, with some prob-
ability less than one, successfully complete the measurement.
However, if he gets the wrong outcome, he will destroy the
information necessary to complete the measurement. We re-
quire the measurement always to be completed, so this pro-

tocol fails. On the other hand, suppose Alice, again using a
partially entangled pair, performs an incomplete teleporta-
tion, conveying to Bob only one rather than two classical
bits, and suppose Bob similarly makes an incomplete mea-
surement, extracting only one classical bit from his two qu-
bits. In that case, if the incomplete measurements are chosen
judiciously, a failure does not render the desired measure-
ment impossible but only requires that Alice and Bob do a
different nonlocal measurement on the qubits they now hold.
In the following description of the protocol, we have incor-
porated the unitary transformations associated with telepor-
tation into the measurements themselves, so that the whole
procedure is a sequence of local projective measurements.

Like Berry’s protocol, our protocol consists a series of
rounds, beginning with what we will call “round one.”

�1� Alice and Bob are given as a resource the entangled
state ��x

+�=x�00�+y�11�, where the positive real numbers x
and y �with x2+y2=1� are to be determined by minimizing
the eventual cost. Thus each participant holds two qubits: the
qubit to be measured and a qubit that is part of the shared
resource.

�2� Alice makes a binary measurement on her two qubits,
defined by two orthogonal projection operators,

P = ��+���+� + �
−��
−� ,

Q = ��−���−� + �
+��
+� . �14�

Here the Bell states ��� and �
� are defined by ���
= ��00� �11�� /�2 and �
�= ��01� �10�� /�2. Alice trans-
mits �classically� the result of her measurement to Bob.
�Here Alice is doing the incomplete teleportation. In a com-
plete teleportation she would also distinguish ��+� from �
−�
and ��−� from �
+�.�

�3� If Alice gets the outcome P, Bob performs the follow-
ing binary measurement on his two qubits:

P1 = ��1
+���1

+� + ��1
+���1

+� ,

Q1 = ��1
−���1

−� + ��1
−���1

−� . �15�

Here ��1
+�=A�00�+B�11�, ��1

−�=B�00�−A�11�, ��1
+�=B�01�

+A�10�, and ��1
−�=A�01�−B�10�, and the real coefficients

A and B are obtained from �a ,b� and �x ,y� via the equation
Ax /a=By /b, together with the normalization condition
A2+B2=1. �These values are chosen so as to undo the dis-
tortion caused by Alice’s imperfect teleportation.� On the
other hand, if Alice gets the outcome Q, Bob performs a
different binary measurement,

P2 = ��2
+���2

+� + ��2
+���2

+� ,

Q2 = ��2
−���2

−� + ��2
−���2

−� . �16�

Here ��2
+�=B�00�+A�11�, ��2

−�=A�00�−B�11�, ��2
+�=A�01�

+B�10�, and ��2
−�=B�01�−A�10�.

�4� If Alice and Bob have obtained either of the outcomes
P � P1 or Q � Q2, which we call the “good” outcomes, they
can now finish the desired measurement Ma by making local
measurements, with no further expenditure of entangled re-
sources. For example, if they get the outcome P � P1, Alice
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now distinguishes between ��+� and �
−� �which span the
subspace picked out by P� and Bob distinguishes between
��1

+� and ��1
+� �which span the subspace picked out by P1�.

The total probability of getting one of the two good out-
comes is

�probability� =
1

�a/x�2 + �b/y�2 . �17�

On the other hand, if they have obtained one of the other two
outcomes, P � Q1 or Q � P2—the “bad” outcomes—they find
that in order to finish the measurement Ma on their original
pair of qubits, they now have to perform a different measure-
ment Ma2

on the system that they now hold. �Even though
each participant started with two qubits, each of them has
now distinguished a pair of two-dimensional subspaces, ef-
fectively removing one qubit’s worth of quantum informa-
tion. So the remaining quantum information on each side can
be held in a single qubit.� The measurement Ma2

has the
same form as Ma but with new values a2 and b2 instead of a
and b. The new values are determined by the equations

a2 =
�x2 − y2�ab
�x4b2 + y4a2

, b2 = �1 − a2
2. �18�

In any case, Alice and Bob have now finished round one. If
they have obtained one of the bad outcomes, they now have
two choices: �i� begin again at step 1 but with the new values
a2 and b2 or �ii� use up a whole ebit to teleport Alice’s sys-
tem to Bob, who finishes the measurement locally. They
choose the method that will ultimately be less costly in en-
tanglement. If they choose option �i�, we say that they have
begun round two.

�5� This procedure is iterated until the measurement is
finished or until L rounds have been completed, where L is
an integer chosen in advance. In round j, the measurement
parameter aj is determined from the parameters aj−1 and xj−1
used in the preceding round according to Eq. �18� �with the
appropriate substitutions�. Here a1 and x1 are to be inter-
preted as the first-round values a and x.

�6� If L rounds are completed and the measurement is still
unfinished, Alice teleports her system to Bob, who finishes
the measurement locally.

The entanglement used in stage j of this procedure is
E���xj

+ ��=h�xj
2�, where h is the binary entropy function

h�z�=−�z log z+ �1−z�log�1−z��. From Eqs. �17� and �18�,
we therefore have the following upper bound on the cost of
the measurement Ma.

Proposition 3. For each positive integer j, let xj satisfy
0�xj �1. We define the functions F�a ,x� �failure probabil-
ity� and a��a ,x� �new value of the measurement parameter�
as follows:

F�a,x� = 1 −
1

�a/x�2 + �b/y�2 ,

a��a,x� =
�x2 − y2�ab
�x4b2 + y4a2

, �19�

where y= �1−x2�1/2 and b= �1−a2�1/2. Let B1�a ;x�=h�x2�
+F�a ,x�, and for each integer n	2, let Bn�a ;x1 , . . . ,xn� be
defined by

Bn�a;x1, . . . ,xn� = h�x1
2� + F�a,x1�Bn−1„a��a,x1�;x2, . . . ,xn… .

�20�

Then for each positive integer n, Bn�a ;x1 , ¯ ,xn� is an upper
bound on C�Ma�.

The protocol calls for minimizing the bound over the val-
ues of n and xj. This optimization problem is exactly the
problem analyzed by Berry. We present in Fig. 1 the minimal
cost as obtained by a numerical optimization, plotted as a
function of the entanglement of the eigenstates of the mea-
surement. �In constructing the curve, we have limited Alice
and Bob to two rounds. Additional rounds do not make a
noticeable difference in the shape of the curve, given our
choice of the axis variables.� We also show on the figure the
lower bound to be derived in Sec. IV. We note that so far, for
cases in which the entanglement of the eigenstates of Ma
exceeds around 0.55 ebits, there is no known measurement
strategy that does better than simple teleportation, with a cost
of 1 ebit.

III. LIMITATION TO A SINGLE ROUND

As it happens, most of the savings in the above strategy—
compared to the cost of simple teleportation—already ap-
pears in the first round. We now consider the single-round
case in more detail. It turns out that, at least for small values
of the entanglement of the eigenstates, we can determine
quite precisely the minimal cost of the measurement Ma
when Alice and Bob are restricted to a single round.

We begin by defining the class of measurement strategies
we consider in this section. A “single-round procedure” is a
measurement procedure of the following form. �i� Alice and
Bob are given the state x�00�+y�11� at first, with which they
try to complete the measurement. �ii� If they use this re-
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FIG. 1. �Color online� The solid curves are upper and lower
bounds on the entanglement cost of the measurement Ma. �The
derivation of the lower bound is in Sec. IV.� The diagonal dashed
line �red� is the general lower bound defined by the entanglement of
the states themselves and the horizontal dashed line �orange� is the
general upper bound based on teleportation.
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source but fail to carry out the measurement, Alice teleports
a qubit to Bob, who finishes the measurement locally. �For
the procedure outlined in Sec. II, this restriction amounts to
setting L equal to 1.� We refer to the minimum entanglement
cost entailed by any such procedure as the “single-round
cost.” In this section we find upper and lower bounds on the
single-round cost of Ma.

The minimal cost of the specific procedure outlined in
Sec. II, when it is restricted to a single round, is given by

�cost� = h�x2� + �1 −
1

�a/x�2 + �b/y�2� , �21�

where the value of x is chosen so as to minimize the cost.
�Here x2+y2=1 as before.� The two terms of Eq. �21� are
easy to interpret: the first term is the entanglement of the
shared resource that is used up in any case, and the second
term, obtained from Eq. �17�, is the probability of failure
�multiplied by the 1 ebit associated with the resulting tele-
portation�. Numerically minimizing the cost over values of x,
we obtain the upper curve in Fig. 2, which is thus an upper
bound on the single-round cost of Ma. The same upper
bound was obtained by Ye et al. �44� for performing the
corresponding nonlocal unitary transformation.

We can also find a good lower bound for such procedures
using a known upper bound on the probability of achieving a
certain increase in the entanglement of a single copy through
local operations and classical communication �62,63�. As in
all our lower-bound arguments, we consider a state in which
qubits A and B are initially entangled with auxiliary qubits C
and D, which will not be involved in the measurement. �As
before, Alice holds qubits A and C and Bob holds B and D.�
For our present purpose, we choose the initial state to be

��� = 1
2 ���a

+�AB��c
+�CD + ��a

−�AB��c
−�CD

+ ��a
+�AB��c

+�CD + ��a
−�AB��c

−�CD� . �22�

Here the states with the index c are defined as in Eq. �10� but
with c and d in place of a and b. We assume for definiteness
that 1�c�d�0, c and d to be determined later. Note that
again the reduced state of qubits A and B, after tracing out

the auxiliary qubits, is the completely mixed state, as it must
be to be consistent with our definition of the entanglement
cost. One can show directly from Eq. �22� that the eigenval-
ues of the density matrix of Alice’s �or Bob’s� part of the
system, that is, the squared Schmidt coefficients, are

�ac + bd�2 and �ad − bc�2. �23�

In addition to these qubits, Alice and Bob hold their en-
tangled resource, which we can take without loss of general-
ity to be in the state

��x
+� = x�00� + y�11� . �24�

They now try to execute the measurement by using up this
resource.

If Alice and Bob succeed in distinguishing the four states
	��a

+� , ��a
−� , ��a

+� , ��a
−�
, they will have collapsed qubits C and

D into one of the four corresponding states represented in ���.
Each of these states has Schmidt coefficients c2 and d2. Us-
ing a result of Jonathan and Plenio �63�, we can place an
upper bound on the probability of achieving the transforma-
tion from the state ��� � ��x

+� to one of the four desired final
states of qubits C and D. This probability cannot be larger
than

�
j=�

4

� j

�
j=�

2

� j

, �25�

where � j and � j are, respectively, the squared Schmidt coef-
ficients of the initial state and any of the desired final states
in decreasing order. �There are at most four nonzero Schmidt
coefficients in the initial state; hence the upper limit 4 in the
numerator. Similarly, the upper limit 2 in the denominator
reflects the fact that the final state, a state of C and D, has at
most two nonzero Schmidt coefficients.� In general, � can
take any value from 1 to the number of nonzero Schmidt
coefficients of the final state. In our problem there are only
two values of � to consider. The case �=1 tells us only that
the probability does not exceed unity, so the only actual con-
straint comes from the case �=2, which tells us that

�success probability� �
1 − �ac + bd�2x2

1 − c2 . �26�

The cost of any single-round procedure is therefore at least

�cost� 	 h�x2� + max�0,�1 −
1 − �ac + bd�2x2

1 − c2 �� ,

�27�

since a failure will lead to a cost of 1 ebit for the teleporta-
tion.

Alice and Bob will choose their resource pair, that is, they
will choose the value of x, so as to minimize the cost. So we
want to find a value of x that minimizes the right-hand side
of Eq. �27�. Because the probability of failure cannot be less
than zero, we can restrict our attention to values of x in the
range
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FIG. 2. �Color online� Upper and lower bounds on the entangle-
ment cost of the measurement Ma when Alice and Bob are re-
stricted to a single round before resorting to teleportation.
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c/�ac + bd� � x � 1. �28�

In this range, the cost is a concave function of x2, so the
function achieves its minimum value at one of the two end
points. We thus have the following lower bound on the cost
of any single-round procedure:

�cost� 	 min�h� c2

�ac + bd�2�,
�ac + bd�2 − c2

1 − c2 � . �29�

This bound holds for any value of c for which it is de-
fined. To make the bound as strong as possible, we want to
maximize it over all values of c. In the range 1 /�2�c�a,
the first entry in Eq. �29� is a decreasing function of c,
whereas the second entry is increasing. �For larger values of
c, both functions are decreasing until they become undefined
at c= �ac+bd�. Beyond this point we would violate Eq. �28�.�
Therefore, we achieve the strongest bound when the two
entries are equal. That is, we have obtained the following
result.

Proposition 4. The single-round cost of the measurement
Ma is bounded below by the quantity

�ac + bd�2 − c2

1 − c2 , �30�

where d= �1−c2�1/2 and c is determined by the equation

h� c2

�ac + bd�2� =
�ac + bd�2 − c2

1 − c2 . �31�

We have solved this equation numerically for a range of
values of a and have obtained the lower of the two curves in
Fig. 2. For very weakly entangled eigenstates—that is, at the
left-hand end of the graph where the parameter b is small—
the single-round upper bound and the single-round lower
bound shown in the figure are very close to each other. In
fact, we find analytically that for small b, both the upper and
lower bounds can be approximated by the function
2b�log�1 /b� in the sense that the ratio of each bound with
this function approaches unity as b approaches zero �see the
Appendix for the argument�. In terms of the entanglement E
of the states, we can say that for small b, the single-round
cost of the measurement is approximately equal to �2E. Thus
in this limit, we have a very good estimate of the cost of the
measurement but only if we restrict Alice and Bob to a single
round. We would prefer to have a lower bound that applies to
any conceivable procedure and that is still better than the
general lower bound we derived in Sec. I. We obtain such a
bound in Sec. IV.

IV. ABSOLUTE LOWER BOUND FOR Ma

Again, we imagine a situation in which Alice and Bob
hold two auxiliary qubits, C and D, which will not be in-
volved in the measurement. We assume the same initial state
as in Sec. III,

��� = 1
2 ���a

+�AB��c
+�CD + ��a

−�AB��c
−�CD

+ ��a
+�AB��c

+�CD + ��a
−�AB��c

−�CD� . �32�

As before, we are interested in the entanglement between
Alice’s part of the system and Bob’s part, that is, between
AC and BD. This entanglement is

Einitial = h��ac + bd�2� . �33�

If Alice and Bob perform the measurement Ma, the final
entanglement of CD is

Efinal = h�c2� . �34�

The quantity Efinal−Einitial is thus a lower bound on the cost of
Ma, as expressed in the following proposition.

Proposition 5. Let c satisfy 0�c�1 and let d
= �1−c2�1/2. Then C�Ma�	h�c2�−h��ac+bd�2�.

By maximizing this quantity numerically over the param-
eter c, we get our best absolute lower bound on the entangle-
ment cost C�Ma�. This bound is plotted in Fig. 1. What is
most interesting about this bound is that, except at the ex-
treme points where the eigenstates of the measurement are
either all unentangled or all maximally entangled, the bound
is strictly larger than the entanglement of the eigenstates
themselves. This is another example, then, showing that the
nonseparability of the measurement can exceed the nonsepa-
rability of the states that the measurement distinguishes.

Not only is our new lower bound absolute in the sense
that it does not depend on the number of rounds used by
Alice and Bob, it applies even asymptotically. Suppose, for
example, that Alice and Bob are given n pairs of qubits and
are asked to perform the same measurement Ma on each pair.
It is conceivable that by using operations that involve all n
pairs, Alice and Bob might achieve an efficiency not possible
when they are performing the measurement only once. Even
in this setting, the lower bound given in proposition 5 ap-
plies. That is, the cost of performing the measurement n
times must be at least n times our single-copy lower bound.
To see this, imagine that each of the given pairs of qubits is
initially entangled with a pair of auxiliary qubits. Both the
initial entanglement of the whole system �that is, the en-
tanglement between Alice’s side and Bob’s side� and the final
entanglement after the measurement are simply proportional
to n, so that the original argument carries over to this case.

It is interesting to look at the behavior of the upper and
lower bounds as the parameter b approaches zero, that is, as
the eigenstates of the measurement approach product states.
Berry has done this analysis for the upper bound and has
found that for small b, the cost is proportional to b, with
proportionality constant 5.6418. For our lower bound, it is a
question of finding the value of c �with c2+d2=1� that maxi-
mizes the difference

h�c2� − h��ac + bd�2� �35�

for small b. One finds that for small b, the optimal value of c
approaches the constant value c=0.28848 �the numerical so-
lution to the equation �d2−c2�ln�d /c�=1�, for which the
bound is approximately equal to 1.9123b. Comparing this
result with the upper bound in the limit of vanishingly small
entanglement, 5.6418b, we see that there is still a sizable gap
between the two bounds.

The same limiting form, 1.9123b, appears in Ref. �41� as
the entanglement production capacity of the unitary transfor-
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mation of Eq. �11� for small b. In fact, by extending the
argument in Ref. �41� to noninfinitesimal transformations,
one obtains the entire lower-bound curve in Fig. 1. Thus our
lower bound for the cost of the measurement Ma is also a
lower bound for the cost of the corresponding unitary trans-
formation. We note, though, that the two optimization prob-
lems are not quite the same. To get a bound on the cost of the
measurement, we maximized h�c2�−h��ac+bd�2�. To find
the entanglement production capacity of the unitary transfor-
mation, one maximizes h��ac+bd�2�−h�c2�. Though the
questions are different, it is not hard to show that maximum
value is the same in both cases.

V. EIGENSTATES WITH UNEQUAL ENTANGLEMENTS

We now consider the following variation on the measure-
ment Ma. It is an orthogonal measurement that we call Ma,c,
with eigenstates

��a
+� = a�00� + b�11�, ��a

−� = b�00� − a�11� ,

��c
+� = c�01� + d�10�, ��c

−� = d�01� − c�10� , �36�

where all the coefficients are real and non-negative and all
the states are normalized. For this measurement we again use
the entanglement production argument to get a lower bound.
In this case we take the initial state of qubits ABCD to be

��� = 1
2 ���a

+�AB��a�
+ �CD + ��a

−�AB��a�
− �CD + ��c

+�AB��c�
+ �CD

+ ��c
−�AB��c�

− �CD� , �37�

where the real parameters a� and c� are to be adjusted to
achieve the most stringent lower bound. This initial state has
an entanglement between Alice’s location and Bob’s location
�that is, between AC and BD� that is equal to the Shannon
entropy of the following four probabilities:

�aa� + bb� + cc� + dd��2/4, �aa� + bb� − cc� − dd��2/4,

�ab� − ba� + dc� − cd��2/4, �ab� − ba� − dc� + cd��2/4.

�38�

Once the measurement is completed, the final entanglement
of the CD system, on average, is

�h�a�2� + h�c�2��/2. �39�

The difference between the final entanglement and the initial
entanglement is a lower bound on C�Ma,c�, which we want to
maximize by our choice of a� and c�. We have again done
the maximization numerically for many values of the mea-
surement parameters a and c, covering their domain quite
densely. We plot the results in Fig. 3.

In almost every case, the resulting lower bound is higher
than the average entanglement of the eigenstates of the mea-
surement. The only exceptions we have found, besides the
ones already mentioned in Sec. IV �in which all the states are
maximally entangled or all are unentangled�, are those for
which two of the measurement eigenstates are maximally
entangled and the other two are unentangled. That is, this

method does not produce a better lower bound for the mea-
surement with eigenstates

��+�, ��−�, �01�, �10� �40�

or for the analogous measurement with ��� replaced by
�
� and with the product states suitably replaced to make
the states mutually orthogonal. In all other cases the cost of
the measurement is strictly greater than the average entangle-
ment of the states.

The measurement Ma,c has been considered in Ref. �15�,
whose results likewise give a lower bound on the cost:
C�Ma,b�	1−log�a2+c2� �where a	b and c	d�. This
bound is weaker than the one we have obtained in part be-
cause we have followed the later paper �Ref. �16�� in assum-
ing an initial pure state rather than a mixed state of ABCD.

VI. MEASUREMENTS FOR WHICH THE GENERAL
LOWER BOUND CAN BE ACHIEVED

Here we consider a class of measurements for which the
cost equals the average entanglement of the states associated
with the POVM elements. We begin with another two-qubit
measurement, which we then generalize to arbitrary dimen-
sion.

A. Eight-outcome measurement

A measurement closely related to Ma is the measurement
Ma

�8�, which has eight outcomes, represented by a POVM
whose elements �i=�i��i���i� all have �i=1 /2, with the
eight states ��i� given by

��a
+� = a�00� + b�11�, ��a

−� = b�00� − a�11� ,

��a
+� = a�01� + b�10�, ��a

−� = b�01� − a�10� ,

FIG. 3. Lower bound for the measurement Ma,c as computed
from the pure state given in Eq. �37�, plotted against the average
entanglement of the eigenstates �dashed line�. Different values of
the pair �a ,c� can be associated with the same point on the hori-
zontal axis but may yield different lower bounds, as indicated by
the gray area. The point touching the dashed line in the middle of
the graph represents a measurement with two Bell states and two
product states as in Eq. �40�.
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��b
+� = b�00� + a�11�, ��b

−� = a�00� − b�11� ,

��b
+� = b�01� + a�10�, ��b

−� = a�01� − b�10� . �41�

That is, they are the same states as in Ma, plus the four states
obtained by interchanging a and b. Thus, Alice and Bob
could perform the measurement Ma

�8� by flipping a fair coin
to decide whether to perform Ma or Mb. This procedure
yields the eight possible outcomes: there are two possible
outcomes of the coin toss, and for each one, there are four
possible outcomes of the chosen measurement. The coin toss
requires no entanglement, so the cost of this procedure is
equal to the cost of Ma �which is equal to that of Mb�. We
conclude that

C�Ma
�8�� � C�Ma� . �42�

As we will see shortly, the cost of Ma
�8� is, in fact, strictly

smaller for 0�a�1.
The measurement Ma

�8� is a nonorthogonal measurement,
but any nonorthogonal measurement can be performed by
preparing an auxiliary system in a known state and then per-
forming a global orthogonal measurement on the combined
system. We now show explicitly how to perform this particu-
lar measurement in a way that will allow us to determine the
value of C�Ma

�8��. To do the measurement, Alice and Bob
draw, from their store of entanglement, the entangled state
��a

+�=a�00�+b�11� of qubits C and D. �As always, Alice
holds C and Bob holds D.� Then each of them locally per-
forms the Bell measurement 	��+� , ��−� , �
+� , �
−�
 on
his or her pair of qubits.

The resulting 16-outcome orthogonal measurement on
ABCD defines a 16-outcome POVM on just the two qubits
A and B. For each outcome k of the global orthogonal mea-
surement, we can find the corresponding POVM element �k
of the AB measurement as follows:

�k = trCD	�k�IAB � ���a
+���a

+��CD�
 , �43�

where �k is the kth POVM element of the global measure-
ment. Less formally, we can achieve the same result by tak-
ing the “partial inner product” between the initial state ��a

+�
of the system CD and the kth eigenstate of the global mea-
surement. For example, the eigenstate ��+���+� yields the
following partial inner product:

���a
+�CD����+�AC��+�BD� , �44�

which works out to be �1/2� ��a
+�AB. The corresponding

POVM element on the AB system is �1/4� ��a
+���a

+�. Continu-
ing in this way, one finds the following correspondence be-
tween the 16 outcomes of the global measurement and the
POVM elements of the AB measurement.

��+���+� or ��−���−� → 1
4 ��a

+���a
+� ,

��+���−� or ��−���+� → 1
4 ��b

−���b
−� ,

��+��
+� or ��−��
−� → 1
4 ��a

+���a
+� ,

��+��
−� or ��−��
+� → 1
4 ��b

−���b
−� ,

�
+��
+� or �
−��
−� → 1
4 ��b

+���b
+� ,

�
+��
−� or �
−��
+� → 1
4 ��a

−���a
−� ,

�
+���+� or �
−���−� → 1
4 ��b

+���b
+� ,

�
+���−� or �
−���+� → 1
4 ��a

−���a
−� . �45�

Thus, even though there are formally 16 outcomes of the AB
measurement, they are equal in pairs, so that there are only
eight distinct outcomes, and they are indeed the outcomes of
the measurement Ma

�8�.
The cost of this procedure is E���a

+��=h�a2�. This is the
same as the average entanglement of the eight states repre-
senting the outcomes of Ma

�8�, which we know is a lower
bound on the cost. Thus the lower bound is achievable in this
case, and we can conclude that C�Ma

�8�� is exactly equal to
h�a2�.

We note that the POVM Ma
�8� is invariant under all local

Pauli operations. This fact leads us to ask whether, more
generally, invariance under such operations guarantees that
the entanglement cost of the measurement is exactly equal to
the average entanglement of the states associated with the
POVM elements. Section VI B shows that this is indeed the
case for complete POVMs.

B. Arbitrary complete POVM invariant under local
generalized Pauli operations

We begin by considering a POVM on a bipartite system
of dimension d�d, generated by applying generalized Pauli
operators to a single pure state ��0�. The POVM elements are
of the form �1 /d2��� j1k1j2k2

��� j1k1j2k2
�, where

�� j1k1j2k2
� = �Zj1Xk1 � Zj2Xk2���0� �46�

and each index runs from 0 to d−1. Here the generalized
Pauli operators X and Z are defined by

X�m� = �m + 1�, Z�m� = �m�m�, m = 0, . . . ,d − 1,

�47�

with �=exp�2�i /d� and with the addition understood to be
mod d. One can verify that the above construction generates
a POVM for any choice of ��0�.

In order to carry out this POVM, Alice and Bob use, as a
resource, particles C and D in the state ��0��, which has the
same entanglement as ��0�. �As before, the asterisk indicates
complex conjugation in the standard basis.� Alice performs
on AC, and Bob performs on BD, the generalized Bell mea-
surement whose eigenstates are

�Bjk� =
1
�d

Zj
� Xk�

r=0

d−1

�r,r� . �48�

To see that this method does effect the desired POVM, we
compute the partial inner products as in Sec. VI A,
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���0�CD
� ���Bj1k1

�AC � �Bj2k2
�BD�

=
1

d
�
r1,r2

��0�CD
� ZA

j1XC
k1ZB

j2XD
k2�r1,r1�AC�r2,r2�BD

=
1

d
�
r1,r2

ZA
j1ZB

j2�r1,r2�AB��0�CD
� XC

k1XD
k2�r1,r2�CD

=
1

d
ZA

j1ZB
j2 �

r1,r2

�r1,r2�AB�r1,r2�CDXC
k1XD

k2��0�CD

=
1

d
ZA

j1ZB
j2XA

k1XB
k2��0�AB =

1

d
�Zj1Xk1 � Zj2Xk2���0�AB.

�49�

Thus the combination of Bell measurements yields the
POVM defined by Eq. �46�.

We now extend this example to obtain the following
result.

Proposition 6. Let M be any complete POVM with a finite
number of outcomes, acting on a pair of systems each having
a d-dimensional state space, such that M is invariant under
all local generalized Pauli operations, that is, under the group
generated by X � I, Z � I, I � X, and I � Z. Then C�M� is
equal to the average entanglement of the states associated
with the outcomes of M, as expressed in Eq. �5�.

Proof. The most general such POVM is similar to the
one we have just considered, except that instead of a single
starting state ��0�, there may be an ensemble of states ��s�
with weights ps, s=1, . . . ,m, such that �ps=1. The POVM
elements �of which there are a total of md4� are
�ps /d2��� j1k1j2k2;s��� j1k1j2k2;s�, where

�� j1k1j2k2;s� = �Zj1Xk1 � Zj2Xk2���s� . �50�

�So ps /d2 plays the role of �i in Eq. �5�.� In order to perform
this measurement, Alice and Bob first make a random choice
of the value of s, using the weights ps. They then use, as a
resource, particles C and D in the state ��s�� and perform
Bell measurements as above. The cost of this procedure is
the average entanglement of the resource states, which is

�cost� = �
s

psE���s�� =
1

d2 �
j1k1j2k2s

ps

d2E��� j1k1j2k2;s�� = �E� .

�51�

But we know that �E� is a lower bound on C�M�. Since the
above procedure achieves this bound, we have that C�M�
= �E�. �

VII. DISCUSSION

As we discussed in Sec. I, a general lower bound on the
entanglement cost of a complete measurement is the average
entanglement of the pure states associated with the measure-
ment’s outcomes. Perhaps the most interesting result of this
paper is that, for almost all the orthogonal measurements we
considered, the actual cost is strictly greater than this lower
bound. The same is true in the examples of “nonlocality
without entanglement,” in which the average entanglement is

zero but the cost is strictly positive. However, whereas those
earlier examples may have seemed special because of their
intricate construction, the examples given here are quite
simple. The fact that the cost in these simple cases exceeds
the average entanglement of the states suggests that this fea-
ture may be a generic property of bipartite measurements. If
this is true, then in this sense the nonlocality of a measure-
ment is generically a distinct property from the nonlocality
of the eigenstates. �A related fact is that there exists a large
class of separable two-qubit operations that cannot be carried
out locally �10�. It is also interesting in this connection that
for certain questions of distinguishability of generic bipartite
states, the presence or absence of entanglement seems to be
completely irrelevant �31�.�

We have also found a class of measurements for which
the entanglement cost is equal to the average entanglement
of the corresponding states. These measurements have a high
degree of symmetry in that they are invariant under all local
generalized Pauli operations.

What is it that causes some measurements to be “more
nonlocal” than the states associated with their outcomes?
Evidently the answer must have to do with the relationships
among the states. In the original nonlocality without en-
tanglement measurement, the crucial role of these relation-
ships is clear: in order to separate any eigenstate �v� from any
other eigenstate �w� by a local measurement, the observer
must disturb some of the other states in such a way as to
render them indistinguishable. One would like to have a
similar understanding of the “interactions” among states
when the eigenstates are entangled. Some recent papers have
quantified relational properties of ensembles of bipartite
states �35,64�. Perhaps one of these approaches, or a different
approach yet to be developed, will capture the aspect of these
relationships that determines the cost of the measurement.
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APPENDIX: THE ONE-ROUND COST IN THE LIMIT
OF SMALL ENTANGLEMENT

1. Lower bound

Our lower bound on the one-round cost is given by Eqs.
�30� and �31�, which we rewrite here in an equivalent form,

�cost� 	
�ac + bd�2 − c2

d2 , �A1�

where d is determined by the equation
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h� �ac + bd�2 − c2

�ac + bd�2 � =
�ac + bd�2 − c2

d2 . �A2�

For a small value of the parameter b, we would like to obtain
an approximation to the value of d that solves Eq. �A2�. As
discussed in Sec. III, we are looking for a solution in the
range b�d�1 /�2 and the forms of the functions in Eq.
�A2� guarantee that there will be a unique solution in this
range. One can show that within this range, the right-hand
side of Eq. �A2� satisfies the inequalities

b

d
�

�ac + bd�2 − c2

d2 �
2b

d
. �A3�

Applying these same inequalities to the argument of the
function h on the left-hand side of Eq.�A2�, we have

bd

�ac + bd�2 �
�ac + bd�2 − c2

�ac + bd�2 �
2bd

�ac + bd�2 . �A4�

For sufficiently small b, the function h evaluated at the val-
ues appearing in Eq. �A4� is an increasing function, so we
can write

h� bd

�ac + bd�2� � h� �ac + bd�2 − c2

�ac + bd�2 � � h� 2bd

�ac + bd�2� .

�A5�

We can bound the entropies to obtain

− bd log b � h� �ac + bd�2 − c2

�ac + bd�2 � � − 16bd log b .

�A6�

Combining Eqs. �A2�, �A3�, and �A6�, we get

−
1

2
log b �

1

d2 � − 16 log b . �A7�

Thus d goes to zero as b goes to zero, but it does so much
more slowly.

We now use this observation to approximate each side
of Eq. �A2�. First, in the entropy function h�x�=−x log x
− �1−x�log�1−x�, for very small x we can ignore the second
term, so that Eq. �A2� can be simplified to

− log� �ac + bd�2 − c2

�ac + bd�2 � �
�ac + bd�2

d2 . �A8�

Now, with b very small and d of order 1 /�log�1 /b�, we can
approximate �ac+bd�2−c2 as

�ac + bd�2 − c2 � 2bd . �A9�

So the equation becomes −log�2bd�� 1
d2 , but since −log 2d

becomes negligible compared to −log b, we can just as well
write

− log b �
1

d2 . �A10�

Finally, the lower bound given by Eq. �A1� becomes

�lower bound� �
2bd

d2 � 2b�log�1/b� . �A11�

All of our approximations have been such that the ratio
between the approximating function and the exact function
approaches unity as b approaches zero. So the same is true of
the approximate expression 2b�log�1 /b� relative to the exact
lower bound.

2. Upper bound

Our upper bound for the single-round cost �Eq. �21�� is
the minimum over q in the range 0�q�1 /2 of the function

f�q� = h�q� + g�q� , �A12�

where

g�q� = 1 −
1

�a2/�1 − q�� + �b2/q�
. �A13�

�Here q is playing the role of y2 in Eq. �21�.� The function
g�q� decreases monotonically from the value 1 at q=0 to its
minimum value 2ab / �1+2ab� at q=b / �a+b�. Thus the mini-
mum value of g�q� approaches zero for small b and is at-
tained arbitrarily close to q=0. Therefore for sufficiently
small b, the function g�q�, as it falls to its minimum value,
falls farther than h�q� rises and the minimum value of f�q� is
less than 1. This minimum value is attained at some value of
q—call it q0—which is less than b / �a+b�. �Beyond that
point both h�q� and g�q� are increasing for q�1 /2.� More
simply, q0�b. So we can limit our attention to values of q
less than b.

With this limitation, for small b we can approximate the
function f�q� as

f�q� � − q log q +
q2 + b2

q + b2 . �A14�

Setting the derivative of this function equal to zero, we find
that q0 can be made arbitrarily close �in the sense that the
fractional error can be made arbitrarily small� to a solution of

b2

�q + b2�2 = − log q . �A15�

For small b there are two solutions to this equation with
q�b. The smaller one, with q of order exp�−1 /b2�, cor-
responds to a local maximum of f�q�, reflecting the fact
that the slope of h�q� approaches positive infinity as q
approaches zero, whereas the competing negative slope of
g�q� is finite at q=0. The other solution, with q approxi-
mately equal to b /�log�1 /b�, is therefore the one we want.
At this value we have f�q��2b�log�1 /b�. Again, the ap-
proximation is such that the ratio of the exact upper bound to
this approximate value approaches unity as b approaches
zero.

ENTANGLEMENT COST OF NONLOCAL MEASUREMENTS PHYSICAL REVIEW A 80, 012313 �2009�

012313-11



�1� C. H. Bennett, D. P. DiVincenzo, C. A. Fuchs, T. Mor, E.
Rains, P. W. Shor, J. A. Smolin, and W. K. Wootters, Phys.
Rev. A 59, 1070 �1999�.

�2� S. M. Cohen, Phys. Rev. A 77, 012304 �2008�.
�3� C. H. Bennett, D. P. DiVincenzo, T. Mor, P. W. Shor, J. A.

Smolin, and B. M. Terhal, Phys. Rev. Lett. 82, 5385 �1999�.
�4� D. P. DiVincenzo, T. Mor, P. W. Shor, J. A. Smolin, and B. M.

Terhal, Commun. Math. Phys. 238, 379 �2003�.
�5� D. P. DiVincenzo, D. W. Leung, and B. M. Terhal, IEEE Trans.

Inf. Theory 48, 580 �2002�.
�6� B. Groisman and L. Vaidman, J. Phys. A 34, 6881 �2001�.
�7� J. Walgate and L. Hardy, Phys. Rev. Lett. 89, 147901 �2002�.
�8� S. M. Cohen, Phys. Rev. A 75, 052313 �2007�.
�9� W. K. Wootters, Int. J. Quantum Inf. 4, 219 �2006�.

�10� R. Duan, Y. Feng, Y. Xin, and M. Ying, IEEE Trans. Inf.
Theory 55, 1320 �2009�.

�11� Y. Feng and Y. Shi, e-print arXiv:0707.3581.
�12� M. Koashi, F. Takenaga, T. Yamamoto, and N. Imoto, e-print

arXiv:0709.3196.
�13� Y.-X. Chen and D. Yang, Phys. Rev. A 66, 014303 �2002�.
�14� Y.-X. Chen and D. Yang, Phys. Rev. A 65, 022320 �2002�.
�15� S. Ghosh, G. Kar, A. Roy, A. Sen�De�, and U. Sen, Phys. Rev.

Lett. 87, 277902 �2001�.
�16� M. Horodecki, A. Sen�De�, U. Sen, and K. Horodecki, Phys.

Rev. Lett. 90, 047902 �2003�.
�17� S. Virmani, M. F. Sacchi, M. B. Plenio, and D. Markham,

Phys. Lett. A 288, 62 �2001�.
�18� J. Walgate, A. J. Short, L. Hardy, and V. Vedral, Phys. Rev.

Lett. 85, 4972 �2000�.
�19� A. Acín, E. Bagan, M. Baig, L. Masanes, and R. Muñoz-Tapia,

Phys. Rev. A 71, 032338 �2005�.
�20� Y. Ogata, J. Phys. A 39, 3059 �2006�.
�21� T. Eggeling and R. F. Werner, Phys. Rev. Lett. 89, 097905

�2002�.
�22� A. Chefles, Phys. Rev. A 69, 050307�R� �2004�.
�23� S. Bandyopadhyay and J. Walgate, J. Phys. A: Math. Theor.

42, 072002 �2009�.
�24� M. Nathanson, J. Math. Phys. 46, 062103 �2005�.
�25� M. Owari and M. Hayashi, Phys. Rev. A 74, 032108 �2006�.
�26� H. Fan, Phys. Rev. Lett. 92, 177905 �2004�.
�27� J. Watrous, Phys. Rev. Lett. 95, 080505 �2005�.
�28� M. Hayashi, D. Markham, M. Murao, M. Owari, and S. Vir-

mani, Phys. Rev. Lett. 96, 040501 �2006�.
�29� R. Duan, Y. Feng, Z. Ji, and M. Ying, Phys. Rev. Lett. 98,

230502 �2007�.
�30� P.-X. Chen and C.-Z. Li, Phys. Rev. A 68, 062107 �2003�.
�31� J. Walgate and A. J. Scott, J. Phys. A 41, 375305 �2008�.
�32� P. Badziag, M. Horodecki, A. Sen�De�, and U. Sen, Phys. Rev.

Lett. 91, 117901 �2003�.
�33� Z. Ji, H. Cao, and M. Ying, Phys. Rev. A 71, 032323 �2005�.
�34� M. Hillery and J. Mimih, Phys. Rev. A 67, 042304 �2003�.
�35� M. Horodecki, J. Oppenheim, A. Sen�De�, and U. Sen, Phys.

Rev. Lett. 93, 170503 �2004�.
�36� B. M. Terhal, D. P. DiVincenzo, and D. W. Leung, Phys. Rev.

Lett. 86, 5807 �2001�.

�37� A. Chefles, C. R. Gilson, and S. M. Barnett, Phys. Rev. A 63,
032314 �2001�.

�38� D. Collins, N. Linden, and S. Popescu, Phys. Rev. A 64,
032302 �2001�.

�39� J. I. Cirac, W. Dür, B. Kraus, and M. Lewenstein, Phys. Rev.
Lett. 86, 544 �2001�.

�40� D. W. Berry, Phys. Rev. A 75, 032349 �2007�.
�41� W. Dür, G. Vidal, J. I. Cirac, N. Linden, and S. Popescu, Phys.

Rev. Lett. 87, 137901 �2001�.
�42� J. Eisert, K. Jacobs, P. Papadopoulos, and M. B. Plenio, Phys.

Rev. A 62, 052317 �2000�.
�43� M. S. Leifer, L. Henderson, and N. Linden, Phys. Rev. A 67,

012306 �2003�.
�44� M.-Y. Ye, Y.-S. Zhang, and G.-C. Guo, Phys. Rev. A 73,

032337 �2006�.
�45� C. H. Bennett, A. W. Harrow, D. W. Leung, and J. A. Smolin,

IEEE Trans. Inf. Theory 49, 1895 �2003�.
�46� B. Kraus and J. I. Cirac, Phys. Rev. A 63, 062309 �2001�.
�47� P. Zanardi, C. Zalka, and L. Faoro, Phys. Rev. A 62,

030301�R� �2000�.
�48� B. Groisman and B. Reznik, Phys. Rev. A 71, 032322 �2005�.
�49� S. F. Huelga, J. A. Vaccaro, A. Chefles, and M. B. Plenio,

Phys. Rev. A 63, 042303 �2001�.
�50� S. F. Huelga, M. B. Plenio, and J. A. Vaccaro, Phys. Rev. A 65,

042316 �2002�.
�51� B. Reznik, Y. Aharonov, and B. Groisman, Phys. Rev. A 65,

032312 �2002�.
�52� W. Dür and J. I. Cirac, Phys. Rev. A 64, 012317 �2001�.
�53� B. Reznik, e-print arXiv:quant-ph/0203055.
�54� R. Jozsa, M. Koashi, N. Linden, S. Popescu, S. Presnell, D.

Shepherd, and A. Winter, Quantum Inf. Comput. 3, 405
�2003�.

�55� J. A. Smolin, Phys. Rev. A 63, 032306 �2001�.
�56� C. H. Bennett, H. J. Bernstein, S. Popescu, and B. Schuma-

cher, Phys. Rev. A 53, 2046 �1996�.
�57� C. H. Bennett, G. Brassard, S. Popescu, B. Schumacher, J. A.

Smolin, and W. K. Wootters, Phys. Rev. Lett. 76, 722 �1996�.
�58� C. H. Bennett, D. P. DiVincenzo, J. A. Smolin, and W. K.

Wootters, Phys. Rev. A 54, 3824 �1996�.
�59� One might wonder why we are using the average cost if we are

imagining each measurement being performed only once. The
reason is this: even in a series of distinct measurements, if the
series is long enough the actual cost will, with very high prob-
ability, be very close to the sum of the average costs of the
individual measurements.

�60� C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres,
and W. K. Wootters, Phys. Rev. Lett. 70, 1895 �1993�.

�61� K. Kraus, States, Effects, and Operations, Lecture Notes in
Physics Vol. 190 �Springer-Verlag, Berlin, 1983�.

�62� G. Vidal, Phys. Rev. Lett. 83, 1046 �1999�.
�63� D. Jonathan and M. B. Plenio, Phys. Rev. Lett. 83, 1455

�1999�.
�64� M. Horodecki, A. Sen�De�, and U. Sen, Phys. Rev. A 75,

062329 �2007�.

BANDYOPADHYAY et al. PHYSICAL REVIEW A 80, 012313 �2009�

012313-12


