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In the absence of a reference frame for transformations associated with group G, any quantum state that is
noninvariant under the action of G may serve as a token of the missing reference frame. We here present a
measure of the quality of such a token: the relative entropy of frameness. This is defined as the relative entropy
distance between the state of interest and the nearest G-invariant state. Unlike the relative entropy of entangle-
ment, this quantity is straightforward to calculate, and we find it to be precisely equal to the G-asymmetry, a
measure of frameness introduced by Vaccaro et al. It is shown to provide an upper bound on the mutual
information between the group element encoded into the token and the group element that may be extracted
from it by measurement. In this sense, it quantifies the extent to which the token successfully simulates a full
reference frame. We also show that despite a suggestive analogy from entanglement theory, the regularized
relative entropy of frameness is zero and therefore does not quantify the rate of interconversion between the
token and some standard form of quantum reference frame. Finally, we show how these investigations yield an
approach to bounding the relative entropy of entanglement.
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I. INTRODUCTION

Transformations are defined relative to reference frames.
For instance, a rotation can only be implemented relative to a
physical system—such as a gyroscope—that defines the axis
of rotation. When a reference frame for some particular
group of transformations is lacking, a quantum state that is
noninvariant under the action of the group may serve as a
token of it, allowing one to emulate operations that would
normally require the reference frame. This is analogous to
the manner in which an entangled state can stand in for a
quantum channel through the teleportation protocol. Indeed,
just as an entangled state is a resource, so too is a quantum
token of a reference frame and to make best use of it one
must determine how it is interconverted from one form to
another and distilled into a standard form �1–3�, how it is
exploited to perform noninvariant operations �4,5�, and how
it degrades with use �6,7�. In this paper, we seek to quantify
the quality of particular quantum states as tokens of a refer-
ence frame.

To be operational, a measure of frameness must be mono-
tonically nonincreasing under G-invariant operations in
which case it is called a G -frameness monotone �3� �see also
Appendix A of Ref. �6��. There are many types of such mea-
sures. One type quantifies the extent to which tasks requiring
the reference frame can be implemented using only the quan-

tum token. Because it measures the ability of the quantum
sample to simulate the classical reference frame, we call this
a simulation measure. The second quantifies the degree to
which the quantum sample can be converted to �or obtained
from� some standard form. Measures of this type will be
called conversion measures. A preliminary investigation of
these was undertaken in Ref. �3�. Finally, one can consider a
more abstract approach, the operational significance of
which is not clear a priori: define a geometric measure of
frameness by the distance of a given frame state to the near-
est G-invariant state. We shall have something to say about
each type of measure.

Our focus is the analog for reference frames of the rela-
tive entropy of entanglement �8�. The latter is a geometric
measure of entanglement for mixed states, specifically, the
relative entropy distance between an entangled state and the
nearest separable state. By analogy, we define the relative
entropy of G-frameness to be the relative entropy distance
between a frame state and the nearest G-invariant state.
Whereas the problem of finding an explicit formula for the
relative entropy of entanglement is extremely difficult �in-
deed, it remains an open problem even in the case of two
qubits �9��, we find that the relative entropy of frameness is
easy to calculate. In fact, it turns out to be precisely equal to
the G-asymmetry of Vaccaro et al. �10� defined as the differ-
ence between the von Neumann entropy of the G-twirled
state and that of the state itself. This is the main result of Sec.
II. We calculate the G-asymmetry explicitly in a few special
cases.

Vaccaro et al. showed that the G-asymmetry provides a
tight upper bound on the amount of work that can be ex-
tracted from the quantum token of the reference frame. We
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demonstrate in Sec. III that it also has operational signifi-
cance as a simulation measure providing an upper bound on
the extent to which the token can encode information about a
group element.

We also show that the G-asymmetry is relevant for con-
version measures. This might be expected from analogy with
entanglement theory. We know that the regularized relative
entropy of entanglement is equal to the entanglement of dis-
tillation for a set of states that can be reversibly transformed
into pure states by Local Operations and Classical Comuni-
cations �LOCC� �11�, and in particular for pure bipartite
states it is equal to the entropy of entanglement. Further-
more, the results of Horodecki et al. �11� suggest that for a
class of states that can be reversibly transformed from one
state to another by a set of allowed operations, the regular-
ized relative entropy distance to a set of nonresource states
always quantifies the rate of distillation to a standard form of
the resource.1

However, in Sec. IV D 2 we show that the regularized
relative entropy of frameness is always zero. This happens
because the relative entropy of G-frameness, the most natural
geometric measure of G-frameness, and a useful simulation
measure of G-frameness is not an extensive quantity in the
thermodynamic sense. By contrast, the relative entropy of
entanglement is an extensive quantity. This fundamental dif-
ference between the resource theory of quantum reference
frames and the resource theory of entanglement is likely to
be significant for making sense of other differences one finds
when comparing the two sorts of resources.

Although its regularization is always zero, we conjecture
that the relative entropy of frameness still has relevance for
conversion measures. We discuss this possibility in Sec.
IV E.

The ease with which one can compute the relative entropy
of frameness is a consequence of the fact that there is an
operation �the G-twirling operation� that maps all states to
states that have no frameness �the G-invariant ones�. Insofar
as this feature might be reproduced in other resource theo-
ries, we expect that a geometric measure of such resources—
the relative entropy distance to nonresource states—might be
similarly easy to calculate. Specifically, we demonstrate via
theorem 3 that if the set of nonresource states is the image of
some operation E acting on the full set of states and further-
more E is both a unital and idempotent superoperator, then
the relative entropy distance of an arbitrary state � to the set
of nonresource states can be easily calculated: it is simply the
relative entropy distance between � and E���. Even if a re-
source theory fails to have this feature, some insight may be
gained into geometric measures of the resource. For instance,
in the case of entanglement theory, one might expect to find
some interesting upper bounds on the relative entropy of
entanglement by identifying operations that map all states to
separable ones. In Sec. V we show that this is indeed the case
by identifying some operations of this sort. The bounds we
obtain in this way are found to be tight in some cases.

II. RELATIVE ENTROPY OF G-FRAMENESS
AND THE G-ASYMMETRY

Let G be a finite or compact Lie group with a unitary
representation T :G→B�H�, where B�H� denotes the
bounded operators on the Hilbert space H. Let S�H� be the
set of normalized states. The set of G-invariant states is de-
noted by inv�G�,

inv�G� � ��� ∀ g � G:T�g��T†�g� = �,� � S�H�� .

These are clearly the only states that can be prepared by
someone who lacks a reference frame for transformations
associated with the group G. For instance, if one does not
have a physical system to define “up along the ẑ axis,” then
it is impossible to prepare a spin-1/2 system in an eigenstate
of angular momentum along the ẑ axis. The fact that the
restriction of lacking a reference frame takes this form �that
of a superselection rule� is discussed at length in previous
work, such as Sec. II of Ref. �12� and Sec. IIA of Ref. �3�, to
which we refer the reader.

It is useful to note two other ways in which the set of
G-invariant states may be characterized. Let G :B�H�
→B�H� be the trace-preserving completely positive linear
map

G��� � 	
G

dgT�g��T†�g� , �1�

which averages over the action of the group G with the
G-invariant �Haar� measure dg. �For a finite group, one sim-
ply replaces the integral with a sum.� Here, G is called the G
-twirling operation.

The set of G-invariant states is equivalent to the set of
states that are fixed points of G,

inv�G� = Fix�G� � ���G��� = �,� � S�H�� . �2�

This is easily verified to be a consequence of the invariance
of the measure.

The set of G-invariant states is also equivalent to the im-
age of G,

inv�G� = Image�G� � ���� = G���,� � S�H�� . �3�

To see this, we make use of the following fact, the proof of
which is straightforward.

Lemma 1. For a map E, Image�E�=Fix�E� if and only if
E2=E �that is, E is idempotent�.

Given that the G-twirling operation G is idempotent �this
follows trivially from the invariance of the measure�, we
infer from this lemma that Image�G�=Fix�G�, and conse-
quently Eq. �2� implies Eq. �3�. We are now in a position to
define our measure of frameness.

Recall that the relative entropy distance between � and �
is

S�� 
 �� � Tr�� log �� − Tr�� log �� �4�

=− S��� − Tr�� log �� , �5�

where S denotes the von Neumann entropy and where all the
logarithms are in base 2.

1Indeed, the fact that this suggestion contradicts the results of our
previous work on distilling a standard form of reference frame �3�
motivated some of this work.
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Definition 1. The relative entropy of G-frameness of a
state ��S�H� is the relative entropy distance of � to the
nearest G-invariant state,

Rinv�G���� = min
��inv�G�

�S�� 
 ��� .

Vaccaro et al. �10� introduced the following measure of
frameness:

Definition 2. The G-asymmetry of a state ��S�H� is

AG��� � S„G���… − S��� ,

where S denotes the von Neumann entropy.
The G-asymmetry was proven to be a G-frameness mono-

tone in Ref. �10� �more precisely, it was shown to be, in the
terminology of Ref. �3�, an ensemble monotone�. This con-
firms that it is a good measure of frameness. It also has the
nice feature of being non-negative and equal to zero for
G-invariant states.

Our first result is the following:
Proposition 2. The relative entropy of G-frameness is

equal to the G-asymmetry and the G-invariant state with the
smallest relative entropy distance to � is G���,

min
��inv�G�

S�� 
 �� = S�G���� − S��� = S�� 
 G���� .

Special cases of this result have been derived in previous
work. Specifically, Åberg’s relative entropy of superposition
�13�, which seeks to quantify the degree of superposition
relative to an orthogonal decomposition of the Hilbert space,
is equivalent to the relative entropy of U�1� frameness where
the irreducible representations of U�1� pick out the orthogo-
nal decomposition. The results of Ref. �13� therefore imply
proposition 2 for the case of G=U�1�. In the further special-
ized case where there is no multiplicity in the representations
of U�1� the result was proven by Horodecki et al. �14�.

Proposition 2 is itself a special case of a much more gen-
eral result which we shall present as a theorem. In Sec. V, it
will be used to provide a bound on the relative entropy of
entanglement.

To state and prove the theorem we recall some relevant
definitions and properties of a quantum channel E :S�H�
→S�H�. The adjoint of a superoperator is defined by the
Hilbert-Schmidt inner product, specifically, Tr�AE�B��
=Tr�E†�A�B� for all A ,B�S�H�. The channel E is called
unital if E�I�= I. By the results of Ref. �15� we know that the
fixed-point set of a unital channel is an algebra. Specifically,
if the quantum channel has the Kraus decomposition E���
=�aEa�Ea

†, then the fixed-point set of E is the algebra A
given by the commutant of �Ea ,Ea

†�,

A = �� � B�H�:��,E� = 0 ∀ E � �Ea,Ea
†�� . �6�

This means that the fixed-point set for a unital trace-
preserving quantum operation E is equivalent to that of E†.
Moreover we can deduce that for ��Fix�E�

E†��n� = �n �7�

for all integers n.
Theorem 3. Suppose E is a trace-preserving completely

positive map that satisfies the following two properties: �i� it

is unital and �ii� it is idempotent or equivalently �by lemma
1� every state in the image of E is a fixed point of E,

Image�E� = Fix�E� . �8�

In this case, the minimum relative entropy distance between
an arbitrary state ��S�H� and a state �� Image�E� satisfies

min
��Image�E�

S�� 
 �� = S�E���� − S��� �9�

=S�� 
 E���� . �10�

Proof. By the definition of the relative entropy,

min
��Image�E�

S�� 
 �� = − S��� + min
��Image�E�

�− Tr�� log ��� .

�11�

The proof of Eq. �9� then proceeds in two steps. First, it is
shown that for ��S�H� and �� Image�E�,

Tr�� log �� = Tr�E���log �� . �12�

Second, it is shown that

min
��Image�E�

�− Tr�E���log ��� = S�E���� . �13�

We begin by establishing Eq. �12�. By definition of the
adjoint of a superoperator we have

Tr�E���log �� = Tr��E†�log ��� .

It follows from Eq. �7� that for �� Image�E� and for any
analytic function f ,

E†�f���� = f��� .

Recalling that the function log�1−x� is analytic for 0�x
�1, it follows that log�I−X� is analytic if the operator X
satisfies 0�X� I. Given that 0� I−�� I, it follows that

E†�log �� = log � ,

which concludes the first step of the proof.
To demonstrate Eq. �13�, it suffices to note that by Klein’s

inequality �16�, the relative entropy distance is non-negative,

S�E��� 
 �� � 0,

with equality achieved if and only if �=E��� so that

min
��Image�E�

S�E��� 
 �� = 0.

By the definition of the relative entropy, it follows that

− S�E���� + min
��Image�E�

�− Tr�E���log ��� = 0,

which establishes Eq. �13� and concludes the proof of Eq.
�9�.

Equation �10� is shown as follows. By the definition of
the relative entropy,

S�� 
 E���� = − S��� − Tr�� log E���� .

But applying Eq. �12� with �=E���, we have
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Tr�� log E���� = Tr�E���log E���� = − S�E���� .

�
Proposition 2 is a corollary of theorem 3 because the

G-twirling operation satisfies both of the requisite conditions
of the theorem. Property �i� that G is unital is trivial to see,
and property �ii� that G2=G follows from the invariance of
the measure dg in G, as noted below lemma 1.

We compute the relative entropy of frameness in several
simple examples in the Appendix.

III. SIGNIFICANCE FOR SIMULATION MEASURES
OF FRAMENESS

Vaccaro et al. �10� demonstrated that the G-asymmetry of
a state � has the following operational significance: it pro-
vides a tight upper bound on the thermodynamic work that
can be extracted from � �with the help of another state�. We
shall demonstrate that it also provides a bound on the state’s
information content about the group G.

Consider that the most common use to which one would
put a quantum sample of a reference frame is the task of
estimating the relative orientation of a pair of reference
frames. Here the quantum state is prepared relative to one
reference frame and is measured relative to another. The task
is to gain information about the group element describing the
relative orientation of the two reference frames.

The estimator is faced with distinguishing states ���g� �g
�G�, where ��g�=T�g��T†�g�. The measurement is denoted
by E :G→P�H�, where E�g��dg��0 and �E�g��dg�= I with
dg as the G-invariant measure.

The figure of merit for the task can be defined in terms of
the probability density p�g� �g�=Tr���g�E�g��� associated
with estimating that the relation is g� when the actual rela-
tion is g. Typically, the figure of merit has been defined in
terms of a cost function, leading, for instance, to a consider-
ation of the fidelity between g� and g. However, another
natural measure of how much information has been gained
about the group element is the mutual information between
g� and g,

H�g�:g� =	 dgdg�p�g�,g�log
p�g�,g�

p�g��p�g�
,

where p�g� ,g� is the joint probability density of preparing g
and estimating g�. The accessible information is the maxi-
mum of the mutual information in a variation over the choice
of measurement,

max
E

H�g�:g� .

This is simply the classical channel capacity for a channel
that randomizes over the action of the group G but where the
variables are continuous rather than discrete. Holevo �17�
provided an upper bound on the quantum channel capacity
for the case of discrete variables, which is readily general-
ized to the case of continuous variables �18�. In our case, it
yields

max
E

H�g�:g� � S	 dgT�g��T†�g�� −	 dgS�T�g��T†�g�� .

But given that the entropy is invariant under unitaries,
S�T�g��T†�g��=S���, and making use of the G-twirling op-
eration of Eq. �1�, we find that the Holevo bound is simply
the G-asymmetry,2

max
E

H�g�:g� � S�G���� − S��� .

Consequently, the G-asymmetry of a state � provides an up-
per bound on the amount of information about the reference
frame that can be encoded in �.

IV. SIGNIFICANCE FOR CONVERSION MEASURES
OF FRAMENESS

A. Review of conversion measures of frameness

We begin by reviewing what is known about conversion
measures of frameness. In Ref. �3�, several conversion mea-
sures were defined. Three sorts of manipulations of frame
states were considered: single-copy deterministic transforma-
tions, single-copy stochastic transformations, and asymptotic
deterministic transformations �i.e., transformations among
many copies in the limit that the number of copies is infi-
nite�. These were considered only for pure states and for the
groups Z2, U�1�, and SU�2�.3

We will focus here on asymptotic interconversion of
frame states. We begin with a few general comments on
asymptotic rates of conversion. In fact, these comments ap-
ply to any resource theory, and consequently, we state them
in a generic form. For an arbitrary pair of resource states, one
may find that interconversion, though possible, cannot be
achieved reversibly. In other words, one might find that the
conversion rate in one direction is not the inverse of the
conversion rate in the opposite direction. In this case, one
can distinguish the rate at which one can produce a “gold
standard” resource state from the given state �the amount of
the standard that can be distilled from the given state� and
the rate at which one can produce the given state from that
standard �the cost of the given state, in terms of the stan-
dard�. However, one can always classify the resource states
into classes, such that reversible asymptotic interconversion
is possible within but not between the classes. Within each
such class, one can choose a particular state as the standard
and the rate at which one can convert any state in the class
into this standard form becomes a unique measure of frame-
ness �from which any other rate of asymptotic interconver-
sion among states in the class can be determined�. The most

2The equality of the G-asymmetry and the Holevo � quantity was
noted in Ref. �10�.

3We are only interested in frame states as unipartite resources. The
resource theory arising from the restriction of two parties having
neither local nor shared reference frames and only able to imple-
ment local operations and classical communication has been con-
sidered by several authors �1,2�, and some have proposed measures
of the degree to which quantum states can stand in for a shared
reference, but we shall not consider this case here.
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simple resource theories are those for which there is only a
single class, that is, all state are reversibly interconvertible
one to the other.

As a concrete example, in entanglement theory, the pure
bipartite entangled states form a single class: any entangled
state can be converted asymptotically into any other. How-
ever, the pure tripartite entangled states are divided into
many classes.

For quantum reference frames, something similar occurs.
As shown in Ref. �3�, as one varies the nature of the group,
one varies the number of classes within which reversible
interconversion of pure frame states is possible. There is only
a single class for the group Z2 but many classes for U�1� and
SU�2�.

Furthermore, the unique measure of frameness within
some of these classes has been determined in Ref. �3�. For
instance, one class of U�1�-noninvariant states within which
reversible asymptotic interconversion is the class of states
with a gapless number spectrum. Here, the variance over
number is the unique conversion measure of U�1� frameness
within this class, from which the rate of interconversion be-
tween any two can be computed by taking the ratio. This
concludes the review material.

B. Suggestive but misleading analogy

The question we seek to address in this section is whether
the relative entropy of frameness is relevant to conversion
measures of frameness. That this might be the case is sug-
gested by analogy to some results from entanglement theory.
In particular, in Ref. �11� it is shown that the regularized
version of the relative entropy of entanglement is the unique
measure of entanglement. By analogy, one might expect that
for classes of states within which reversible interconversion
is possible, the regularized version of the relative entropy of
frameness might be the unique measure of frameness, from
which all rates of interconversion can be inferred.

At first glance, this idea seems to be supported by Ref.
�11� because the relevant result therein is supposed to be true
for all resource theories, not just entanglement theory. Spe-
cifically, the authors seem to show that for an arbitrary re-
source theory, the regularized relative entropy distance from
the given resource state to the set of nonresource states gives
the unique measure of a resource within a class of states
wherein reversible interconversion is possible.

This suggests that in the case of the reference frame re-
source theory the unique measure of frameness is obtained
by

AG
����N� = lim

N→�

1

N
AG���N� . �14�

However, as we will show below, the above expression is
always zero for finite and compact Lie groups and conse-
quently cannot be used to compute the rate of interconver-
sion among states.

The moral of the story is that the result of Ref. �11� only
applies if the regularized relative entropy is nonzero and fi-
nite. This constraint was not made explicit in Ref. �11�, and
this produced the mistaken impression that the regularized

relative entropy must always be the unique measure of a
resource.

Nonetheless, the relative entropy of a resource may still
have some significance for conversion measures. For in-
stance, as we will show in Sec. IV E, in the case of a phase
reference one obtains the asymptotic rate of interconversion
by regularization of a nonlinear function of the relative en-
tropy of U�1� frameness.

In order to clarify what conclusions can and cannot be
drawn from the results of Ref. �11�, we begin by providing a
detailed review of the latter.

C. Rederivation of the result of Ref. [11]

Given a measure of a resource f���, its regularized ver-
sion is defined by

f���� = lim
N→�

1

N
f���N� .

The regularized version of a resource is always additive;
simply note that

f����2� = lim
N→�

1

N
f���2N� = lim

M→�

2

M
f���M� = 2f���� .

We will focus now on measures that are asymptotically
continuous. Recall that a function f is asymptotically con-
tinuous if for the sequences �n ,�n of states on Hilbert space
Hn, limn→�
�n−�n
1→0 implies �19�

lim
n→�

f��n� − f��n�
1 + log�dim Hn�

→ 0.

A resource theory is defined by a set C of operations
�those that can be implemented without the resource�. Con-
sider a set S of states that are reversibly interconvertible
asymptotically in the resource theory, that is, for any pair
� ,��S, there exists an operation E�C such that

lim
N→�


E���N� − ��M�N�
1 → 0, �15�

where M�N� is an integer depending on N. Since the states
are reversibly interconvertible it implies that there exists an
operation F�C such that

lim
N→�


F���M�N�� − ��N
1 → 0. �16�

Suppose f is a deterministic monotone relative to opera-
tions in C, that is,

∀�, ∀ E � C, f�E���� � f��� .

In particular, this is true for ��N,

∀�, ∀ E � C, f�E���N�� � f���N� . �17�

Suppose further that f is asymptotically continuous. For se-
quences of states given by �N=E���N� and �N=��M�N�, we
have limN→�
�N−�N
1→0 by virtue of Eq. �15�, and so by
asymptotic continuity, we infer that
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lim
N→�

1

N
�f�E���N�� − f���M�N��� → 0.

Together with Eq. �17�, this implies that

lim
N→�

1

N
�f���N� − f���M�N��� � 0.

A similar line of reasoning yields

lim
N→�

1

N
�f���M�N�� − f���N�� � 0,

and so we conclude that

lim
N→�

1

N
�f���N� − f���M�N��� = 0.

But then it follows that

f���� = lim
n→�

M�N�
N

1

M�N�
f���M�N�� = f���� lim

N→�

M�N�
N

.

So, if f�����0, then

lim
N→�

M�N�
N

=
f����
f����

.

We have therefore proven the following theorem:
Theorem 4. Consider a class of states among which

asymptotic reversible interconversion by operations in the
class C �that do not require the resource� is possible. For any
resource measure f that is a deterministic monotone relative
to C and asymptotically continuous, if its regularized version
f� is nonzero and finite, then f� is the unique measure of the
resource �ratios of which determine the rate of interconver-
sion between any two states in the class�.

Theorem 4 can be inferred from the calculations in Ref.
�11�. But in that work it is not made explicit that the regu-
larized relative entropy must be nonzero and finite. The au-
thors did not anticipate that there could be resource theories
where the regularized relative entropy might be zero. How-
ever, as we demonstrate below, the resource theory of quan-
tum reference frames is such a case. Specifically, we show
that for all finite groups and all compact Lie groups, the
regularized relative entropy distance to the set of G-invariant
states is zero.

D. Relative entropy of frameness in the asymptotic limit

We now consider the dependence of the relative entropy
of frameness on N, the number of systems, in the asymptotic
limit. We begin with a simple example that we solve com-
pletely that of a phase reference. We then generalize it to
arbitrary groups.

1. Phase reference

Consider the resource theory of quantum phase refer-
ences, which transform according to the U�1� group. We will
show that the relative entropy of U�1� frameness depends
logarithmically on N, implying that the regularized relative
entropy of U�1� frameness is zero.

As demonstrated in Ref. �3� and mentioned in Sec. IV,
only for certain subsets of pure states does there exists re-
versible asymptotic interconversion using U�1�-invariant op-
erations. Consequently, only within such subsets is it pos-
sible to define a standard state and thereby a measure of U�1�
frameness in terms of the rate of distillation of this standard
state. We will here focus our attention on one such subset of
pure states, those with a gapless number spectrum. These are
states of the form �	�=�ncn�n� �the �n� are eigenstates of the
total number operator� where the weights �cn�2 are nonzero
for values of n in a single interval of the natural numbers. As
demonstrated in Ref. �3�, the rate of distillation in the U�1�
case is equal to the number variance. See Ref. �3� for details.

In Ref. �3� it is shown that for states �	� with a gapless
number spectrum,

�	��N = �
n=0

dN

�rn�n� ,

where rn is a Gaussian distribution in the limit N→�. The
regularized relative entropy is

lim
N→�

1

N
min

��U�1�−inv
S��	��N 
 �� .

But

min
��U�1�−inv

S��	��N 
 �� = S�G��	���N� − �S��	���N�

= S��
n=0

dN

rn�n��n�� = H��rn�� ,

where H is the Shannon entropy. So it suffices to determine
the Shannon entropy for a Gaussian distribution. Suppose

rn =
1

�2
�
e−�n − ��2/2�2

.

Then, a straightforward calculation gives

H��rn�� = − �
n

rn log rn = log��2
�� +
1

2
.

Note that �2�V��	��N�, where V is the number variance
defined by

V��� = Tr��N̂2� − �Tr��N̂��2.

The variance is additive so that V��	��N�=NV��	��. Conse-
quently,

H��rn�� =
1

2
log�2
NV��	��� +

1

2
.

We have therefore shown the following:
Lemma 5. The relative entropy of U�1� frameness for N

copies of a U�1�-noninvariant state �	� is

AU�1���	��N� =
1

2
log�2
NV��	��� +

1

2
, �18�

which is to say logarithmic in N.
The obvious corollary is as follows:
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Corollary 6. The regularized relative entropy of U�1�
frameness is zero,

AU�1�
� ��	��N� = lim

N→�

1

N
AU�1���	��N� = 0. �19�

There is another way to see that the regularized relative
entropy of U�1� frameness cannot be equal to the variance
�and consequently cannot quantify the rate of distillation�:
the former is asymptotically continuous, while the latter is
not. To see that the regularized relative entropy of U�1�
frameness is asymptotically continuous, it suffices to note
that every relative entropy distance is asymptotically con-
tinuous �as shown in Ref. �20�� and that regularization pre-
serves this property. It therefore suffices to prove the follow-
ing proposition:

Proposition 7. The variance is not asymptotically continu-
ous.

Proof. Consider the following two sequences of states on
a Hilbert space Hn of dimension n�4:

�	n� =
1
�2

��0� + �n�� ,

�n� =�1

2
−

1
�n

�0� +�1

2
+

1
�n

�n� .

Clearly, limn→�
�	n��	n�− �n��n�
1=0. Now, the variances
of these states are given by

V��	n�� = n2 and V��n�� = n2 − 4n .

Thus,

lim
n→�

V��	n�� − V��n��
log�n�

= lim
n→�

n

log�n�
y 0.

This completes the proof. �

2. Reference frame for a general group

We now consider the asymptotic behavior of the relative
entropy of frameness for both finite groups and compact Lie
groups. We will again demonstrate that this quantity is sub-
linear in N and therefore regularizes to zero.

First we consider G to be an arbitrary finite group. Denote
by �G� the cardinality of the group and by gi the elements of
the group. The G-twirling operation on ��N can be written as

G���N� =
1

�G��i=1

�G�

�T�gi���N��N�T†�gi���N.

Now, for any given ensemble of states �pi ,�i�, the von-
Neumann entropy satisfies the following inequality:

S��
i

pi�i� � �
i

piS��i� + H��pi�� ,

where H��pi�� is the Shannon entropy. Hence, we find that

S�G���N�� � S���N� + log�G� . �20�

This establishes our first result.

Lemma 8. The relative entropy of G-frameness for a finite
group G satisfies

AG���N� � log�G� .

Note that the upper bound is independent of N so the
regularization of AG for a finite group is clearly zero.

We now proceed to discuss the case of a compact Lie
group. To find an upper bound, we will need to use the fol-
lowing fact from design theory:

Lemma 9. Given a group G with a unitary representation
U of dimension d� �21,22,25�, there exists a finite set

�gi�i=1
m�d��, and weighting probabilities �pi�i=1

m�d�� such that

	
G

dgU�g��U�g†� = �
i=1

m�d��

piU�gi��U�gi
†�

for all states �.
An upper bound for m�d�� can be found in proposition 2.6

of �22�. Using this result, we conclude that �21�

m�d�� � d�2. �21�

We are now ready to find an upper bound for AG���N�.
Consider the effect of G twirling on the state ��N;

G���N� = 	
G

dgT�g��N��NT†�g��N.

Assuming � is a state in the d dimensional Hilbert space Hd

then ��N lives in the symmetric subspace of Hd
�N. By a

simple counting argument we find that the dimension of the
symmetric subspace is

d� = �N + d − 1

d − 1
� . �22�

On the other hand, assuming U�g�=T�g��N then U will be a
representation of G which leaves the symmetric subspace of
Hd

�N invariant. Assuming �=��N and U�g�=T�g��N we can
use the result of lemma 9 to infer that

G���N� = �
i=1

m�d��

piU�gi���NU�gi
†�

and, via Eqs. �21� and �22�,

m�d�� � �N + d − 1

d − 1
�2

. �23�

Thus, from Eq. �20� we have

S�G���N�� � S���N� + log m�d�� .

The G-asymmetry of ��N is therefore bounded above by

AG���N� � log m�d�� .

Now using the upper bound on m�d�� �Eq. �23�� and
Stirling’s approximation we get

lim
N→�

AG���N� � lim
N→�

2 log d� = 2�d − 1�log N . �24�

We summarize this result in a lemma.
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Lemma 10. In the asymptotic limit N→�, the relative
entropy of G-frameness for a compact Lie group G is
bounded above by an expression logarithmic in N,

AG���N� � 2�d − 1�log N . �25�

Recall that in Sec. III, we found an information theoretic
interpretation for the relative entropy of G-frameness: AG���
provides an upper bound on the amount of information that
can be encoded in � about the group element describing the
quantum reference frame. So Eq. �25� means that the infor-
mation encoded in ��N increases at most logarithmically in
N.

Note that from the results of this section we can deduce
the following:

Corollary 11. The regularized relative entropy of
G-frameness for G a finite or compact Lie group is zero,

AG
����N� = lim

N→�

1

N
AG���N� = 0. �26�

E. Determining the unique measure of a resource
when the regularized relative entropy is zero

The results thus far give no reason to think that the rela-
tive entropy of frameness has any significance at all for con-
version measures. But there is, in fact, a way of obtaining
conclusions concerning the latter from the former.

For Lie groups, the fact that the relative entropy of
G-frameness is not extensive, i.e., the fact that AG���N� is
not linear in N to leading order, is what blocks us from
drawing any interesting conclusions from theorem 4. An ob-
vious idea, then, is to find a continuous monotonic function
L :R→R such that L�AG���N�� is linear in N to leading order
so that the monotone L�AG� · �� does regularize to something
finite.

In the case of a phase reference, the relative entropy of
U�1� frameness �equivalently, the U�1�-asymmetry� is given
by lemma 5. It is logarithmic in N. We can define an exten-
sive monotone by taking L�x�=22x. We obtain

L�AU�1���	��N�� = 4
NV��	�� ,

and therefore the regularization of this new monotone yields

lim
N→�

1

N
L�AU�1���	��N�� = 4
V��	�� . �27�

This is proportional to the variance of �	�, which is precisely
the measure of U�1� frameness that determines asymptotic
rates of conversion, as shown in �3�.

This example suggests that for Lie groups one may al-
ways be able to infer the unique asymptotic measure of
frameness from the relative entropy of frameness. Indeed, we
conjecture that this is the case. However, to prove that this is
the case, one requires a result that is more general than theo-
rem 4, a result that takes into account the Lipschitz constant
of the monotone. We hope to settle this question in future
work.

V. INSIGHTS FOR THE RELATIVE ENTROPY
OF ENTANGLEMENT

An obvious question that arises from our evaluation of the
relative entropy of frameness is whether similar techniques
might provide a means of calculating the relative entropy of
entanglement. The latter is defined as the relative entropy
distance to the set of separable states �which we denote by
SEP�,

RSEP��� � min
��SEP

�S�� 
 ��� .

It is an open problem to determine a formula for the relative
entropy of entanglement even in the simplest case of two
qubits. We do not solve the problem here but merely show
how one can obtain interesting new upper bounds on this
quantity

The idea is the following. If there is an operation E that
takes the set of all states to a subset of the separable states,
then the relative entropy distance to the nearest state in this
subset is an upper bound on the relative entropy distance to
the nearest separable state. Meanwhile, if E satisfies the con-
ditions of theorem 3, then there is a simple formula for the
relative entropy distance to this subset, namely, S�E����
−S���.

Theorem 12. Suppose ��S�HA � HB� is an arbitrary
bipartite density operator, U is an arbitrary unitary operator
acting on HB, and DU is the dephasing channel along
the basis �U�k�� of HB �that is, DU� · �
��kU�k��k�U†� · �U�k��k�U†�. Then the relative entropy of en-
tanglement of � satisfies

RSEP��� � min
U

S��I � DU����� − S��� .

Proof. Define EU���= �I � DU����. This channel has the
following properties:

�1� EU is unital.
�2� �EU�2= �I � DU��I � DU�= �I � DU �DU�=EU, where

we have used DU �DU=DU.
�3� For an arbitrary state ��S�HA � HB� the state EU���

is separable or in other words DU is an entanglement break-
ing channel.

Because of items 1 and 2, theorem 3 applies, and we can
deduce that

min
��Image�EU�

S�� 
 �� = S�EU���� − S��� .

On the other hand, since the image of EU is a subset of
separable states, then

RSEP��� = min
��SEP

S�� 
 �� � min
��Image�EU�

S�� 
 �� .

So for arbitrary U we have

RSEP��� � S�EU���� − S��� ,

and therefore

RSEP��� � min
U

S��I � DU����� − S��� .

�
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In the following we apply this upper bound to the case of
two qubits, i.e., dim HA=dim HB=2.

Two qubit case

In the two qubit case, the dephasing channel DU can be
parametrized by two variables. In particular, we can write the
two-qubit version of EU in the following form:

E�,���� =
1

2
� +

1

2
�I � U�,����I � U�,�

† � ,

where

U�,� = �cos ���1 0

0 − 1
� + �sin ��� 0 ei�

e−i� 0
� .

Therefore, for the two-qubit case our upper bound on the
relative entropy of entanglement becomes

RSEP��� � min
�,�

S�E�,����� − S��� .

In the following simple example we show that this upper
bound can be tight.

Example 1. Consider the bipartite mixed state

�AB = p�+��+� + �1 − p��−��−� ,

where ������00�� �11�� /�2. From the Hashing inequality
�23� we know that the relative entropy of entanglement sat-
isfies

RSEP��AB� � S��A� − S��AB� = 1 − H2��p�� ,

where H2��p��=−p log p− �1− p�log�1− p� is the binary Sh-
annon entropy function. On the other hand, a straightforward
calculation shows that the minimum of the function
S�E�,���AB�� is obtained at �=
 /2 and �=0. For these values
of � and � we have

E�=
/2, �=0��AB� =
1

4�
2 0 0 0

0 0 0 0

0 0 0 0

0 0 0 2
� ,

and therefore S�E�=
/2, �=0��AB��=1 which implies

RSEP��AB� � S�E�=
/2, �=0��AB�� − S��AB� = 1 − H2��p�� .

Combining the Hashing bound with our upper bound gives
RSEP��AB�=1−H2��p��.

VI. OUTLOOK

A natural geometric measure of the quality of a resource
state is the distance between it and the nearest nonresource
state. Operations that map resources to nonresources seem to
provide a useful way of evaluating such measures. Specifi-
cally, we have shown that the relative entropy distance to the
nearest G-invariant state—a geometric measure of
G-frameness—is expressed simply in terms of the G-twirling
operation. Similarly, we have identified operations for which
the image is a subset of the separable states �i.e., operations

which are entanglement breaking on a subsystem� and we
have shown how these help to bound the relative entropy of
entanglement. This approach to quantifying a resource ap-
pears to be cognate with attempts to quantify correlations by
the amount of noise that one requires to eliminate them �24�.
It is a topic that warrants further investigation.

There are strong connections between certain geometric
and conversion measures of entanglement. In particular the
regularized relative entropy of entanglement is equal to the
distillable entanglement among states that are reversibly in-
terconvertible asymptotically. Nonetheless, the same does
not hold true for the resource theory of quantum reference
frames. The regularized relative entropy of frameness is al-
ways zero. It follows that these connections are not generic
features of resource theories and intuitions derived from
them may well be misleading. Nonetheless, we may still be
able to use the relative entropy of frameness to find out about
conversion measures using a different technique. This is an-
other topic for future research.

In addition to the lessons for entanglement theory and
resource theories in general, we have drawn several conclu-
sions concerning the problem of quantifying the quality of a
reference frame, and in particular of finding a measure of the
extent to which a token system can simulate a classical ref-
erence frame. We have shown that the G-asymmetry has a
very natural operational interpretation in terms of the acces-
sible information in a reference frame alignment scheme. It
therefore provides an alternative to more common figures of
merit for alignment schemes, such as the fidelity between the
estimated and the actual orientation �see Sec. VD1 of Ref.
�12��. Furthermore, it nicely captures the intuitive notion that
the optimal state to use in such alignment schemes is the one
that has the largest orbit under the action of the group �see
Sec. VA in Ref. �12��. We have here considered only refer-
ence frames that are local rather than distributed, but similar
techniques should be useful in solving the multipartite ver-
sion of the problem.
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APPENDIX: STATES OF MAXIMAL G ASYMMETRY

The following examples make use of techniques intro-
duced in Ref. �12�, to which the reader is referred for more
details. Under the action of the unitary representation of a
compact group G, a finite-dimensional Hilbert space factor-
izes as follows:

H = �
q

Hq = �
q

Mq � Nq,

where q labels the irreps of G, Mq is the qth representations
space, and Nq is the qth multiplicity space. The G-twirling
operation has the form

G��� = �
q

DMq
� idNq

��Hq
��Hq

� ,

where �Hq
is the projector onto Hq, idNq

is the identity map
on Nq, and DMq

is the completely decohering map on Mq.
Therefore, for a pure state �	��	�,

G��	��	�� = �
q

pq

�Mq

dim Mq
� �Nq

,

where �Nq
� 1

pq
TrMq

��Hq
�	��	��Hq

� is the reduced density
operator on the multiplicity space Nq and pq
�Tr��Hq

�	��	��Hq
� is the probability of q.

The dimension of the Hilbert-space support of G�	� is
bounded above by

d� � �
q

dim Mq � dq,

where

dq � min�dim Mq,dim Nq� .

Among states with this support, the maximum entropy is
log d� �achieved by the uniform mixture over the support�.
Thus, if one can find a pure state 	 such that S�G�	��
=log d�, then this state achieves the maximum possible
G-asymmetry. Such a state can indeed be found. It is

�	� =
1

�d�

�
q

�dim Mq � dq�	q� , �A1�

where

�	q� = �
k=1

dq 1
�dq

�k
�q�� � �rk

�q�� ,

and where ��k
�q��� is a basis for Mq �or a subspace thereof if

dq�dim Mq� and ��rk
�q��� is a basis for Nq �or a subspace

thereof if dq�dim Nq�. We consider the state of maximal
G-asymmetry for two groups of particular interest: U�1� and
SU�2�.

1. Quantum phase reference

Consider an optical phase reference described by the
group U�1�. The unitary representation of U�1� is U��
=eiN̂, where N̂ is the total number operator. The irreps of

U�1� are all one-dimensional and labeled by a non-negative

integer n, corresponding to the eigenvalue of N̂. For an arbi-
trary pure state

�	� = �
n

�pn�n� ,

where �n� is an eigenstate of N̂, we find the U�1�-asymmetry
to be

AU�1���� = H��pn�� ,

where H��pn�� is the Shannon entropy of the distribution pn.
If the maximum value of n is nmax, the state having pn
= �nmax+1�−1 achieves the maximum value of the U�1�-
asymmetry, namely, log�nmax+1�. This state is simply Eq.
�A1� for the U�1� case. For an arbitrary mixed state, the
U�1�-asymmetry is found to be AU�1����=H��pn��−S���,
where pn�Tr��n�� with �n as the projector onto the nth

eigenspace of N̂.

2. Quantum Cartesian frame

Consider the case of N spin-1/2 particles under rotations
�N is assumed to be even for simplicity�. The unitary repre-
sentation of SU�2� of interest is the collective representation

U���=eiĴ·�, where Ĵ= �Ĵx , Ĵy , Ĵz� is the total angular momen-
tum operator. Under this action, the Hilbert space factorizes
as follows: H=� j=0

jmaxH j =� j=0
jmaxM j � N j, where jmax=N /2,

M j are the �2j+1�-dimensional representations spaces, and
N j are the multiplicity spaces of dimension

dim N j = � N

N/2 − j
� 2j + 1

N/2 + j + 1
.

Note that dim M j �dim N j for all j� jmax. In the excep-
tional case of the highest irrep j= jmax, the multiplicity space
is trivial, that is, dim N jmax

=1, so we must treat the subspace
H jmax

differently from the others. An arbitrary pure state can
be written as

�	� = �
j=0

jmax

�pj�	 j� , �A2�

where �	 j��H j and for j� jmax has the following Schmidt
decomposition relative to the factorization H j =M j � N j:

�	 j� = �
k

�qk
�j��k

�j�� � �rk
�j�� ,

where the range of k is of cardinality 2j+1. SU�2� twirling
yields

G�	� = pjmax

�Hjmax

2jmax + 1
+ �

j=0

jmax−1

pj� �Mj

2j + 1
� �

k

qk
�j��rk

�j���rk
�j��� .

It follows that the SU�2�-asymmetry for an arbitrary pure
state is
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ASU�2��	� = pjmax
log�2jmax + 1�

+ �
j=0

jmax−1

pj�log�2j + 1� + H��qk
�j���� + H��pj�� .

�A3�

The state with the maximum SU�2�-asymmetry is given
by Eq. �A1�, adapted to the group SU�2�. It is the state of the
form of Eq. �A2� that takes the distributions �qk

�j�� to be uni-

form and pj �dim Mq�min�dim Mq ,dim Nq�. Hence, pj

�2j+1 for j= jmax and pj � �2j+1�2 otherwise. The maxi-
mum SU�2�-asymmetry is simply ASU�2�=log��2jmax+1�
+� j=0

jmax−1�2j+1�2�=log� 4
3 jmax

3 + 5
3 jmax+1�. �Note that one

could also obtain these results by optimizing Eq. �A3� over
�pj� and �qk

�j��.�
In the particularly simple case of two spin-1/2 systems,

the optimal state is of the form
�3
2 �� j=1�+ 1

2 �	−�, where �� j=1�
is any triplet state, and the asymmetry is 2.
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