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We develop the concept of a unitary t-design as a means of expressing operationally useful subsets of the
stochastic properties of the uniform �Haar� measure on the unitary group U�2n� on n qubits. In particular, sets
of unitaries forming 2-designs have wide applicability to quantum information protocols. We devise an
O�n�-size in-place circuit construction for an approximate unitary 2-design. We then show that this can be used
to construct an efficient protocol for experimentally characterizing the fidelity of a quantum process on n qubits
with quantum circuits of size O�n� without requiring any ancilla qubits, thereby improving upon previous
approaches.
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I. INTRODUCTION

The importance of generating random states and random
unitary operators in quantum information processors has be-
come increasingly clear from the growing number of algo-
rithms and protocols that presume such a resource �1–8�. For
many algorithms and protocols the invariant �Haar� measure
on the unitary group U�D� is the natural randomization mea-
sure �3,5,7,8�. It is well known that generating Haar-random
unitary operators on a quantum information processor is in-
efficient: the number of gates grows exponentially with the
number of qubits. Consequently it is useful to identify sub-
sets of the unitary group that can adequately simulate the
Haar measure for a given class of operational tasks and to
identify efficient gate decompositions for these subsets.

Quantum data hiding �2�, based on a process known as
bilateral twirling �9�, is an example where such a subset has
been identified. Sampling over the discrete subset of U�2n�
known as the Clifford group is sufficient for this task �2�, and
the number of gates required to implement such operations is
O�n2� for n-qubit systems. It has been shown recently in �8�
that a large family of protocols can be described in terms of
bilateral twirling with Haar-random unitary operators, and
noted that the Clifford group is sufficient to implement them.
A related protocol, twirling a quantum channel with Haar-
random unitary operators, has been studied recently for the
purpose of reducing a generic gate to a standard form, which
is among the results of Ref. �10�, where it was also shown
that the Clifford group is also an adequate substitute for that
task. Moreover, the task of generating typical generic en-
tanglement has been studied in Ref. �11�, where it was shown
that a discrete subset of elements of the unitary group that
are constructible with O�n3� gates are sufficient for that pur-
pose. Each of the above tasks satisfies the unitary 2-design
condition and is therefore subsumed by our work.

In this paper we propose the concept of a unitary t-design
as a generalization of the concept of quantum state t-design
�12�, and, in the nontrivial case of t=2, we give explicit
efficient constructions for them as quantum circuits. Our cir-

cuits have size O�n2� for exact implementations and
O�n log 1 /�� for approximations within � �where � is the
degree of closeness to the exact case, which is formalized in
the next section�. We then discuss how our results are useful
in the context of experimentally estimating the average fidel-
ity of a quantum channel. In particular, we show how the
�exponentially inefficient� protocol of Ref. �7� can be
achieved efficiently with O�n� operations for n-qubit sys-
tems.

II. DEFINITIONS AND SUMMARY OF RESULTS

We define a unitary t-design for D dimensions as a finite
set �Uk�k=1

K �U�D� of unitary operators on CD such that, for
every polynomial P�t,t��U� of degree at most t in the matrix
elements of U and at most t in the complex conjugates of
those matrix elements �i.e., a polynomial of degree at most
�t , t��,

1

K
�
k=1

K

P�t,t��Uk� = �
U�D�

dUP�t,t��U� , �1�

where, unless otherwise specified, integrals over U�D� are
with respect to the unitarily invariant Haar measure �for an
equivalent definition in terms of representation theory, see
�13��. This definition is a natural extension of the definition
of t-designs for quantum states.

The focus of the current paper is on the t=2 case; how-
ever, there are specific applications for other values of t �see
�14��. The connection with operational tasks in the case t
=2 can be seen as follows. Consider a general quantum chan-
nel � acting on D-dimensional quantum states. Such a �su-
per�operator is a completely positive trace preserving linear
map acting on L�CD�, the algebra of linear operators on CD.
Suppose that � is conjugated by a randomly chosen unitary
operation with respect to a probability measure � on U�D�.
That is, U is chosen according to � and then the channel is

modified to Û† �� � Û, where

Û��� = U�U†,
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Û†��� = U†�U . �2�

Denoting the resulting superoperator by E����, we have

E����:X � �
U�D�

d��U�U†��UXU†�U , �3�

for all X�L�CD� �including the operationally significant case
where the input to the channel X is a density operator�. The
process that transforms any superoperator � to the superop-
erator E���� is called a �-twirl. A particular case of interest
is if the measure � is taken as the unitarily invariant Haar
measure. A unitary 2-design has the property that sampling
uniformly from �U1 , . . . ,UK� is operationally equivalent to
sampling from the Haar measure. In other words, if � is set
to the uniform probability measure on �U1 , . . . ,UK� then, for
any quantum channel �,

E���� = EHaar��� . �4�

This can be seen by considering the linear mappings � on
L�CD� of the form

��X� = AXB , �5�

where A ,B�L�CD�. Then the condition in Eq. �1� is equiva-
lent to the condition

1

K
�
k=1

K

Uk
†AUkXUk

†BUk = �
U�D�

dUU†AUXU†BU , �6�

for all A ,X ,B�L�CD�; this equivalence can be seen explic-
itly by considering A ,X ,B of the form 	i
�j	. Although not all
quantum channels are of the form of Eq. �5�, they are convex
combinations of mappings of this form. Therefore, Eq. �4�
follows by linearity. Similarly, one can show that bilateral
twirling �2,9� and generating typical subsystem purity �11�
correspond to particular instances of Eq. �1� with t=2.

Our first contribution is a direct proof of the following
theorem �which Leung has pointed out to us, can also be
obtained as a corollary of Ref. �2�, Sec. VI�.

Theorem 1. The uniform distribution over the Clifford
group on n qubits is a unitary 2-design with D=2n.

As is known, the Clifford group Cn on n qubits can be
implemented by quantum circuits of size O�n2� �2,15�. This
general result allows us to immediately deduce that, for ex-
ample, the Clifford group gives a more efficient solution to
the protocol for generating generic entanglement given in
�11�. Moreover, as described at the end of this paper, this
result leads to an efficient solution to the experimental prob-
lem of estimating the average fidelity of a quantum process
or a quantum channel �7�.

Given the wide class of protocols that require unitary
2-designs, we show furthermore that a more efficient imple-
mentation on n qubits is possible if we consider approximate
unitary 2-designs. We define these with respect to arbitrary
linear superoperators � :L�CD�→L�CD� �that is, � need not
be completely positive and trace preserving for this to make
sense�. Any such � can be expressed in the form ��X�
=TrE�A�X � 1E�B�, where A and B act on an extended Hilbert
space CD � HE. A � twirl of the superoperator � with respect
to a measure � on a subset of U�D� is a mapping of the form

��E����, where E���� is the superoperator

E����:X � �
U�D�

d��U�U†��UXU†�U . �7�

Note that, by linearity, unitary 2-designs satisfy Eq. �4� for
all linear superoperators �i.e., not just for quantum channels�.

Defining an �-approximate unitary 2-design in terms of
the diamond norm �16� as a measure on a finite subset of
U�D� satisfying the property

�E���� − EHaar����⋄ � ����⋄. �8�

Note that, in the interesting case where � is a quantum chan-
nel, ���⋄=1; hence the channel E���� is a good approxima-
tion of the channel EHaar���.

Our second contribution is to show that:
Theorem 2. For all ��0, an �-approximate unitary

2-design on n qubits can be implemented by in-place circuits
of size O�n log 1 /�� and depth O�log n log 1 /��.

Our third contribution is an application of this toward
fidelity estimation:

Theorem 3. The average fidelity of a quantum channel �
acting on n qubits, can be estimated to within ��0 with
error probability ��0 at a cost of O�log 1 /�� evaluations of
the channel conjugated by in-place circuits of size
O�n log 1 /�� and depth O�log n log 1 /��.

III. EXACT CONSTRUCTION

We prove Theorem 1, which implies that a unitary
2-design on n qubits �dimension D=2n� can be explicitly
constructed by in-place circuits of size O�n2�. Our approach
is to construct a uniform probability distribution on a subset
of the Clifford group Cn, which defines a Cn-twirl. It is suf-
ficient to consider linear mappings of the form ��X�=AXB,
where A, B�L�CD�, and the results can be extended to arbi-
trary linear superoperators by linearity. Specifically, we
prove that, for all X,

1

	Cn	 �
U�Cn

U†AUXU†BU = �
U�D�

dUU†AUXU†BU .

As shown in Ref. �7�, the right-hand side can be expressed in
the form,

�
U�D�

dUU†AUXU†BU =
Tr�AB�Tr�X�

D

1

D

+
DTr�A�Tr�B� − Tr�AB�

D�D2 − 1�

�
X − Tr�X�
1

D
� . �9�

To evaluate the left-hand side, we will make use of the
fact that Cn is the normalizer of the generalized Pauli group
Pn consisting of all n-fold tensor products of the one-qubit
Pauli operators �1 ,X ,Y ,Z�. We denote the elements of Pn as

�Pj� j=1
D2

, where P1 is the n-fold tensor product of 1. Applying
a Pn-twirl to the mapping ��X�=AXB results in a mapping
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of the form X��k=1
D2

rkPkXPk, where r1=Tr�A�Tr�B� /D2 and

�k=1
D2

rk=Tr�AB� /D. This follows from noting that we can ex-

press A=�a=1
D2

	aPa and B=�b=1
D2


bPb. The resulting operation
maps X to

1/D2�
k=1

D2

PkAPkXPkBPk

= 1/D2�
a=1

D2

�
b=1

D2

	a
b
�
k=1

D2

�− 1��k,a � b�SP�PaXPb

= �
a=1

D2

	a
aPaXPa, �10�

with the symplectic inner product SP on the index space �see
�17� for further details; these techniques are discussed also in
�10��. Therefore, setting rk=	k
k leads to the above form.

We can express each U�Cn as U=QjPk, where
�P1 , . . . , PD2�=Pn and �Q1 , . . . ,Q	Pn	/	Cn	� contains a represen-
tative from each coset in Cn /Pn �how these representatives
are chosen does not matter�. Hence, after twirling � by Pn,
we then twirl with �Q1 , . . . ,Q	Pn	/	Cn	�, where we henceforth
refer to the latter operation as a twirl by Cn /Pn. The
Cn /Pn-twirl yields

	Pn	
	Cn	 �

j=1

	Cn	/	Pn	

�
k=1

D2

rkQj
†PkQjXQj

†PkQj . �11�

Next we distinguish the identity element P1=1 and make use
of the fact that conjugation under the Clifford group maps
each nonidentity Pauli element to every other nonidentity
Pauli element with equal frequency. It follows that the final
state is

r1X +
	Pn	
	Cn	 �k=2

D2

rk �
j=1

	Cn	/	Pn	

Qj
†PkQjXQj

†PkQj

= r1X +
1

D2 − 1

�

k=2

D2

rk��
l=2

D2

PlXPl. �12�

Using the identity � j=1
D2

PjXPj =DTr�X�1, it is straightforward
to show that the right sides of Eqs. �12� and �9� are equal.

IV. APPROXIMATE CONSTRUCTION

We now prove Theorem 2, in which an �-approximate
unitary 2-design can be explicitly constructed in terms of
circuits that are in-place, of size O�n log 1 /��, and of depth
O�log n log 1 /��. More precisely, we describe a probabilistic
construction that produces an n-qubit quantum circuit, gen-
erated according to a probability distribution �p1 , . . . , pm� on
a sequence of circuits �C1 , . . . ,Cm� with the following prop-
erty. For any linear superoperator � on n qubits, the map-
ping,

� � �
i=1

m

piCi
†��Ci�Ci

†�Ci, �13�

is � close �with respect to � · �⋄� to the mapping

� � �
U�2n�

dUU†��U�U†�U . �14�

Since we are converting � to the superoperator

�
i=1

m

piĈi
† � � � Ĉi, �15�

we describe the probabilistic circuit construction as a series
of simple operations that are each conjugations performed on
the channel.

Our construction first applies a Pauli twirl to the superop-
erator, which consists of O�n� gates and results in a super-
operator that is a linear combination of Pauli channels of
the form �� Pa�Pa. In order to convert an arbitrary Pauli
channel into a good approximation of a depolarizing channel,
we shall add slightly more than O�n� further twirling opera-
tions to approximately uniformize the probabilities associ-
ated with each Pa for all a�1. The process consists of a
series of repetitions of the procedure in Fig. 1 �where the
operation conjugating the first qubit by a random XOR is
defined in Fig. 2�.

A C1 /P1-twirl of a qubit can be analyzed as follows. Let
R=SH, where S= 	0
�0	+ i	1
�1	, and H is the Hadamard
transform. Select i� �0,1 ,2� uniformly and conjugate the
register by Ri. This operation has the property that, if it is
applied to the identity channel 1, it has no net effect; how-
ever, for a Pauli channel of the form X, Y, or Z, this operation
causes the channel to become a uniform mixture of X, Y, and
Z.

FIG. 1. The uniformization procedure

EXACT AND APPROXIMATE UNITARY 2-DESIGNS AND… PHYSICAL REVIEW A 80, 012304 �2009�

012304-3



By Eq. �10�, the initial Pauli twirl results in a linear com-
bination of mappings of the form �� Pa�Pa. We consider
each term separately: start with a channel of the form
�� Pa�Pa, for some fixed a�1, and apply the above proce-
dure. To analyze the result, we trace through the effect of
each of the eight steps of the uniformization procedure:

�1� For each k, if component k of Pa is 1 then it remains 1,
and if component k is X, Y, or Z, then it becomes a uniform
mixture of X, Y, and Z.

�2� Call an execution of this procedure good if, after step
�2�, the first component of the channel is X or Y. This hap-
pens with probability of at least 1/2, which can be seen by
considering these cases:

Case 1: for all k� �2, . . . ,n�, component k of Pa is 1. In
this case, the controlled-NOT �CNOT� gates have no effect
but since a�1, component 1 of Pa is not 1. Therefore, after
the previous step, the first component of Pa is uniformly
distributed over X, Y, and Z. Hence the first component of
the channel is X or Y with probability of 2/3.

Case 2: for some k� �2, . . . ,n�, component k of Pa is not
1. With probability �2 /3��3 /4�=1 /2, component k has X or Y
and the CNOT gate is present. This causes the first component
to evolve as follows. If it is X or 1 then it becomes an equal
mixture of 1 and X. Also, if it is Y or Z then it becomes an
equal mixture of Y and Z.

In both of the above cases, the first component is X or Y
with probability of 1/2.

�3� If the execution is good then the first component is Y
or Z. For each k� �2, . . . ,n�, component k is either 1 or a
uniform mixture of X, Y, and Z.

�4� If the execution is good then for each k� �2, . . . ,n�,
component k is 1 with independent probability of 1/4, and
some mixture of X, Y, Z with probability of 3/4. To see why
this is so, for each k, consider the effect of the back action of
the CNOT gates in the following two cases separately.

Case 1: after the previous step, component k is 1. In this
case, it remains 1 with probability of 1/4, and it becomes Z
with probability of 3/4.

Case 2: after the previous step, component k is a uniform
mixture of X, Y, and Z. In this case, with probability of 3/4,
the channel becomes a uniform mixture of Y, X, and 1.
Hence the component becomes 1 with probability
�3 /4��1 /3�=1 /4.

�5� If the execution is good then, after this step, the first
component of the channel is X or Y, and, for each k
� �2, . . . ,n�, component k is independently a uniform mix-
ture of 1, X, Y, and Z.

�6� If the execution is good then, after this step, the first
component of the channel is a uniform mixture of X and Y.

�7� Call a good execution typical if, after step �6�, there is
at least one component k� �2, . . . ,n� that is not 1. The prob-
ability that a good execution is also typical is 1− �1 /4�n−1. If
the execution is good and typical, the first component of the
channel is a uniform mixture of 1, X, Y, and Z �independent
of the other components of the channel�.

To see why this is so, consider the effect of any non-1
component k� �2, . . . ,n�. Prior to the potential conjugation
by CNOT, the first component is uniformly distributed among
X and Y, and component k is uniformly distributed among X,
Y, and Z. Therefore, with probability �2 /3��3 /4�=1 /2, the
first component becomes a uniform mixture of I and Z.

�8� If the execution is good then, after this step, the first
component of the channel is: in a uniform mixture of X, Y,
and Z if the execution is not typical, and a uniform mixture
of 1, X, Y, and Z if it is typical.

For executions that are both good and typical, there are
4�4n−1−1� possible Pauli channels that can result �namely,
those that are not 1 in at least one of the components from 2
through n�. Conditional on the execution being good, each of
these cases arises with probability of 1 /4n. For executions
that are good but not typical, there are three possible out-
comes �namely, all channels that are X, Y, or Z in the first
component and 1 in components 2 through n�. Conditional on
the execution being good, each of these three cases arises
with probability of 1 / �3�4n−1�. The resulting probability
distribution on Pauli channels can be expressed as a convex
combination of these two distributions: �a� the uniform dis-
tribution of all nontrivial Pauli channels, and �b� the uniform
distribution on the three nontypical Pauli channels. Distribu-
tion �a� occurs with probability �1 /2��1− �1 /4�n�, and distri-
bution �b� occurs with probability �1 /2��1+ �1 /4�n�. Note
that distribution �a� corresponds to a perfect 2-design. Re-
peating the procedure O�log 1 /�� times, we can increase
probability weighting associated with �a� from �1 /2��1
− �1 /4�n� to 1−� /2 �the perfect Pauli channel need only arise
in one of the repetitions�. Each execution of the uniformiza-
tion procedure consists of O�n� gates, which can be imple-
mented in O�log n� depth—the only nontrivial part is the
conjugations by a random XOR, whose log-depth implemen-
tation is based on the construction in Fig. 3.

The net result of this construction can be viewed as a
mixture of two mixed-unitary operations, one of which is a
perfect 2-design. The perfect 2-design occurs with probabil-
ity at least 1−� /2 and the other operation occurs with prob-
ability at most � /2. Therefore the construction yields a linear
superoperator of the form

�1 − �/2�EHaar��� + ��/2�E���� , �16�

FIG. 2. Conjugating the first qubit by a random XOR is the
conjugation by a randomly generated circuit of the above form,
where a numerical label associated with a gate indicates that it
occurs with probability of 3/4 �with probability of 1/4 there is no
gate�. That is, for each k� �2, . . . ,n�, with independent probability
of 3/4, there is a CNOT gate with the first qubit as target and qubit k
as control.
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for some probability measure � on U�2n�. The diamond norm
distance between this operation and EHaar��� is bounded by

��1 − �/2�EHaar��� + ��/2�E���� − EHaar����⋄ � ��/2�

��EHaar����⋄ + ��/2��E�����⋄ = ����⋄, �17�

where we have made use of the fact that � · �⋄ is invariant
under twirling: �E�����⋄= ���⋄. It follows that the construc-
tion produces an �-approximate 2-design.

V. APPLICATION TO FIDELITY ESTIMATION

We now turn to a discussion of the experimental problem
of fidelity estimation for which the above unitary 2-design
constructions lead to an efficient scalable protocol that is
accessible with current experimental techniques on systems
of a few qubits. Consider the Haar-averaged fidelity �7,18�

�F
 � �
U�D�

dUTr�U	0
�0	U†��U	0
�0	U†��

= �
k

	Tr�Ak�	2 + D

D2 + D
. �18�

of a quantum operation ����=�kAk�Ak
†. The Haar-averaged

fidelity can be related to two standard fidelity benchmarks:
the entanglement fidelity Fe, which has been proposed as
means of characterizing the noise strength in a physical
quantum channel � �19�, and the gate fidelity Fg, which has
been used to characterize the quality of quantum memory
�20� or of an implementation of a target unitary Ug on a

noisy quantum processing device �21,22�. In the latter sce-
nario we imagine the implementation of a gate sequence Ug
followed immediately by its inverse Ug

†, and make the iden-
tification ����=Ug

†E�Ug�Ug
†�Ug, where the map E��� repre-

sents the noise accumulated over the course of implementing
Ug

†Ug. Then, using the results of Refs. �7,18,19,21�, we find
the following relationship between the Haar-average fidelity
and the previously proposed gate fidelity and entanglement
fidelity,

�F
 =
DFg + 1

D + 1
=

DFe + 1

D + 1
. �19�

We emphasize that this relationship holds in the context
where Fg and Fe are understood to characterize errors under
the composed sequence Ug

†Ug rather than errors under Ug
itself.

There are two experimental approaches to estimating Fe
and Fg for a given quantum channel. The first is based on
ancilla-assisted process tomography, or some variant such as
direct characterization, both of which require creating an en-
tangled state of 2n qubits: the first n of which are subjected
to the unknown transformation and the remaining n of which
are ancilla qubits that are subject to the identity channel �23�,
followed by joint measurements on the final 2n qubit state. A
significant disadvantage of this approach is the requirement
of n noise-free ancilla qubits, as well as the requirement of
joint operations on 2n, rather than n, qubits. The second
approach is standard process tomography, which suffers from
the requirement of a number of experiments that grows ex-
ponentially with n=log2 D �18,23�.

However, as described in Ref. �7�, we can estimate �F

directly by the following protocol: apply a random unitary
operator U to the initial state 	0
, followed by the quantum
operation �, and then apply U† to the output state. Then
from Eq. �18� we see that �F
 can be estimated by repeating
this procedure with U sampled randomly from the Haar mea-
sure in each experiment. For an arbitrary but fixed average
fidelity 0� �F
�1, the number of experiments required to
estimate �F
 to precision ��1 /4n is independent of the di-
mension D. A serious limitation of the approach of Ref. �7� is
that the implementation of a random unitary requires expo-
nential resources. However, given that F is a polynomial
function of homogeneous degree �2,2�, it follows that we can
estimate �F
 by sampling from any unitary 2-design instead
of the Haar-random unitary operators presumed in Ref. �7�.
Hence the results of this paper, and in particular the
�-approximate unitary 2-design described above, imply that
each experiment requires only O(n log�1 /��) gates. Hence
the fidelity �F
, and equivalently Fg and Fe, may be esti-
mated by an efficient experimental protocol that can be ap-
plied with existing levels of quantum control in systems of a
few qubits. We remark that, after the original submission of
this work, a randomization approach has been developed
�24� that offers an improvement over the resource require-
ments discussed above for the task of fidelity estimation.
However, the randomization approach of this paper is strictly
stronger than that of Ref. �24�.

FIG. 3. Part �a� shows a circuit consisting of n=7 CNOT gates
with common target; part �b� shows an equivalent circuit �based on
a binary tree of addition modulo 2� whose depth is bounded by
2 log n and size is bounded 2n.
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It remains an interesting open question whether an arbi-
trary quantum randomization algorithm can be reduced to a
t-design condition, and hence classified within this frame-
work. This would provide further motivation to generalize
the methods of this paper to obtain unitary and state
t-designs for t�2. The alternate definition proposed in �13�
might be a good starting point for research in this direction.
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