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We report on theoretical calculations and experimental observations of Pancharatnam’s phase originating
from arbitrary SU�2� transformations applied to polarization states of light. We have implemented polarimetric
and interferometric methods, which allow us to cover the full Poincaré sphere. As a distinctive feature, our
interferometric array is robust against mechanical and thermal disturbances, showing that the polarimetric
method is not inherently superior over the interferometric one, as previously assumed. Our strategy effectively
amounts to feeding an interferometer with two copropagating beams that are orthogonally polarized with
respect to each other. It can be applied to different types of standard arrays, such as a Michelson, a Sagnac, or
a Mach-Zehnder interferometer. We exhibit the versatility of our arrangement by performing measurements of
Pancharatnam’s phases and fringe visibilities that closely fit the theoretical predictions. Our approach can be
easily extended to deal with mixed states and to study decoherence effects.
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I. INTRODUCTION

As is well known, Pancharatnam’s phase was originally
introduced to deal with the relative phase of two polarized
light beams �1�. It anticipated geometrical phases that are
nowadays intensively studied both theoretically and experi-
mentally. Among all geometrical phases, Berry’s phase �2�
has played a major role in prompting the upsurge of a vast
amount of investigations dealing with topological phases in
quantum and classical physics. Berry’s phase was originally
introduced by considering the adiabatic evolution of a quan-
tum state subjected to the action of a parameter-dependent
Hamiltonian. However, the first experiments aiming at exhib-
iting such a phase were performed with classical states of
light, using cw lasers �3�. It was soon realized that the phase
tested in such experiments differed from Berry’s phase, as it
was larger than the latter by a factor of 2. The reason for this
was that the experimentally studied phase �3� arose from
SO�3� instead of SU�2� transformations. Indeed, Tomita and
Chiao �3� let polarized light pass a coiled optical fiber and
measured the phase originated from the adiabatic change suf-
fered by the propagation direction of a light beam. Thus, the
corresponding parameter space being explored—the sphere
of directions—differed from the parameter space that was
involved in Berry’s original phase. The latter was Bloch
sphere, on which any spin-1/2 state can be represented. An-
other two-state system formally equivalent to a spin-1/2 state
is a polarized light, in which, e.g., vertically �V� and hori-
zontally �H� polarized states constitute the counterparts of
the spin-up and spin-down quantum states. Polarization
states can be represented on the Poincaré sphere, which is
equivalent to the Bloch sphere. An early experiment testing
the appearance of Pancharatnam’s phase in polarization
states describing closed paths on the Poincaré sphere was the
one performed by Bhandari and Samuel �4�. This interfero-
metric test was however restricted to a limited set of SU�2�
transformations and, moreover, some of the transformations
used by the authors were nonunitary, as they employed linear
polarizers to bring the polarization back to its initial value.

Thus, Chyba et al. �5� performed alternative tests by employ-
ing only unitary transformations to exhibit Pancharatnam’s
phase, although such transformations were still restricted to
cover a limited SU�2� range. In spite its original formulation
in terms of polarization states of light, Pancharatnam’s phase
has not been fully exhibited in optical implementations, in
contrast to more recent experiments based on neutron spin
interferometry �6–8�. Some years ago, Wagh and Rakhecha
�9,10� proposed two alternative methods to measure Pan-
charatnam’s phase. One method is based on a polarimetric
procedure, while the other is an interferometric one. Both
procedures have been tested and compared against one an-
other in experiments using neutrons �6,7�. The conclusion
drawn from these experiments was that the polarimetric
method is inherently superior over the interferometric
method. This is so mainly because the polarimetric method is
insensitive to mechanical and thermal disturbances that usu-
ally plague interferometric methods. Neutron interferometry,
in particular, is also limited through spatial constraints that
are imposed by the geometry of the monocrystals used to
construct the interferometers. In order to explore a large
range in the parameter space of the geometric phase, people
contrived to realize some regions of this space by electrically
inducing phase changes that were beyond the range acces-
sible through rotation of a flipper. However, such a procedure
prompted some criticisms �11� concerning the parameter
spaces that were involved in the two phase evolutions, as one
of them was physically obtained by the rotation of a flipper
and the other by electrical means. On the other hand, the
allegedly more accurate polarimetric method allows phase
measurements only modulo � and is therefore unable to
verify certain features such as the anticommutation of Pauli
matrices, e.g., �x�y =−�y�x, which is something that was
beautifully done with the interferometric method �6�.

To the best of our knowledge, the two methods referred to
above have not yet been tested against each other in all-
optical experiments being capable of exploring the full pa-
rameter range of the Poincaré sphere. We have thus endeav-
ored to compare both methods of measuring Pancharatnam’s
phase by using all-optical setups. In this work we present a
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robust interferometric arrangement that makes the full range
of SU�2� polarization transformations accessible. Further-
more, we have also implemented a polarimetric array with a
similar coverage, so that both methods could be compared
against each other. As we shall see, our interferometric ar-
rangement is insensitive to mechanical and thermal distur-
bances. This represents an important improvement, as com-
pared to conventional interferometric arrangements. The
latter are usually set up as a variant of a Michelson, a Mach-
Zehnder, or a Sagnac interferometer. Our method works with
any of these variants, so that one could choose the most
appropriate arrangement. For example, one could explore de-
coherence effects by measuring geometric phases in polar-
ization single-photon mixed states using Mach-Zehnder in-
terferometers, similarly to recently reported experiments
�12�. In such a case, the fringe contrast �visibility� of the
interferometric pattern also conveys information about the
geometric phase. Although our work deals with pure states
only, we have also tested the visibility of our patterns as a
function of SU�2� transformations, obtaining very good
agreement with theoretical predictions.

Our experiments, in addition to test Pancharatnam’s phase
with great versatility, serve the purpose of showing a com-
mon ground for classical and quantum manifestations of to-
pological phases. Indeed, although our tests have been per-
formed with classical states of light, they could be
straightforwardly extended to experiments with single pho-
tons. Our theoretical discussion has thus been couched in a
quantum-mechanical language, so that, e.g., the polarization
states of classical light are represented by kets like �V� and
�H�. It should thus be clear that the features under study are
not of an intrinsic classical or quantum-mechanical nature.
Instead, it is the topological aspect that manifests itself as a
common ground for both classical and quantum phenomena.

The paper is organized as follows. In Sec. II we review
the interferometric and the polarimetric methods for measur-
ing Pancharatnam’s phase and derive theoretical results that
apply in our case. In Sec. III we describe our experimental
arrangements and present our results, comparing them with
our theoretical predictions. Finally, we present in Sec. IV our
conclusions.

II. INTERFEROMETRIC AND POLARIMETRIC
METHODS

Given two states, �i� and �f�, their Pancharatnam’s relative
phase �P is defined as �P=arg�i � f�. A very direct way to
exhibit �P is through interferometry. Indeed, consider two
interfering nonorthogonal states �i� and �f�, with �i�� �f�. If
we apply a phase shift � to one of the states, the resulting
intensity pattern is given by

I = �ei��i� + �f��2 = 2 + 2��i�f��cos�� − arg�i�f�� . �1�

The maxima of I are thus attained at �=arg�i � f�=�P. We are
interested in exhibiting �P in two-level systems and when
Pancharatnam’s phase arises as a consequence of having sub-
mitted an initial state �i� to an arbitrary transformation U
�SU�2� that converts it into a final state �f�=U�i�. The in-
tensity measurement for which Eq. �1� applies can be imple-

mented with the help of, say, a Mach-Zehnder interferometer.
Alternatively, one could employ polarimetric methods. We
will discuss both methods in what follows. But before, and
for later reference, let us introduce the two parametrizations
of U�SU�2� that we shall use in our analysis. We call them
the YZY and the ZYZ forms for obvious reasons: the first one
is given by

U��,�,�� = exp�− i
�

2
�y	exp�i

�

2
�z	exp�− i

�

2
�y	 , �2�

while the second form is given by

U��,	,
� = exp
i�
 + 	

2
	�z�exp�− i��y�exp
i�
 − 	

2
	�z�

= � ei
 cos � − ei	 sin �

e−i	 sin � e−i
 cos �
	 . �3�

To pass from one form of U to the other, one needs to
connect the respective parameters. The corresponding equa-
tions of transformation involve, generally, trigonometric for-
mulas, so that the different parameters are not connected to
one another through algebraic relations �16�. The representa-
tion of Eq. �3� is particularly well adapted to exhibit Pan-
charatnam’s phase. Indeed, taking as initial state �i�= �+�z,
i.e., the eigenstate of �z that belongs to the eigenvalue of +1,
and setting �f�=U�+�z we have

�i�f� = z�+ �U��,	,
��+ �z = ei
 cos � . �4�

From the definition of Pancharatnam’s phase, i.e., �P
=arg�i � f�, we obtain �P=
+arg�cos ��, for �� �2n
+1�� /2. Because cos � can take on positive and negative
real values, arg�cos �� equals 0 or �. Hence, �P is defined
modulo �. In any case, the parametrization U�� ,	 ,
� of Eq.
�3� is seen to be most appropriate to exhibit �P=
 �modulo
��. On the other hand, for the optical implementation of U,
the parametrization of the YZY form is more appropriate.
Indeed, it is well known �13� that with the help of three
retarders, viz., two quarter-wave plates and one half-wave
plate, it is possible to implement any U�SU�2� in the po-
larization space of, e.g., horizontally and vertically polarized
states of light: ��H� , �V�
. This requires that one represents U
in the form given by Eq. �2�, i.e., the YZY form, because of
the following relationship involving the Euler angles
�1 ,�2 ,�3 �see, e.g., �14��:

exp�− i��3 + 3�/4��y�exp�i��1 − 2�2 + �3��z�

�exp�i��1 − �/4��y� = Q��3�H��2�Q��1� . �5�

Here, Q means a quarter-wave plate and H means a half-
wave plate. The arguments of the retarders are the angles of
their major axes to the vertical direction. In the case of a U
given by Eq. �2�, by applying Eq. �5� we obtain

U��,�,�� = Q�− 3� + 2�

4
	H� � − � − � − �

4
	Q�� − 2�

4
	 .

�6�

Having discussed the two parametrizations of U�SU�2� that
are useful for our purposes, we turn now to the implementa-
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tion of the experimental arrangements that allow us to ex-
hibit Pancharatnam’s phase.

A. Interferometric arrangement: Mach-Zehnder and Sagnac

In general, with an interferometric array Pancharatnam’s
phase can be drawn from intensity measurements that are
essentially described by Eq. �1�. If we introduce U as given
in Eq. �2� into Eq. �1�, we obtain the intensity as

I = � 1
�2

�ei��+ �z + U��,�,���+ �z��2

= 1 − cos��

2 	cos� � + �

2 	cos���

− sin��

2 	cos� � − �

2 	sin��� . �7�

From Eqs. �2� and �3� it follows that the parameters of
these two representations of U�SU�2� are related through
tan�
�=tan� �

2 �cos� �−�
2 � /cos� �+�

2 �. Hence, I can be written as

I = 1 − cos��

2
	cos� � + �

2
	sec�
�cos�
 − �� , �8�

making it evident that an interferometric method for exhib-
iting �P would require measuring the shift induced by U on
the intensity pattern by an angle 
=�P �modulo ��. Now, the
expression for I as given in Eq. �8� is somewhat inconve-
nient, because it mixes 
 with parameters of a representation
to which it does not belong. By expressing Eq. �8� with the
parameters of U�� ,	 ,
�, we obtain

I = 1 − cos���cos�
 − �� , �9�

thus rendering clear that the visibility v��Imax− Imin� / �Imax
+ Imin� is given by v=cos �, i.e., it is independent of Pan-
charatnam’s phase. In terms of the parameters � ,� ,� the
square of the visibility is given by

v2��,�,�� = 1
2 �1 + cos � cos � − cos � sin � sin �� . �10�

For experimental tests, it will be useful to write the vis-
ibility in terms of the angles of the retarders as follows:

v2��1,�2,�3� =
1

2

1 + cos�3� + 4�3

2
	cos�� − 4�1

2
	

− cos�2�1 − 4�2 + 2�3�

�sin�3� + 4�3

2
	sin�� − 4�1

2
	� . �11�

Let us now refer specifically to a Mach-Zehnder interfer-
ometer. In order to calculate its output intensity, let us rep-
resent light beams as a superposition of polarization states
���H� , �V�
� and momentum �or “which way,” i.e., spatial�
states ���X� , �Y�
�. These last states denote the two-way alter-
native that can be ascribed to the Mach-Zehnder interferom-
eter. Let us consider first that our initial state is taken to be a
vertically polarized state that enters the first beam splitter
along the X direction �e.g., the beam passing polarizer P1 in

Fig. 1�. It is represented by �VX���V� � �X�. The actions of
beam splitters, mirrors, and phase shifters are represented by
operators in the two-qubit space with basis
��VX� , �VY� , �HX� , �HY�
. They act on the �X� , �Y� states, leav-
ing the polarization states �H� , �V� unchanged. The actions of
a 50:50 beam splitter and a mirror are given, respectively, by
�14�

UBS = 1P �
1
�2

��X��X� + �Y��Y� + i�X��Y� + i�Y��X�� ,

�12�

Umirr = 1P � �− i��X��Y� + �Y��X��� , �13�

where 1P means the identity operator in polarization space.
Let us stress that the above expressions for the actions of a
beam splitter and a mirror hold true irrespective of the fact
that the spatial qubits are realized by classical or by quantum
fields �see, e.g., �15��. Working with classical fields, the us-
age of kets �and bras� is just a useful mathematical means to
represent field amplitudes �16�. Accordingly, a phase factor
in one or in the other arm of the interferometer can be rep-
resented by UX���=1P � �exp�i���X��X�+ �Y��Y�� and UY���
=1P � ��X��X�+exp�i���Y��Y��, respectively. If we mount an

Q

Q

H

P1

P2

P

E

BS

BS

L

MM

M

Y

X

FIG. 1. �Color online� Interferometric arrangement for testing
Pancharatnam’s phase �P. Light from a He-Ne laser �L� passes a
polarizer �P� and enters a beam expander �E�, after which half of
the beam goes through one polarizer �P1� and the other half goes
through a second polarizer �P2�, orthogonally oriented with respect
to the first. The two collinear beams feed the same Mach-Zehnder
interferometer �BS: beam splitter; M: mirror� in one of whose arms
an array of three retarders has been mounted �Q:quarter-wave plate;
H: half-wave plate�, so as to realize any desired SU�2� transforma-
tion. This transformation introduces a Pancharatnam’s phase �P

=
 on one half of the beam and an opposite phase �P=−
 on the
other perpendicularly polarized half, so that the relative phase of the
two halves equals 2
. From the relative shift between the upper and
the lower halves of the interferogram that is captured by a CCD
camera set at the output of the array, one can determine �P. Any
instability of the array affects both halves of the interferogram in
the same way, so that the relative shift of 2
 is insensitive to
instabilities.
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array of retarders on, say, arm X of the interferometer, its
action would be represented by UP

X =U � �X��X�+1P � �Y��Y�,
where U�SU�2� means the respective polarization transfor-
mation that the retarders produce, in our case the one given
in Eq. �2�. Similarly, UP

Y =1P � �X��X�+U � �Y��Y�. For the
arrangement shown in Fig. 1 we obtain

UT = UBSUmirrUX���UP
YUBS. �14�

This U acts on the initial state �VX� and the intensity
measured at one of the output ports of the final beam splitter
is obtained by projecting the resulting state, UT�VX�, with the
appropriate projectors: �VX��VX� and �HX��HX�, thereby ob-
taining the vectors �VX��VX�UT�VX� and �HX��HX�UT�VX�,
respectively. Squaring the respective amplitudes and sum-
ming up we get the intensity as IV= ��VX�UT�VX��2
+ ��HX�UT�VX��2. A straightforward calculation yields

IV =
1

2

1 − cos��

2
	cos� � + �

2
	cos���

− sin��

2
	cos� � − �

2
	sin���� . �15�

As already shown, this can be written as

IV = 1
2 �1 − cos���cos�� − 
�� . �16�

Using the above result, a direct measurement of Pan-
charatnam’s phase 
=�P �modulo �� becomes possible: all
one needs to do is to measure the fringe shift between two
interferograms, with one of them serving as the reference
�
=0� and the other being obtained after applying the U
transformation. The practical problem with this method is the
instability of the interferometric array. Minute changes in
any component of the interferometer preclude an accurate
determination of 
. Different strategies can be applied to
overcome this kind of shortcomings. Mechanical and thermal
isolations of the arrangement is the most direct one, but it
makes measurements rather awkward. Damping instabilities
by a feedback mechanism is another possibility; but it makes
the arrangement more involved and difficult to operate. A
third option would be to use a Sagnac instead of a Mach-
Zehnder interferometer. In a Sagnac-like interferometer one
can make the two beams pass the same optical elements, so
that any instability would affect both beams equally. One
should then design the interferometer in such a way that the
U transformation acts on one beam alone, so that the other
can serve as the reference beam. In our case, for reasons
explained in detail in Sec. III, we turned to a different option
that is based on the following observations.

Equation �16� holds for an initial state that is vertically
polarized. When the initial state is horizontally polarized,
then the intensity is given by

IH = 1
2 �1 − cos���cos�� + 
�� . �17�

We observe that intensities IV and IH are shifted with respect
to each other by 2
. Thus, we can exploit this fact for mea-
suring 
. To this end, we polarize one half—say the upper
half—of the laser beam vertically and the lower half hori-
zontally. With such a beam we feed our interferometer. It can

be mounted either in a Mach-Zehnder or in a Sagnac con-
figuration. In both cases we can capture at the output an
interferogram, half of which corresponds to IV and the other
half corresponds to IH. The upper fringes of the output will
be shifted with respect to the lower ones by 2
. As both
halves of the beam pass the same optical elements, they will
be equally affected by whatever perturbations. The array is
therefore insensitive to instabilities. We thus need only to
accurately measure the relative fringe shift in each interfero-
gram in order to obtain 
. By applying this method, we have
measured Pancharatnam’s phase with an accuracy that is
similar to that reached by the polarimetric method, on which
we turn next.

B. Polarimetric arrangement

The optical setup for the polarimetric method, as pro-
posed by Wagh and Rakhecha �9�, is somewhat more de-
manding as compared to the interferometric method. At first
sight, however, the polarimetric method could appear to be
the simpler of the two options, because it requires a single
beam, from which one extracts phase information. It is not
obvious that phase information can be extracted from a
single beam. However, the polarimetric method is in fact
based on an analogous principle as the interferometric one,
and in a certain sense polarimetry could be seen as “virtual
interferometry.” Let us briefly discuss how it works.

Consider an initial polarized state �i�= �+�z and submit it to
the action of a � /2 rotation around an axis perpendicular to
the polarization axis �z�, e.g., a rotation around the x axis. As
a result, we obtain the state ��+�z− i�−�z� /�2. If we now phase
shift this state by applying to it the operator exp�−��z /2�,
we obtain the state

V�+ �z � exp�− i��z/2�exp�− i��x/4��+ �z

= �e−i�/2�+ �z − iei�/2�− �z�/�2

= e−i�/2��+ �z − iei��− �z�/�2.

We have thus generated a relative phase � between the
states �+�z and �−�z, which is something analogous to what is
achieved in an interferometer by changing the length of one
of the two optical paths. Subsequently, we let U act and as a
result we obtain the state UV�+�z= �e−i�/2U�+�z
− iei�/2U�−�z� /�2��
+�+ �
−�. It is from this last state that
we can extract Pancharatnam’s phase by intensity measure-
ments. In order to accomplish this goal, we project �
+�
+ �
−� on the state V�+�z, i.e., the phase-shifted split state we
prepared before applying U. The corresponding intensity we
measure is thus given by

I = �z�+ �V†��
+� + �
−���2. �18�

Let us write V�+�z= �e−i�/2�+�z− iei�/2�−�z� /�2���+�+ ��+�
and take U as given by U�� ,	 ,
� of Eq. �3�. Calculating the
amplitude z�+�V†��
+�+ �
−��= ���+�+ ��−����
+�+ �
−��, we
obtain, using ��� �
��=exp��i
�cos��� /2 and ��� �
��
= i exp��i�	+���sin��� /2, that ���+�+ ��−����
+�+ �
−��
=cos���cos�
�+ i sin���cos�	+�� and, hence, that the inten-
sity amounts to

I = cos2���cos2�
� + sin2���cos2�	 + �� . �19�
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Equation �19� contains Pancharatnam’s phase 
=�P
�modulo �� in a form that allows its extraction through in-
tensity measurements. Indeed, we observe from Eq. �19� that
the minimal and the maximal intensities are given by Imin
=cos2���cos2�
� and Imax=cos2���cos2�
�+sin2���, respec-
tively, so that

cos2�
� =
Imin

1 − Imax + Imin
, �20�

which is the expression on which the polarimetric method is
finally based.

A concrete experimental arrangement requires that we
implement V and U with the help of retarders. To begin with,
exp�−i��x /4�=Q� �

4 � and exp�−i��z /2�=Q� �
4 �H� �−�

4 �Q� �
4 �.

Using Q2� �
4 �=H� �

4 � and exp�+i��z /2�=Q�− �
4 �H� �+�

4 �
�Q�− �

4 �, we obtain

Utot � V†UV

= H�−
�

4
	H�� + �

4
	Q�−

�

4
	

�UQ��

4
	H�� − �

4
	H��

4
	 . �21�

As for U, it is convenient to employ the form U�� ,� ,�� of
Eq. �2�, a form which can be directly translated into an ar-
rangement with retarders, according to Eq. �6�, i.e., an ar-
rangement of the form QHQ. Inserting this QHQ for U into
Eq. �21�, we end up with an arrangement that consists of nine
plates. In order to reduce the number of plates, we apply
relations such as, e.g., Q���H���=H���Q�2�−��,
Q���H���H�	�=Q��+� /2�H��−�+	−� /2�. The final re-
duction gives an array that consists of five retarders:

Utot = Q�−
3�

4
−

�

2
	Q�−

5� + 2�

4
−

�

2
	

�Q�−
9� + 2�� + ��

4
−

�

2
	H�−

7� + � + � − �

4
−

�

2
	

�Q�−
�

4
−

�

2
	 . �22�

Note that such an arrangement could be implemented by
mounting five plates having a common rotation axis, so that
all the plates can be rotated simultaneously by the same
angle � /2. The intensity that we should measure at the de-
tector depends on �, �, and � according to the following
expression:

I = �z�+ �Utot�+ �z�2

= cos2��

2
	cos2� � + �

2
	

+ 
cos��

2
	sin� � + �

2
	cos���

+ sin��

2
	sin� � − �

2
	sin����2

. �23�

From this intensity we can extract Pancharatnam’s phase,
as given by Eq. �20�. We have tested this theoretical predic-
tion under restricted conditions by manually rotating the re-
tarders. Thus, we fixed � to 2�, so that cos2�
�= Imin�1
− Imax+ Imin�−1=cos2�� /2� for all �. In such a case, Pancharat-
nam’s phase �modulo �� should be given by �P=� /2. For
�=2� the arrangement that realizes the corresponding Utot
reduces to the following expression:

Utot
�=2� = Q���Q�−

�

2
+ �	H�� − �

4
+ �	 , �24�

in which we have redefined the rotation angle � according to
�−3�−2�� /4→�. If we instead fix �=−�, it still remains
true that cos2�
�= Imin�1− Imax+ Imin�−1=cos2�� /2�, this time
for all �, so that �P=� /2 �modulo �� as before. The corre-
sponding arrangement of retarders is now given by

Utot
�=−� = Q�3� + 2� − 2�

4
	H�− 4� + � + � − 2�

4
	

�Q�− � − 2�

4
	 . �25�

It is worth noting that the intensity in this case is given by

I = cos2� �

2
	cos2�� − 2�

2
	 + sin2� �

2
	cos2��

2
	 . �26�

Setting �=0, �=�, the intensity has a constant value, which
is useful for adjusting the arrangement. The results of our
measurements, including those corresponding to the full ar-
ray with five retarders, are shown in Fig. 2. As one can see,
they confirm the theoretical predictions within experimental
errors.
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FIG. 2. Experimental results from a polarimetric measurement
of Pancharatnam’s phase. The upper graphs correspond to an array
that consists of three retarders set in the forms QQH �left� and QHQ
�right�. Parameter values are as indicated and cos2��P� was mea-
sured as a function of �. The lower curve corresponds to the full
array of five retarders set in the form QQQHQ.
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III. EXPERIMENTAL PROCEDURES AND RESULTS

A. Polarimetric measurements

We have carried out measurements of the Pancharatnam
phase by applying the polarimetric and the interferometric
methods presented in the previous sections. In both cases the
light source was a 30 mW cw He-Ne laser �632.8 nm�. The
polarimetric arrangement shown in Fig. 3 could have been
designed so that the five retarders �see Eq. �22�� could be
simultaneously rotated by the same amount. If one aims at
systematically measuring Pancharatnam’s phase with the po-
larimetric method, this would require having a custom-made
apparatus on which one can mount the five plates with any
desired initial orientation and then submit the whole assem-
bly to rotation. As our aim was to simply exhibit the versa-
tility of the method and to compare its accuracy with that of
the interferometric method, we mounted a simple array of
five independent retarders, so that each one of them could be
manually rotated. With such an approach it takes some hours
of painstaking manipulation to record all necessary data,
whenever the experiment is performed with the full array of
five retarders. For this reason, we initially restricted our tests
to three retarders. This could be achieved by lowering the
degrees of freedom, i.e., by fixing one of the three Euler
angles, as explained in the previous section �see Eqs. �24�
and �25��. Having made measurements with three plates, we
performed an additional run of measurements with the full
arrangement of five retarders. Our results are shown in Fig.
2. They correspond to intensity measurements obtained with
a high-sensitivity light sensor �Pasco CI-6604, Si PIN pho-
todiode with spectral response in the range 320–1100 nm�.
As expected �retarders and polarizers could be oriented to
within 10�, the experimental values are within 3–6 % in ac-
cordance with the theoretical predictions, depending on the
number of retarders being employed.

B. Interferometric measurements

We used two interferometric arrangements. One of them
was a Mach-Zehnder interferometer and the other was a Sa-
gnac interferometer. We started by mounting both interfer-
ometers in the standard way, but adding an array of three
retarders on one arm for implementing any desired U
�SU�2�. Usually, phase shifts �, as appearing in Eq. �9�,

originate from moving one mirror with, e.g., a low-voltage
piezotransducer. One can then record the interference pattern
by sensing the light intensity with a photodiode set at one of
the output ports of the exiting beam splitter. Alternatively,
one can capture the whole interference pattern with a charge-
coupled device �CCD� camera. The Mach-Zehnder interfer-
ometer is easier to mount in comparison to the Sagnac inter-
ferometer. However, it has the disadvantage of being more
unstable against environmental disturbances, thus requiring
the application of some stabilizing technique such as, e.g., a
feedback system. In contrast, the Sagnac interferometer is
very stable with respect to mechanical and thermal distur-
bances. Nevertheless, mounting a Sagnac interferometer can
be difficult for geometrical reasons. By using one or the
other method, one can obtain two interferograms—one with
and the other without the retarders in place. In our case,
capturing the whole interference pattern with a CCD
camera—instead of sensing it with a photodiode—proved to
be the most convenient approach with both arrangements,
Mach-Zehnder and Sagnac. When working with the Mach-
Zehnder array, we first implemented a feedback system in
order to stabilize the reference pattern. One of the two paths
followed by the laser beam was used for feedback. The feed-
back system should allow us to compensate the jitter and
thermal drifts of the fringe patterns that preclude a proper
measurement of the phase shift. This requires an electronic
signal, after proportional-integral amplification, to be fed to a
piezotransducer in a servoloop, so as to stabilize the interfer-
ometer, thereby locking the fringe pattern. Although we suc-
ceeded in locking the fringe pattern, the geometry of our
array severely limited the parameter range we could explore.
We thus turned to a different option, i.e., the one based on
Eqs. �16� and �17�. It required polarizing one half of the laser
beam in one direction and the other half in a direction per-
pendicular to the first one.

In order to exhibit the feasibility of our interferometric
method, we performed experiments with both Mach-Zehnder
and Sagnac arrays. In both cases we obtained similar prelimi-
nary results. However, the systematic recording of our results
corresponds to the Mach-Zehnder array shown in Fig. 1, as it
was the simpler one to mount and manipulate. As shown in
the figure, the initially polarized laser beam was expanded,
so that its upper half passed through one polarizer P1 and its
lower half through a second polarizer P2 orthogonally ori-
ented with respect to the first. Each run started by setting the
retarders so as to afford the identity transformation
Q�� /4�H�−� /4�Q�� /4�=1P; the corresponding interfero-
gram was captured with a CCD camera �1 /4� Sony CCD,
video format of 640�480 pixels, and frame rate adjusted to
30 fps� and digitized with an IBM-compatible computer. The
upper and the lower halves of this interferogram showed a
small relative shift stemming from surface irregularities and
tiny misalignments. The initial interferogram served to gauge
all the successive ones that correspond to transformations
U�� ,� ,���1P. Each interferogram was evaluated with the
help of an algorithm that works as follows. First, by optical
inspection of the whole set of interferograms—
corresponding to a given U�� ,� ,��—one selects �by pixel
numbers� a common region R0 of the images the algorithm
should work with �see Fig. 4�. Having this region as its input

Q Q Q H Q

�

P P

FIG. 3. Polarimetric arrangement for testing Pancharatnam’s
phase �P. With an array of five retarders �Q:quarter-wave plate; H:
half-wave plate� and two polarizers �P�, a relative phase � between
two polarization components �� �z can be introduced, on which any
desired SU�2� transformation can be applied. The five retarders are
simultaneously rotated, thereby varying �, and the intensity I��� is
recorded. From the maximum and the minimum values of I one can
determine �P, according to cos2��P�= Imin / �1− Imax+ Imin�.
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the algorithm performs a column average of each half of the
interferogram—thereby obtaining the mean profile of the
fringes—and the output is then submitted to a low-pass filter
�Savitzky-Golay filter� to get rid of noisy features. The result
is a pair of curves like those shown in Fig. 4. The algorithm
then searches for relative minima in each of the two curves
and compares their locations so as to output the relative
shifts between the minima of the curves. After averaging
these relative shifts the algorithm produces its final output
for each pair of curves. We repeated this procedure for a
series of regions �fixed by pixel numbers� R0 , . . . ,R3, so that
we could estimate the uncertainty of our experimental val-
ues. No attempt was made to automate the selection of the
working regions. Visual inspection proved to be effective
enough for our present purposes. Some series of interfero-
grams showed limited regions that were clearly inappropriate
for being submitted to evaluation, as they reflected inhomo-
geneities and other features that stemmed from surface ir-
regularities of the optical components. We applied the com-
plete procedure to a whole set of interferograms
corresponding to different choices of U�� ,� ,��. Our results
are shown in Fig. 5. As can be seen, our experimental results
are in very good agreement with theoretical predictions.

A second independent, algorithm was also used to check
the above results. This algorithm was developed as a variant
of some commonly used procedures in image processing.
Like in the previous approach, the algorithm first constructs
the mean profiles of the fringes and submits them to a low-
pass filter. But now, instead of searching for relative minima,

the algorithm does the following. First, it determines the
dominant spatial carrier frequency k0 by Fourier transform-
ing curves like those shown in Fig. 4. Let us denote these

curves by îup�x� and îlow�x�, corresponding, respectively, to
the upper and the lower halves of the interferogram. The
Fourier transforms are denoted by iup�k� and ilow�k�. The goal

is to determine the relative shift �r=2
 between îup�x� and

îlow�x�. It can be shown �17� that �r=�up−�low

R0

FIG. 4. �Color online� Pancharatnam’s phase can be extracted from the relative fringe shift between the upper and the lower parts of the
interferogram. The relative shift equals twice the Pancharatnam’s phase. The left panels show the result of performing a column average of
the fringes plus the application of a Savitzky-Golay filter to get rid of noise features. The column average is performed after selecting the
evaluation area R0 on the interferogram, as illustrated on the right panel. The reported shifts are mean values obtained from four different
selections R0 , . . . ,R3 of the evaluation area.
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� Im�ln�iup�k0��
−Im�ln�ilow�k0��
, up to a constant phase
offset that is the same for all the interferograms pertaining to
a given U�� ,� ,��. The above expression for �r comes from
observing that both iup�k0� and ilow�k0� have the structure
i�k0�=a�k0�+b�0�exp�i��+b��2k0�exp�−i��, so that i�k0�
�b�0�exp�i�� whenever �b�0��� �b��2k0�� , �a�k0��. Thus, the
accuracy of the approximation for �r depends on how well
one can separate the Fourier components of i�k0�. In the
present case we applied this procedure only for the sake of
checking our results. An attempt to systematize this method
would be worth only if one’s goals require an automated
phase-retrieval method. In our case, as we were interested in
giving a proof of principle only, the method of choice was
not a fully automated one, but a partially manual method
which was envisioned to demonstrate the feasibility of our
approach.

Another series of tests was devoted to measuring the vis-
ibility v as given in Eq. �11�. The quantity v��1 ,�2 ,�3� was
submitted to test by fixing two of its three arguments. Our
results are shown in Fig. 6. The left panels correspond to
v��1 ,�2 ,�3� as a function of �2 and �3, that is, the surface
obtained by fixing �1 as indicated. In the right panels we
compare the theoretical predictions against our measure-
ments of v��1 ,�2 ,�3�, whereby two of the three arguments
have been held fixed. The interferograms were evaluated fol-
lowing a procedure similar to the one already explained.

However, in this case it was not the full cross section of the
beam that was submitted to evaluation, but a manually cho-
sen region of the images corresponding to a part of the input
beam having almost uniform intensity. This had to be so,
because Eq. �11� presupposes a uniform profile of the input
beam. In order to test the visibility of the whole cross section
of the beam, Eq. �11� should be modulated with a Gaussian
envelope. Such a refinement was however unnecessary for
our scopes. In any case, the experimental value of the vis-
ibility, viz., �Imax− Imin� / �Imax+ Imin�, was obtained by choos-
ing in each interferogram several maxima and minima, so as
to assess the accuracy of our measurements. Thus, the error
bars in the figures take proper account of the tiny variations
in the chosen region of the input-beam profile. As can be
seen, the experimental values closely fit the theoretical pre-
dictions.

IV. CONCLUSIONS

We have carried out theoretical calculations and the cor-
responding measurements of Pancharatnam’s phase by ap-
plying the polarimetric and the interferometric methods. Our
interferometric array is robust against thermal and mechani-
cal disturbances. It can be implemented with a Michelson, a
Sagnac, or a Mach-Zehnder interferometer. We have com-
pared our measurements with those obtained in a polarimet-
ric array, finding similar results in both cases. Our polarimet-
ric array consisted of five wave plates and two polarizers.
Five plates are necessary to realize an arbitrary SU�2� trans-
formation with the polarimetric array. As well known, three
plates are instead required for realizing an arbitrary SU�2�
transformation with an interferometric array. The whole
Poincaré sphere of polarization states could be explored with
both our polarimetric and interferometric arrays. Thus, any
two given polarization states could be connected by the ap-
propriate SU�2� transformation. The associated relative Pan-
charatnam’s phase would thereby be realized. This phase can
be decomposed as a sum of dynamical and geometrical
phases. By appropriately choosing the path connecting two
given states on the Poincaré sphere, one can study different
aspects of both the dynamical and the geometrical phases.

We have also tested theoretical predictions concerning
fringe visibility when applying the interferometric method.
Our experimental findings were in very good agreement with
theoretical predictions. This is interesting not only on its
own, but also in view of extracting Pancharatnam’s phase
from visibility measurements in the case of mixed states.
Indeed, it has been proved �18� that, for mixed states, fringe
visibility is a simple function of Pancharatnam’s phase.
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FIG. 6. Interferometric measurement of the visibility
v��1 ,�2 ,�3�. The left panels show the surfaces obtained by fixing
one of the three angles, �1, as indicated. The right panels show the
experimental results that correspond to the curves highlighted on
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visibility of 1. This is because Imin is never zero, as required to
obtain v=1. By subtracting the nonzero average of Imin the experi-
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it occurs for the lower curve, which corresponds to v�1.
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