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We obtain an exact solution of the Dirac equation in �2+1� dimensions in the presence of a constant
magnetic field normal to the plane together with a two-dimensional Dirac-oscillator potential coupling. The
solution space consists of positive- and negative-energy solutions, each of which splits into two disconnected
subspaces depending on the sign of an azimuthal quantum number k=0,�1,�2, . . . and whether the cyclo-
tron frequency is larger or smaller than the oscillator frequency. The spinor wave function is written in terms
of the associated Laguerre polynomials. For negative k, the relativistic energy spectrum is infinitely degenerate
due to the fact that it is independent of k. We compare our results with already published work and point out
the relevance of these findings to a systematic formulation of the relativistic quantum Hall effect in a confining
potential.
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I. INTRODUCTION

Recent technological advances in nanofabrication have
created a great deal of interest in the study of low-
dimensional quantum systems such as quantum wells, quan-
tum wires, and quantum dots �1�. In particular, there has been
considerable amount of work in recent years on semiconduc-
tor confined structures, which finds applications in electronic
and optoelectronic devices. The application of a magnetic
field perpendicular to the heterostructure plane quantizes the
energy levels in the plane, drastically affecting the density of
states giving rise to the famous quantum Hall effect �QHE�
�2�. The latter remains as the most interesting phenomenon
observed in physics because of its link to different theories
and subjects.

The stationary state associated with the motion of elec-
trons in a uniform magnetic field is a well-known textbook
problem �3�. It results in a sequence of the quantized Landau
energy levels and associated wave functions characterizing
the dynamics in the two-dimensional �2D� plane normal to
the applied magnetic field. This quantization has important
consequences in condensed-matter physics ranging from the
classical de Hass-van Alphen effect in metals �4� to QHE in
semiconductors �2�. The relativistic extension of these mod-
els turned out to be of great importance in the description of
2D quantum phenomena such as QHE in graphene �5–8�. In
fact, several condensed-matter phenomena point out to the
existence of a �2+1�-dimensional energy spectrum deter-
mined by the relativistic Dirac equation �9�. For very recent
works, one may consult Refs. �10–15� and for early works
relevant to our subject we cite �16,17�.

Motivated by different investigations on the Dirac fermi-
ons in �2+1� dimensions, we give an exact solution of a

problem that has been studied at various levels by research-
ers dealing with different physical phenomena. We have
done so by considering a relativistic particle subjected to an
external magnetic field as well as to a confining potential. By
introducing a similarity transformation, we show that the
system can be diagonalized in a simple way. Solving the
eigenvalue equation, we end up accounting for the full space
of the eigenfunctions that include all cases related to differ-
ent physical settings. More precisely, from the nature of the
problem we get separate angular and radial solutions. The
radial equation leads to the exact relationship between the
two-spinor components. In fact, depending on the range of
values of three physical quantities, the full solution space
splits into eight disconnected subspaces as summarized in
Table I in Sec. II B. This allowed us to obtain various solu-
tions and emphasis on similarities to, and differences from,
already published work elsewhere �18�.

On the other hand, we give discussions of our results
based on different physical settings. In fact, we show that for
week and strong magnetic fields there is a symmetry that
allows us to go from positive- to negative-energy solutions
�states and spectrum�. This can be done by interchanging the
confinement frequency � with the cyclotrons �c and vice
versa. This suggests defining an effective magnetic field that
produces the effective quantized Landau levels. In both
cases, there is a degeneracy of the Landau levels where each
quantum number n is k-times degenerate, in analogy with the
nonrelativistic case �19�. For the intermediate magnetic field
case, it is underlined that the degeneracy is possible. Finally,
we compare our findings with those in a very significant
work by Villalba and Maggiolo �18�. The full rich space of
solutions suggested enabled us to carry out a deeper analysis
in relation to various physical quantities. For instance, we
obtained, as expected in the absence of an applied voltage, a
null current density for both directions in the Cartesian rep-
resentation. However, this is not the case in polar coordinate.
In fact, we show that the radial current vanishes, whereas the
angular component does not. It is dependent on various
physical parameters in the problem. These results are sum-
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marized in Table III, showing clearly the dependence of
these values on the given subspace. This may offer an alter-
native approach for a systematic study and understanding of
the anomalous QHE �7,8�. Additionally, we discuss the non-
relativistic limit of the problem.

The paper is organized as follows. In Sec. II, we give the
theoretical formulation of the problem where a similarity
transformation is introduced to simplify the process for ob-
taining the solutions �spinor wave function and energy spec-
trum�. We use the exact relationship between spinor compo-
nents to obtain a second-order differential equation for one
of the two-spinor components. The second spinor component
is obtained from this using the exact relationship. The rela-
tivistic energy eigenvalues and the corresponding spinor
wave functions are obtained as elements in the eight sub-
spaces of the full and complete Hilbert space. In Sec. III, we
discuss the physical meaning of our results and their poten-
tial application to QHE. To analyze the transport properties
of the system, we determine the current density in Sec. IV
and the nonrelativistic case in Sec. V. Finally, we conclude
by discussing the main results and the possible extension of
our work.

II. FORMULATION OF THE PROBLEM

We start by formulating the problem in terms of our lan-
guage �20�. This is done by introducing a similarity transfor-
mation of the Dirac equation in polar coordinates. This will
be convenient to handle the exact relationship between
spinor components and therefore derive the full spectrum as
a complete Hilbert space.

A. Hamiltonian system

The problem of a charged particle moving in a constant
magnetic field B� =Bẑ is a 2D problem in the plane normal to
the field �the Cartesian �x ,y� plane or the cylindrical �r ,��
plane�. In the relativistic units, �=c=1, the Dirac equation in
�2+1� dimensions for a spinor of charge e and mass m in the
electromagnetic potential A�= �A0 ,A� � reads as follows:

�i����� + ieA�� − m�� = 0, � = 0,1,2, �1�

where the summation convention over repeated indices is
used. ��= ��0 ,�� � are three unimodular square matrices satis-
fying the anticommutation relation

���,��� = ���� + ���� = 2G��, �2�

where G is the metric of Minkowski space-time, which is
equal to diag�+−−�. A minimal irreducible matrix represen-
tation that satisfies this relation is taken as �0=	3, �� = i	� ,
where �	i�i=1

3 are the 2
2 Hermitian Pauli spin matrices

	1 = �0 1

1 0
�, 	2 = �0 − i

i 0
�, 	3 = �1 0

0 − 1
� . �3�

Equation �1� could be rewritten as

i
�

�t
� = �− i�� · �� + e�� · A� + eA0 + m��� , �4�

where �� and � are the Hermitian matrices: �� = i	3	� , �=	3.
We will see below that the symmetry of the problem is pre-

served even if we introduce an additional coupling to the 2D
Dirac-oscillator potential. This coupling is introduced by the
substitution �� →�� +m�r��, where � is the oscillator fre-
quency. For time-independent potentials, the two-component
spinor wave function ��t ,r ,�� is written as

��t,r,�� = e−it��r,�� �5�

and Eq. �4� becomes the energy eigenvalue wave equation
�H−��=0, where  is the relativistic energy. The Dirac
Hamiltonian H is the 2
2 matrix operator

H = H0 + i	3	� · r̂Hr + i	3	� · �̂H�, �6�

where �r̂ , �̂� are the unit vectors in cylindrical coordinates
and

H0 = eA0 + m	3,

Hr = − i�r + eAr − im�r	3,

H� = −
i

r
�� + eA�. �7�

For regular solutions of Eq. �4�, square integrability �with
respect to the measure d2r�=rdrd�� and the boundary condi-
tions require that ��r ,�� satisfies

	r��r,��
 r=0

r→�
= 0, ��� + 2�� = ���� . �8�

To simplify the construction of the solution, we look for a
local 2
2 similarity transformation ��r ,�� that maps the

cylindrical projection of the Pauli matrices �	� · r̂ ,	� · �̂� into
their canonical Cartesian representation �	1 ,	2�, respectively
�21�. That is

�	� · r̂�−1 = 	1, �	� · �̂�−1 = 	2. �9�

A 2
2 matrix that satisfies this requirement is

��r,�� = ��r,��e�i/2�	3�, �10�

where ��r ,�� is a 1
1 real function and the exponential is a
2
2 unitary matrix. The Dirac Hamiltonian �6� gets mapped
into

H = �H�−1 = H0 − 	2Hr + 	1H�, �11�

where different operators are given by

H0 = H0,

Hr = − i��r −
�r

�
� + ieAr − im�r	3,

H� = −
i

r
��� −

��

�
−

i

2
	3� + eA� �12�

with �k=�k�. Therefore, the 2
2 Dirac Hamiltonian be-
comes
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H =� m + eA0 �r −
�r

�
+

1

2r
+ ieAr − m�r −

i

r
��� −

��

�
� + eA�

− �r +
�r

�
−

1

2r
− ieAr − m�r −

i

r
��� −

��

�
� + eA� − m + eA0

� . �13�

Thus, Hermiticity of Eq. �13� requires that

�� = 0,
�r

�
−

1

2r
= 0 �14�

and fixes the exact form of the modulus of similarity trans-
formation to be ��r ,��=	r. It is interesting to note that �2

turns out to be the integration measure in 2D cylindrical
coordinates. We could have eliminated the � factor in the
definition of � in Eq. �10� by proposing that the new spinor

wave function � be replaced with 1
	r
��r ,��. In that case, the

transformation matrix � becomes simply e�i/2�	3�, which is
unitary. However, making the presentation as above gave us
a good opportunity to show �in a different approach� why is
it customarily to take the radial component of the wave func-
tion in 2D cylindrical coordinates to be proportional to 1

	r
.

Finally, we obtain the �2+1�-dimensional Dirac equation
�H−��=0 for a charged spinor in static electromagnetic
potential as

� m + eA0 −  �r + ieAr − m�r −
i

r
�� + eA�

− �r − ieAr − m�r −
i

r
�� + eA� − m + eA0 −  ���+�r,��

�−�r,��
� = 0, �15�

where �� are the components of the transformed wave func-
tion 
�=�
�. This equation will be solved by choosing an
appropriate gauge to end up with the full Hilbert space.

B. Eigenvalues and wave functions

Now, we specialize to the case where a constant magnetic
field of strength B is applied at right angles to the �r ,��
plane, which is B� =Bẑ. Therefore, the electromagnetic poten-
tial has the time and space components as follows:

A0 = 0, A� �r,�� = 1
2Br�̂ . �16�

Consequently, Eq. �15� becomes completely separable and
we can write the spinor wave function as

���r,�� = ���r����� . �17�

Thus, the angular component satisfies −i d�
d� =��, where � is a

real separation constant giving the function

���� =
1

	2�
ei��. �18�

On the other hand, the boundary condition ���+2��=����
requires that ei2��e−i	3�=+1 which, in turn, demands that
ei2��=−1 giving the following quantum number:

� = 1
2�, � = � 1, � 3, � 5, . . . . �19�

Consequently, the Dirac equation for the two-component ra-
dial spinor is reduced to

� m − 
d

dr
+
�

r
+ Gr

−
d

dr
+
�

r
+ Gr − m −  ���+�r�

�−�r�
� = 0, �20�

where the physical constant G is given by G=m��c−�� and
�c is the cyclotron frequency �c= eB

2m . Thus, the presence of
the 2D Dirac-oscillator coupling did, in fact, maintain the
symmetry of the problem as stated below Eq. �4�. Moreover,
its introduction is equivalent to changing the magnetic field
as eB→eB−2m�. As a result of the wave equation �20�, the
two radial spinor components satisfy the exact relationship

���r� =
1

 � m
�� d

dr
+
�

r
+ Gr����r� , �21�

where ��m. Therefore, the solution of the problem with
the top �bottom� sign corresponds to the positive- �negative-�
energy solution. Using the exact relationship �21� to elimi-
nate one component in terms of the other in Eq. �20� results
in the following Schrödinger-like differential equation for
each spinor component:

�−
d2

dr2 +
��� � 1�

r2 + G2r2 + �m2 − 2 + G�2� � 1������r�

= 0. �22�

Again, we stress that this equation gives only one radial
spinor component. One must choose either the top or the

CONFINED DIRAC FERMIONS IN A CONSTANT… PHYSICAL REVIEW A 80, 012109 �2009�

012109-3



bottom sign to obtain the component that corresponds to the
positive- or the negative-energy solution, respectively. The
second component is obtained by substituting this into the
exact relationship �21�. Nonetheless, we only need to find
one solution �the positive- or the negative-energy solution�,
because the other is obtained by a simple map. For example,
the following map takes the positive-energy solution into the
negative-energy solution:

→ − , �→ − �, G → − G, ��→ ��, �23�

which, in fact, is the CPT transformation. Here the charge
conjugation C means that e→−e and �→−� or the ex-
change of � and �c. It is easy to check that the above map
�23� originates from the fact that the Dirac equation �20� is
invariant under such transformation. Hence, we just need to
solve for positive energies and use the above transformation
to obtain the negative-energy solutions. The total spinor
wave function reads as follows:

��r,�� =
1
	r

ei��e−�i/2�	3���r� , �24�

where ��r� has two components, such as

� = ��+

�−
� . �25�

Equation �22� looks like the nonrelativistic oscillator prob-
lem with a certain parameter map of the frequency, the an-
gular momentum, and the energy. For regular solutions of
Eq. �22�, the bound states will be of the form

�� � z�e−z/2Ln
��z� , �26�

where Ln
��z� is the associated Laguerre polynomial of order

n=0,1 ,2 , . . . and z=�2r2. The constants �� ,� ,�� are real and
related to the physical parameters B, �, and �. Square inte-
grability and the boundary conditions require that 2�� 1

2 and
��−1.

Substituting ansatz �26� into Eq. �22� and using the differ-
ential equation for the Laguerre polynomial shown in the
Appendix, we obtain four equations. Three of them deter-
mine the parameters �� ,� ,�� and one determines the energy
spectrum. The first three are

2� = � + 1
2 , �2 = 
G
 ,

� = � �� − 1
2 ,  � 0

� + 1
2 ,  � 0.

� �27�

For regular solutions of Eq. �22�, the � sign in the expres-
sion for � corresponds to ���0. Now, the fourth equation
gives the following �positive and negative� energy spectra:

n,�
� = � m	1 +

2
G

m2 �2n + 1�

s − s�

2
+ ��s + s���

�28�

where s=sgn�G�= 
G

G and s�=sgn���. The sign of G depends

on whether the oscillator frequency � is larger or smaller
than the cyclotron frequency �c. To compare our work with
the frequently used notation in the literature, we can replace
the quantum number � with k+ 1

2 , where k=0,�1,�2, . . .
and �→−� imply that k→−k−1. In that case, one may write
the energy spectrum as positive eigenvalues

n,k
+ = m	1 +

2
G

m2 �2n + 1 + s + k�s + s��� �29�

and as negative ones

n,k
− = − m	1 +

2
G

m2 �2n + 1 + s� + k�s + s��� , �30�

where s�=+1 for k=0. It is interesting to note that for �G
�0 the spectrum is infinitely degenerate because it is inde-
pendent of �. However, for �G�0 the degeneracy is finite
and equal to n+k+1. Substituting the wave-function param-
eters given by Eq. �27� into ansatz �26� gives for �0

�+�r� = x
k+1/2
e−�1/2�x2� An,k
++Ln

k�x2� , k� 0

An,k
+−xLn

−k�x2� , k� 0
� �31�

as well as for �0

�−�r� = x
k+1/2
e−�1/2�x2�An,k
−+xLn

k+1�x2� , k� 0

An,k
−−Ln

−k−1�x2� , k� 0,
� �32�

where x=r	
G
 and An,k
ij are normalization constants that de-

pend on the physical quantities � and �c. The lower compo-
nent is obtained by substituting Eqs. �31� and �32� into the
exact relationship �21�. Doing so while exploiting the differ-
ential and the recursion properties of the Laguerre polynomi-
als �see the Appendix�, we obtain the following for �0:

�−�r� =
	
G

n,k

+ + m
x
k+1/2
e−�1/2�x2


 �An,k
++x��s − 1�Ln

k�x2� + 2Ln
k+1�x2�� , k� 0

An,k
+−��s − 1��n − k�Ln

−k−1�x2� − �s + 1��n + 1�Ln+1
−k−1�x2�� , k� 0.

� �33�

On the other hand, repeating the same calculation for the upper component of the negative-energy solution gives the function

�+�r� =
	
G

n,k

− − m
x
k+1/2
e−�1/2�x2


 �An,k
−+��1 + s��n + k + 1�Ln

k�x2� + �1 − s��n + 1�Ln+1
k �x2�� , k� 0

An,k
−−x��1 + s�Ln

−k−1�x2� − 2Ln
−k�x2�� , k� 0,

� �34�
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which could have also been obtained by applying the CPT
map �23� to Eq. �33�. Thus, the structure of the whole
Hilbert-space solution consists of eight disconnected spaces
that could be displayed in tabular form as shown in Table I.

Using the standard definition, we calculate all involved
normalization constants in the above wave functions. These
are summarized in the Table II, where as stated above, s
=sgn�G�= 
G
 /G.

III. DISCUSSIONS

It is worthwhile investigating the basic features of some
limits of our results and their interesting underlying proper-
ties. We consider three different cases corresponding to the
relative strength of the external magnetic field �cyclotron fre-
quency� to the oscillator coupling �oscillator frequency�. We
also demonstrate the added value of our results as opposed to
others in the literature, in particular the classic work of Vil-
lalba and Maggiolo �18�.

A. Energy spectrum properties

To investigate the underlying symmetry of the system,
one may study the properties of quantum number pairs �n ,k�.
However, these may not provide simple hints on the ordering
of the energy eigenvalues n,k

� , with the exception of two
limiting cases: the weak and the strong fields.

1. Weak-field case

Suppose that the cyclotron frequency is much smaller
than the oscillator frequency. That is, �c��, G�−m�, or
s=−1. Thus, one obtains the following positive

n,k
+ 
�c��

� m	1 +
2�

m
�2n + k�s� − 1�� �35�

and negative-energy spectrum

n,k
− 
�c��

� − m	1 +
2�

m
�2n + 1 + s� + k�s� − 1�� .

�36�

Consequently, for k�0 �i.e., s�=+1� the energy spectrum is
�semi�infinitely degenerate since it becomes independent of
k. Moreover, the two spectra are related as

n,k
− 
�c��

= − n+1,k
+ 
�c��

. �37�

However, for k�0 �s�=−1� we obtain

n,k
+ 
�c��

� m	1 +
4�

m
�n − k� = − n,k

− 
�c��
. �38�

It is also interesting to note that for k�0 there exits a
positive-energy zero mode corresponding to 0

+ 
�c��
=m with

the following spinor wave function:

�0�r,�� =
Ak

+

	r
e−�i/2�	3��	m�rei��k+1/2exp�−

1

2
m�r2��1

0
� ,

�39�

where the normalization is

Ak
+ = A0k

++ =	2��k ! �1 + 2
�

m
�k + 1���−1

. �40�

These results are in good agreement with those of Dirac fer-
mions in the plane in the presence of a constant perpendicu-
lar magnetic field.

2. Strong-field case

Now, if the cyclotron frequency is much larger than the
oscillator frequency then G�m�c and we obtain the positive
relativistic energy spectrum

n,k
+ 
�c��

� m	1 +
2�c

m
�2�n + 1� + k�1 + s��� �41�

as well as the negative one

n,k
− 
�c��

� − m	1 +
2�c

m
�2n + �k + 1��1 + s��� . �42�

They are related to each other as

TABLE I. Full space solution.

Frequency ���c ���c ���c ���c

Energy �0 �0 �0 �0

Azimuth k�0, k�0 k�0, k�0 k�0, k�0 k�0, k�0

TABLE II. Normalization in terms of different physical quantities.

Energy Azimuth Normalization

�0 k�0
An,k

++ =	2n ! ���n+k� ! �1+ 4
G

�n,k

+ +m�2 �2�n+k+1�+n�1−s����−1

�0 k�0
An,k

+− =	n ! ���n−k� ! �1+ 2
G

�n,k

+ +m�2 �2�n+1�+ �k+1��s−1����−1

�0 k�0
An,k

−+ =	n ! ���n+k+1� ! �1+ 2
G

�n,k

− −m�2 �2�n+1�+k�s+1����−1

�0 k�0
An,k

−− =	2n ! ���n−k−1� ! �1+ 4
G

�n,k

− −m�2 �2�n−k�+n�s+1����−1
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n,k
+ 
�c��

= n+1,k−1
− 
�c��

. �43�

Thus, in this case the infinite degeneracy of the spectrum
corresponds to negative values of the azimuthal quantum
number �i.e., s�=−1� where n

+=n+1
− . Here, a negative-

energy zero mode exits corresponding to 0
− 
�c��

=−m with
the following spinor wave function:

�0�r,�� =
Ak

−

	r
e−�i/2�	3��	m�crei��−k−1/2exp�−

1

2
m�cr

2��0

1
� ,

�44�

where the normalization is

Ak
− = A0k

−− =	2���− k − 1� ! �1 − 2
�c

m
k��−1

. �45�

Comparing the weak and the strong magnetic field limits,
one can conclude that the dominant frequency that controls
the physics of the problem is interchanged between the os-
cillator and the magnetic field as �↔�c. More precisely, the
k-independent infinitely degenerate energy spectra are re-
lated to each other as follows:

n
+
�c��,k�0 = n+1

+ 
�c��,k�0, n
−
�c��,k�0 = n+1

− 
�c��,k�0,

�46�

where the quantum number n corresponds to the Landau-
level index. The existence of a zero-mode energy is now very
clear for positive �negative� energy with k�0 �k�0�, re-
spectively.

3. Fine tuned case

If the oscillator frequency is tuned to resonate with the
cyclotron frequency �i.e., ���c� then G=m�, where �
=�c−� such that 
�
�m. In this case, the relativistic energy
spectrum approaches the nonrelativistic energy limit

E =
1

2m
�2 − m2� �47�

giving the quantity

Enk
� = 
�
�2n + 1 +

s + s�

2
�

s − s�

2
+ k�s + s��� . �48�

In this case, the energy spectrum degeneracy occurs when
the quantum numbers associated with the two states �1 and
�2 satisfy the relation

n2 − n1

k2 − k1
= −

s + s�

2
. �49�

That is, when the ratio of the shift in the principal quantum
number is matched with the shift in the azimuthal number
either up or down depending on the relative strength of the
two frequencies and sign of k.

B. Comparisons with other studies

We compare our results with those in very similar studies
found elsewhere in the literature, such as the classic work by

Villalba and Maggiolo �18� and, in particular, the energy
spectrum and the spinor wave function. As for the latter, ours
is identified with theirs according to

��+

�−
� � � �1

i�2
� . �50�

In what follows, we summarize our remarks regarding few
points in �18�:

�1� The imaginary i is missing from some of the off-
diagonal entries in the Dirac equation �11�; however, it was
later corrected in Eqs. �28� and �29�.

�2� The relative strength of the cyclotron frequency �c to
the oscillator frequency � �i.e., whether �c is greater than or
less than �� is ignored.

�3� In addition, the negative-energy solutions were also
ignored altogether. Thus, only one fourth of the regular so-
lution space, which consists of eight subspaces and whose
structure is shown in Table I, was obtained in �18�. The au-
thors obtained only the two subspaces corresponding to 
�0 and �c��.

�4� The alternative signs in Eq. �31�, which correspond to
the sign of the energy, was confused with the independent
signs for the physical parameter � �k in our notation�.

�5� The relative number of nodes of the top to the bottom
spinor components for k�0 as given by Eqs. �33� and �34� is
incompatible with the exact relationship between spinor
components �21�.

IV. DENSITY OF CURRENT

We examine the behavior of the present system by ana-
lyzing the electric current density. Indeed, from our findings
we can show that

J� � ���  = i�	3	�  . �51�

For this calculation, we use the spinor wave function ob-
tained above. This gives a null value in the Cartesian coor-
dinates, which is Jx=Jy =0. This, of course, is expected since
there is no net charge drift. As a reassuring exercise, we
calculate the same current in cylindrical coordinates

Jr = J� · r̂ = i�	3	� · r̂, J� = J� · �̂ = i�	3	� · �̂ . �52�

In this calculation, we employ the similarity transformation
�10�. The calculation gives Jr=0; however, J� does not van-
ish having the components given in Table III. This is due to
the fact that the physical problem in cylindrical coordinates
is for a charged particle confined to a circular motion due to
the constant magnetic field.

One could make a different analysis in terms of the physi-
cal quantities corresponding to different signs �s=�� and for
all the eight different subspaces. All these analyses could be
used to give an interesting description for the anomalous
QHE.

V. NONRELATIVISTIC LIMIT

It is interesting to study the nonrelativistic limit of our
work to reproduce results already known in the literature.
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This can be achieved by taking the limit m→� in the above
findings. Now in the units �=c=1, the nonrelativistic prob-
lem has already been worked �see, for example, �19��,

H��r,�� = �−
r2

2m
��r

2 +
1

r
�r +

1

r2��
2� − i

1

2
�c��

+
m

8
�2r2���r,�� = E��r,�� . �53�

The wave functions are �where �=0 and s=+1�

�n,��r,�� = �− 1�n 1
	�l0

	 n!

�n + 
�
�!
exp�−

r2

2l0
2�� r

l0
�
�


Ln
�
�
�


� r2

l0
2 �ei��, �54�

where n=0,1 ,2 , . . . is the principal quantum number, �
=0,�1,�2, . . . is the angular moment quantum number,
and l0=	 1

eB is the magnetic length. The corresponding en-
ergy eigenvalues are given by

En,� = �n +

�
 + 1

2
� +

�c

2
� , �55�

where  is the frequency  =	�c
2+4�2.

To compare with the nonrelativistic limit of our work, we
take the limit m→� and use the well-known nonrelativistic
energy formula E= �2−m2c2� /2m giving

En,k
� = 2�c� n + k + 1, k� 0

n +
1� 1

2
, k� 0.� �56�

The � sign for k�0 is a remnant of the positive or negative
energy spectrum of the relativistic theory that is exhibited as
a zero-energy mode in the infinitely degenerate part of the
spectrum.

VI. CONCLUSION

The present paper was devoted to give a complete solu-
tion to the confined Dirac fermion system in the presence of
a perpendicular magnetic field. Indeed, using a similarity
transformation, we have formulated our problem in terms of
the polar coordinate representation that allows us to handle
easily the exact relationship between spinor components.
One spinor component was obtained by solving a second-

order differential equation, while the other component was
obtained using the exact relationship �21�. It resulted in a full
solution space made of eight subspaces, which suggests that
it is necessary to include all components of this subspace in
the computations of any physical quantity. A failure to do so
will result in erroneous conclusions.

Our results were employed to discuss few important lim-
iting cases: the weak, the strong, and the fine tuned magnetic
field cases. In particular, we showed that there is a symmetry
between the negative- and the positive-energy solutions. In
the weak magnetic field case, the system was shown to be-
have like a two-dimensional Dirac system in the presence of
an effective magnetic field controlled by the oscillator fre-
quency �. To support our analysis, we compared our findings
favorable with those available in the literature and under-
lined the reason behind some of our differences.

On the other hand, we analyzed the transport properties of
the present system in terms of the current density. As ex-
pected, we found a null current in the Cartesian coordinates;
however, in polar coordinates the angular component of the
current was nonvanishing. Finally, we studied the nonrelativ-
istic limit where known results were recovered.

The emergence of the quantum Hall effect in graphene
�7,8� opened a good opportunity not only for experimental-
ists but also for theorists as well. Because of the relativistic
nature of the fermions in grapheme and due to some addi-
tional constraints, the appropriate mathematical system
seems to be the massless Dirac fermions. However, our
present work suggests that present theoretical investigations
in the literature did not include adequately contributions
from all solution parameter space �14� and hence will lead to
incomplete, and sometimes erroneous, results. Extending our
present analysis to the massless Dirac fermion system will be
desirable to put the theoretical approach to grapheme sys-
tems on firm grounds.

Finally, we think that it will be appropriate to look for the
irregular solutions of the present problem. The importance of
this issue comes from the fact that it will help us to construct
the two-point Green’s function, which is very much needed
in the calculation of many physical quantities and will enable
us build the corresponding conformal theory.
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�0 k�0 J�
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G


n,k
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2 ��1+ 4
G
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− −m�2 �2�n−k�+n�1+s���−1

�0 k�0 J�
−−=− 8	
G


n,k
− −m

�n+k s−1
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APPENDIX: PROPERTIES OF THE ASSOCIATED
LAGUERRE POLYNOMIALS

The following are useful formulas and relations satisfied
by the generalized orthogonal Laguerre polynomials Ln

��x�
that are relevant to the developments carried out in this work.
They are found in most textbooks on orthogonal polynomials
�22�. We list them here for ease of reference.

The differential equation

�x
d2

dx2 + �� + 1 − x�
d

dx
+ n�Ln

��x� = 0, �A1�

where x�0, ��−1, and n=0,1 ,2 , . . ., could be expressed in
terms of the confluent hypergeometric function as

Ln
��x� =

!�n + � + 1�
!�n + 1�!�� + 1� 1F1�− n;� + 1;x� . �A2�

The associated three-term recursion relation is

xLn
� = �2n + � + 1�Ln

� − �n + ��Ln−1
� − �n + 1�Ln+1

� . �A3�

Other useful recurrence relations are

xLn
� = �n + ��Ln

�−1 − �n + 1�Ln+1
�−1, �A4�

Ln
� = Ln

�+1 − Ln−1
�+1, �A5�

the differential formula

x
d

dx
Ln
� = nLn

� − �n + ��Ln−1
� , �A6�

and the orthogonality relation

�
0

�

���x�Ln
��x�Lm

� �x�dx =
!�n + � + 1�
!�n + 1�

"nm, �A7�

where

���x� = x�e−x. �A8�
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