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We present the analytical solution in closed form for the semiclassical limit of the quantum-mechanical
Coulomb Green’s function in position space in n dimensions. We utilize a projection method which has its
roots in Lambert’s theorem and which allows us to treat the system as an essentially one-dimensional problem.
The semiclassical result assumes a simple analytical form and is well suited for a numerical evaluation. The
method can also be extended to classically forbidden space regions. Already for moderately large principal
quantum numbers ��5, the semiclassical Green’s function is found to be an excellent approximation to the
quantum-mechanical Green’s function.
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I. INTRODUCTION

The laws of planetary motion remained for a long time a
mind-puzzling challenge. It was Johannes Kepler who pub-
lished 400 years ago his book Astronomia Nova which con-
tained his famous first two laws on planetary motion. Ke-
pler’s conclusion that all planets move in elliptical orbits
with the Sun in one focus was based on his ingenious evalu-
ation of very accurate observations of the path of the planet
Mars by the astronomer Tycho Brahe, the last of many im-
portant astronomers who made their observations without the
help of a telescope. As is well known, the mathematical con-
struction scheme for expressing the motion of bodies in a
gravitational �1 /r� potential in mathematical terms goes back
to the days of Newton’s Principia Mathematica, first pub-
lished in 1687. This work unifies Galileo’s ideas about mo-
tion in a gravitational field and Kepler’s laws on planetary
motion.

In the 18th century it was still a major problem to follow
the motion of a planet along its elliptical path or, more gen-
eral, along a curved trajectory. For the 1 /r potential this
difficulty was solved by the Swiss Mathematician and Physi-
cist Johann Heinrich Lambert who proved geometrically that
the transfer time along a planetary orbit connecting two po-
sition vectors r and r� depends only on the two combinations
�+ and �−,

�+ = r + r� + s and �− = r + r� − s , �1�

where s is the distance between r and r�. The position vec-
tors are meant relative to the force center �in Lambert’s case
the Sun�. The additional dependence of the travel time on E
will be discussed later. Equation �1� is a peculiarity of the
1 /r potential. The fact that the transfer time depends only on
�+ and �− is called Lambert’s theorem.

The agreement between the calculated and observed posi-
tions of the planets was historically the most important suc-
cess of classical physics. With the advent of quantum me-
chanics, the Kepler problem was replaced by the Coulomb
problem for the hydrogen atom. Feynman’s path-integral
method revealed the close connection between classical and

quantum mechanics. The fixed-energy propagator for the
Coulomb problem is known analytically both in configura-
tion and momentum space �1–9�. However the corresponding
semiclassical approximation has not been given before in
closed analytic form because of the appearance of a rather
complicated prefactor, the so-called Van Vleck–Pauli–
Morette determinant. The semiclassical approach to the Cou-
lomb problem in n�1 dimensions the determinant has been
calculated so far only numerically �10�. Based on Lambert’s
theorem, we will derive a simple and useful analytic expres-
sion for the Van Vleck–Pauli–Morette determinant in n spa-
tial dimensions. The result will put us in the position to de-
rive a two-line expression for the semiclassical Green’
function.

II. LAMBERT’S THEOREM FOR THE REDUCED ACTION

It is a simple exercise in classical mechanics to analyze
the relative motion for the Kepler or Coulomb Hamiltonian,

H =
p2

2�
−

Kc

r
, �2�

where � is the reduced mass and Kc the strength of the
attractive 1 /r potential. The corresponding motion in time is
given by

t − t� =��a

Kc
�

r�

r r̃

�2ar̃ − r̃2 − a�2/��Kc�
dr̃ . �3�

Here �=�r2�̇ is the angular momentum about the center of
force for elliptic motion with semimajor axis a=Kc / �2�E��,
for E�0.

An important element for the transition from classical me-
chanics to quantum mechanics is the reduced action W, also
called action integral S. In order to avoid confusion, we re-
serve S here for Hamilton’s principal function �see below�.
Within the time-independent Hamilton-Jacobi theory the re-
duced action W is given by
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W�r,r�;E� = �
r�

r

p�r̃� · dr̃ . �4�

For elliptic motion in the x-y plane an explicit evaluation of
Eq. �4� is easily achieved by introducing for example Carte-
sian coordinates with the origin at the center of the ellipse

x = a cos 	, y = b sin 	 , �5�

where b=a�1−
2 is the semiminor axis of the Kepler ellipse
with eccentricity 
. If we substitute Eq. �5� into Eq. �4� and
use

t − t� =��a3

Kc
�	 − 
 sin 	 − 	� + 
 sin 	�� �6�

for the transfer time between two points on the ellipse, we
obtain

W�r,r�;E� = ��aKc�	 + 
 sin 	 − 	� − 
 sin 	�� . �7�

W�r ,r� ;E� is a function of E and of the initial and final
coordinates r and r� of the planet. Therefore other dynamical
quantities, such as the orbital angular momentum � must be
eliminated. Hence we have to get rid of 

=�1−2�E��2 / ��Kc

2� in Eq. �7�. A few algebraic manipula-
tions �see Appendix A� lead to

W�r,r�;E� = ��aKc�� + sin � − � − sin �� , �8�

with

sin2�

2
=

r + r� + s

4a
and sin2�

2
=

r + r� − s

4a
. �9�

In the last equation and in what follows r and r� are the
distances from the focus of the ellipse �i.e., the center of
force� to two arbitrary points on the elliptical orbit. As before
s stands for the distance between r and r�. The situation is
depicted in Fig. 1. It was Lambert �11� who succeeded to
map elliptical motion to collinear motion. He also proved
��11�, Lemma 24� that for fixed energy E�0, the classically
allowed elliptic motion from a given initial point N to a final
point M can generally occur on two different ellipses unless
we have circular motion �compare �4�, p. 27�. From the last
two equations it becomes obvious that the reduced action W
is a function of �+=r+r�+s and �−=r+r�−s. Note that the
energy dependence of W enters through the semimajor axis
a=Kc / �2�E��.

Another piece of information is Hamilton’s principal
function S�r ,r� ,
� which follows from the well-known Leg-
endre transformation

S�r,r�,
� = W�r,r�,E� − E
 . �10�

The travel time 
= t− t� from r� to r can be calculated from


 =
�W

�E
, �11�

or directly from Eq. �6� by using the method of Appendix A.
The result is


 = t − t� =��a3

Kc
�� − sin � − � + sin �� . �12�

Equation �12� is Lambert’s theorem ��11�, p. 102� for the
travel time between N and M. In our case it is more impor-
tant to point out that Lambert’s theorem is not only valid for
the travel time but also for the reduced action W and, al-
though not of importance here, for Hamilton’s principal
function S. With these results in mind, we are now in a
position to calculate the semiclassical Green’s function.

III. COULOMB TRAJECTORIES AND LAMBERT’S
THEOREM

In quantum physics, the Kepler problem becomes the
Coulomb problem. The connection between classical and
quantum mechanics is conveniently established through the
introduction of the quantum-mechanical Green’s function,
also called propagator. The Green’s function is the math-
ematical vehicle that allows a particle to go from an initial
configuration to a final one. In configuration space it repre-

� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
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FIG. 1. Lambert’s projection of elliptic motion to collinear mo-
tion. Shown are two ellipses with the same lengths of the semimajor
axes 1

2A1B1= 1
2A2B2 and a common focus located at F. The centers

of the two ellipses are denoted by C1 and C2. Lambert’s lemma 24
allows to relate the motion from N to M on both ellipses to a
common collinear motion on the degenerate linear ellipse Fb,
where the points n and m are chosen such that the time of flight
�TOF� along nm equals the TOF along the elliptical arc NM on the
first ellipse. On the second ellipse the TOF along the arc NB2M
equals the TOF along nbm. The points n and m are found by mark-
ing the point G halfway between N and M. Then the major axis
Fb=A1B1=A2B2 of the linear ellipse is drawn starting at F and
running through G. On this line the point g is placed at the distance
Fg= 1

2 �FN+FM�. Finally n and m are given by the intersection
points of a circle around g with radius GN=GM. This construction
shows that the sum of the lengths of the shaded triangle ��=FN
+FM �NM is equal to ��=Fn+Fm�nm. The fictitious collinear
motion goes back to Lambert and can be picturized as the limit of
an elliptic motion with extremely small semiminor axis b. The ec-
centricity approaches one from below in such a way that the mov-
ing particle turns around at F with very high but of course still
nonrelativistic velocity.
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sents the transition amplitude to travel from r� to r. Each
classical trajectory in Fig. 1 has sharp energy and travel time.
In quantum mechanics the travel may occur either with fixed
energy or in a given time. Travel with fixed energy is char-
acterized by the nonrelativistic energy Coulomb Green’s
function which was obtained by Hostler �12� in configuration
space in closed form, starting from a partial-wave expansion.
The Coulomb Green’s function in momentum space was de-
rived soon after by Schwinger �2�.

Feynman’s path-integral method is a natural way to cal-
culate transition amplitudes. For classically allowed transi-
tions one has to identify all classically allowed trajectories,
assign each of them with a phase and an amplitude and sum
up their contribution. This procedure yields as an approxima-
tion the semiclassical amplitude. In a quantum mechanically
exact calculation of the propagator one would have to sum
up all paths, including the classically forbidden ones. Semi-
classical methods work usually very well because classical
trajectories carry the main information needed to calculate
the transition amplitude from r� to r �13�. In particular, semi-
classical methods are accurate and useful when large angular
momenta are involved. Typical problems with high-angular
wave packets require in an exact quantal calculation a non-
trivial summation over many partial waves of the Green’s
function. This problem is avoided in the semiclassical treat-
ment presented here where no summation over partial waves
is necessary. For E�0 a particle will move on an ellipse in a
plane with the center of force in one focus. The binding
energy fixes the length of the semimajor axis while the
semiminor axis will also depend on the angular momentum.
As shown in Fig. 2, the classically allowed trajectories are
confined to the volume in position space defined by the equa-
tions of motions for a given initial absolute value of the
velocity. In two dimensions, one has a critical ellipse that
leads to a finite classical motion.

From definition �1� of �+ and �− it follows that �+ /2 and
�− /2 are the distances of m and n from point F �see Fig. 1�.
Hence we identify the distances �� as path coordinates of n
and m along the straight line Fnm with F as origin. Energy
conservation H=E in Eq. �2� yields the velocities

v� =�2�E�
�
�4a − ��

��
�13�

in m and n. By making use of the coordinates � /2 and ve-
locities v��� we obtain the reduced action for traveling from
n to m,

W�r,r�;E� = W+��+,E� − W−��−,E� , �14�

where

W� = ��
0

��/2

v�d��̃�/2�

= ��
0

��/2�Kc

�a

�a�̃� − ��̃�/2�2

�̃�/2
d��̃�/2� �15�

can be cast in closed form

W� =�Kc�

a
�1

2
��4a − ����� + 2a arctan� ��

4a − ��

	 .

�16�

The last three equations are consistent with Eqs. �8� and �9�
and confirm the essentially one-dimensional character of the
reduced action for the Kepler and Coulomb problem.

IV. SEMICLASSICAL ENERGY GREEN’S FUNCTION

The n-dimensional energy Green’s function is a solution
of the inhomogeneous stationary Schrödinger equation,

�E − H�G�n��r,r�;E� = ��n��r − r�� . �17�

with ��n� being a delta-function point source in n dimensions.
Different boundary conditions on G�n� are possible. For scat-
tering problems, outgoing-wave boundary conditions are
usually appropriate. For standing waves and for bound-state
problems G�n� is real. G�n��r ,r� ;E� characterizes the prob-
ability amplitude for traveling from r to r� with a given
energy E. For the n-dimensional Coulomb problem the
Hamiltonian is given by

H = −
�2

2m
� +

Kc

r
, �18�

where � is the Laplace operator and r the distance from the
force center in n dimensions.

The semiclassical limit of the energy Green’s function is
given by �4–7�

Gsc
�n��r,r�;E� =

1

i�

i

− 1

�− 2�i���n−1�/2 �D�Wi�r,r�;E���1/2

� exp� i

�
Wi�r,r�;E� − imi

�

2
� , �19�

where

D„W�r,r�;E�… = det� �2W
�r�r�

�2W
�r�E

�2W
�E�r�

�2W
�E2

	 �20�

is the Van Vleck–Pauli–Morette �VVPM� determinant. In Eq.
�19� one has to sum over all classical fixed-energy paths i

F N

FIG. 2. The caustic �thick solid line� for the Kepler problem is
an ellipse. Classically allowed orbits with the same energy, the
same center of force F and a common starting point N have to lie
inside this critical ellipse.
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leading from r� to r and having the reduced action Wi. The
VVPM-determinant contains derivatives of second order
with respect to r, r�, and E. For example, �2W

�r�r�
is a n�n

matrix with mixed derivatives with respect to starting �ini-
tial� and ending �final� points r�= �x1� ,x2� , . . . ,xn�� and r
= �x1 ,x2 , . . . ,xn�.

Finally, mi is the Morse index which is the number of
conjugate points along the trajectory from r�
= �x1� ,x2� , . . . ,xn�� to r= �x1 ,x2 , . . . ,xn�. In the next section the
indices will be read off from the analytical result for the
VVPM determinant. We have seen before that Lambert’s
theorem allows the Coulomb problem to be mapped on a 1D
problem. Utilizing Lambert’s projection theorem, we are
now in a position to find all possible trajectories and, if
needed, all traveling times. Figure 3 reveals all elementary
possibilities to travel from n to m. As in Fig. 1 already men-
tioned, we regard the motion in 1D as motion on an ellipse
with infinitesimally small semiminor axis b. For such motion
we obtain Table I, where

W2� = 2���aKc and T2� = 2���a3

Kc
�21�

denote the action for a closed orbit and the time of circula-
tion on the same closed orbit, respectively. We observe that
both quantities depend only on the semimajor axis a, i.e., on
the orbital energy E.

Traveling from r� to r at constant energy is possible along
one of the four elementary paths. However there is an infinite
number of possibilities for traveling due to the addition of an
arbitrary number of loops to each elementary path.

V. VAN VLECK–PAULI–MORETTE DETERMINANT

We will now calculate the amplitude of the Green’s func-
tion, i.e., the VVPM determinant D�W� �Eq. �20��. It is help-
ful to realize that the n�n subdeterminant � �2W

�r�r�
� vanishes

��4�, page 24�. Therefore D�W� is independent of the matrix
element � �2W

�E2 �. We will replace this element by 0. The VVPM
matrix contains mixed second derivatives of W with respect
to the coordinates xi� and xj. In the last section we showed
how to express the reduced action for the elementary four
paths as combinations of the two basic actions W+(�+�r ,r��)
and W−(�−�r ,r��) �Fig. 3 and Table I�. By using

�W�

����/2�
=�v� together with the chain rule we find for the off diag-
onal �i� j� elements

�2W+

�xi � xj�
=

�

4

�v+

���+/2�
� xj�

r�
−

xj − xj�

s
	� xi

r
+

xi + xi�

s
	

+
�v+

2

�xi − xi���xj − xj��
s3 , �22�

�2W−

�xi � xj�
=

�

4

�v−

���−/2�
� xj�

r�
+

xj − xj�

s
	� xi

r
−

xi + xi�

s
	

−
�v−

2

�xi − xi���xj − xj��
s3 , �23�

where we made use of the fact that according to Eq. �13� the
v� are functions of ��. The diagonal elements follow in a
similar fashion

�2W+

�xj � xj�
=

�

4

�v+

���+/2�
� xj�

r�
−

xj − xj�

s
	� xj

r
+

xj + xj�

s
	

−
�v+

2s
�1 −

�xj − xj��
2

s2 	 , �24�

�2W−

�xj � xj�
=

�

4

�v−

���−/2�
� xj�

r�
+

xj − xj�

s
	� xj

r
−

xj + xj�

s
	

+
�v−

2s
�1 −

�xj − xj��
2

s2 	 . �25�

The mixed derivatives with respect to energy and coordinates
are obtained by utilizing �W

�E = t. We also have
�W�

�E = t�. Lam-
bert’s projection of the Coulomb problem to a linear, one-
dimensional motion implies that

F n m b

t+

t_

1

4

2

3

FIG. 3. The four elementary paths from n to m according to
Lambert’s mapping theorem. The travel time for each path can be
expressed by t−, t+, and the time for a round trip.

TABLE I. Reduced action and Morse indices mi for bounded motion along the four elementary trajecto-
ries in classically allowed regions for an attractive Coulomb potential in three dimensions �see also Fig. 1�.
The reduced actions are combinations of W+ and W− and the Morse indices in n dimensions are obtained in
Sec. V.

Path Action Travel time Morse index

① direct path. W1=W+−W− T1= t+− t− 0

② reflection at F W2=W++W− T2= t++ t− 1

③ two reflections. W3=W2�+ �W+−W−� T3=T2�− �t+− t−� 2

④ reflection at the caustic W4=W2�− �W++W−� T4=T2�− �t++ t−� 1
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�2W�

����/2� � E
=

�t�

����/2�
=

dt�

d���/2�
=

1

v�

. �26�

We can therefore write

�2W+

�xj � E
=

�t+

���+/2�
���+/2�

�xj
=

1

v+
� xj

2r
+

xj − xj�

2s
	 , �27�

�2W−

�xj � E
=

1

v−
� xj

2r
−

xj − xj�

2s
	 . �28�

Finally,

�2W+

�xi� � E
=

�t+

���+/2�
���+/2�

�xi�
=

1

v+
� xi�

2r�
−

xi − xi�

2s
	 , �29�

�2W−

�xi� � E
=

1

v−
� xi�

2r�
+

xi − xi�

2s
	 . �30�

In principle it is possible to evaluate the second derivatives
for elliptic motion for all points N and M. However this is a
tedious task. Fortunately Lambert’s theorem tells us that el-
liptical Kepler motion can be mapped on a degenerate ellipse
where motion occurs on a 1D straight line. We use this map-
ping and assume the coordinate q to run along this line from
q�=�− /2 to q=�+ /2, i.e., from point n to point m. In n
dimensions we have n−1 coordinates x2 ,x3 , . . .xn that are
orthogonal to the trajectory. Along the trajectory we have
xi=xi�=0 for i�2. If we therefore evaluate Eqs. �22�–�30� for
i , j�2, we observe that the right-hand sides vanish except
for the diagonal matrix elements

F+ ª 
 �2W+

�xj � xj�



xj,xj�=0

= −
�v+

2s
, j � 2, �31�

and

F− ª 
 �2W−

�xj � xj�



xj,xj�=0

=
�v−

2s
, j � 2. �32�

Each direction i�2 orthogonal to the straight-line trajectory
contributes with the same dimensional factor F. Putting ev-
erything together we can cast the �n+1�� �n+1� VVPM de-
terminant in a simple form,

D�W� = det�
�2W

���+/2����−/2� 0 ¯ 0 �2W
���+/2��E

0 F 0

] � ]

0 F 0
�2W

���−/2��E 0 ¯ 0 0
� . �33�

From Table I we infer that the action W needed for the four
elementary paths is always a linear combination of W+ and
W−. The necessary determinants D�W+�W−� are obtained
from Eq. �33� with F replaced by F+�F−. Recalling that
W+�W−� is a function �+��−� only, we conclude that

�2W

���+/2� � ��−/2�
= 0. �34�

Therefore the entry on the top left of VVPM matrix vanishes.
The determinant is now easily calculated via Laplace expan-
sion. The result is

D�W� = −
�2W

���+/2� � E

�2W

���−/2� � E
� F�n−1�. �35�

A straightforward evaluation of Eq. �35� yields simple results
for the determinants of the four elementary paths,

D① = D�W+ − W−� =
1

v+v−
�−

�

2s
�v+ + v−���n−1�

= − D③ ,

�36�

D② = D�W+ + W−� = −
1

v+v−
�−

�

2s
�v+ − v−���n−1�

= − D④ .

�37�

We should point out that Eq. �35� is also valid for scattering
states if action and velocities are adapted to unbounded mo-
tion.

We now determine the Morse indices mi which are given
by the order of the zeros of the determinants Dⓘ along path
number i. Here we restrict ourselves to the three-dimensional
Coulomb problem, n=3. By inspecting Fig. 3 we see that on
path ① the velocities are different from zero because we
have assumed that neither point m nor point n is lying on the
caustic b. Hence we have m1=0. On path ④ the velocity
vanishes at the reflection point b. There a pole of first order
is generated in the determinant. As a result we have m4=1,
independent of n. Path ② corresponds to elliptic motion with
infinitesimally small semiminor axis b with the particle
�planet or electron� moving around F with infinite velocity,
v→�. Along this path it therefore encounters a pole of order
n−2=1 at F, meaning that the particle picks up the Morse
index m2=1. Obviously we have m3=m2+m4=2. Finally by
inspecting Eq. �36� we observe that a full round trip picks up
an additional phase which originates from closing the loop
with v+=v− and s=0, giving rise to a pole of order n−1=2 in
the determinant. In other words, closed orbits pick the phase
m2�=2�n−1�.

VI. E�0: THE BOUND-STATE GREEN FUNCTION

Having found the amplitudes, reduced actions and the cor-
rect phases we are in a position to evaluate the semiclassical
Green’s function in analytic form. We showed before that
Gsc

�n��r ,r� ;E� consists of the amplitudes for the four elemen-
tary trajectories plus a summation over all possible loops for
each elementary path. Therefore we can write

Gsc
�n��r,r�;E�

=
1

i�

− 1

�− 2�i���n−1�/2

�

i=1

4



j=0

�

��D„Wi�r,r�;E� + jW2��E�…�
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� exp� i

�
„Wi�r,r�;E� + jW2��E�… − i

�

2
�mi + jm2���

= Gelem�r,r�;E� � Pglob�W2�,n� . �38�

as a product of the elementary four-path Green’s function
Gelem�r ,r� ;E� and a factor Pglob�W2� ,n�=
 j=0

� exp�ij�
W2�

�

− �
2 m2��� which accounts for the loop summation. The fac-

torization is possible because D(Wi�r ,r� ;E�+ jW2��E�) is in-
dependent of W2��E�. Each loop adds the same non-negative
phase to the Green’s function. The summation over the infi-
nite number of loops can be carried out. We obtain



j=0

�

exp�2�ij�W2�

2��
−

m2�

4
	� =

1

2
+

i

2
cot���W2�

2��
−

m2�

4
	� .

�39�

The poles of Pglob�W2� ,n� yield the energy eigenvalues of
the hydrogen atom. Obviously, they are obtained from the
poles of the cotangent given by the non-negative integers,
W2�

2�� −
m2�

4 =0 ,1 ,2 , . . .. Using Eq. �21� together with m2�

=2�n−1�, it is now easy to extract the exact energy eigen-
values for the hydrogen atom in n�1 dimensions �14�

Ek = −
�Kc

2

2�2

1

�k + �n − 1�/2�2 �k = 0,1,2, . . .� . �40�

We should point out that the correct quantization rule for the
action in n dimensions

W2� = h�k +
n − 1

2
	 �k = 0,1,2, . . .� �41�

is an integer multiple of h only for odd values of n.
The elementary four-path Green’s function Gelem can be

written in a more compact fashion because paths lying on the
same ellipse have the same amplitude as can be seen from
Figs. 1 and 3. Their Morse indices are related to each other
through mj = �n−1�−mi. Therefore we can merge paths ①
and ③ and paths ② and ④ pairwise together. Then the
elementary four-path Green’s function shows a two-path in-
terference pattern.

Putting everything together, we recast the �real� negative-
energy Green’s function �38� in the form

Gsc
�n��r,r�;E� =

1

��− 2����n−1�/2
1

sin�k��

� ���D①� cos�W1

�
− ��n − 1

4
+ k	�

+ ��D②� sin���3�n − 1�
4

+ k	 −
W2

�
�	 .

�42�

The bound states �Eq. �40�� at k=0,1 ,2 ,3 , . . . give rise to
poles in Gsc

�n�. Note that in Eq. �42� k can assume any con-
tinuous value k�0. D① and D② are the Van Vleck–Pauli–
Morette determinants given before in Eqs. �36� and �37�. The
actions W1=W+−W− and W2=W++W− are readily calculated
from Eq. �16�. Equation �42� is the main result of the paper.

In the next section we compare the semiclassical result for
the Green’s function with the exact quantum result. The case
E�0 will be treated in Appendix B.

VII. RESULTS AND COMPARISON WITH THE EXACT
PROPAGATOR

In a last step we compare the analytic expressions for the
Coulomb Green’s function with the exact quantum-
mechanical Green’s function as a function of r. We use
atomic units. Figure 4 shows contour plots of the three-
dimensional Green’s function G�r ,r� ;E�. In order to avoid
the infinities at integer principal quantum numbers, we have
chosen the noninteger “principal” quantum number �=k+1
=29.2 in Eq. �40�. This value is close to the one treated
numerically in �10�. The center of force is located at the
origin, the starting point with r�= �1232,0 ,0� Bohr radii has
been chosen to lie on the x axis. The end point r is varied in
the x ,y plane.

To illustrate the meaning of G we assume to have a co-
herent stationary source ��r�� of independent particles. Such
a source will generate the following wave function:
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(a) Quantum mechanical solution

(b) Semiclassical solution

(c) Semiclassical solution with uniform approximation

FIG. 4. Contour plot of �G�3��r ,r� ;E��2 with “principal” quan-
tum number �=29.2 and center of force F at the origin. The initial
position vector N at r�= �1232,0 ,0� Bohr radii is located on the x
axis, the final position vector r is varied in the x ,y plane.
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��r,E� =� G�r,r�;E���r��dr�. �43�

For a point like source at r� the plot of the Green’s function
reveals how particles leak out of the point source at r� under
the influence of the Coulomb field. In our case G is real;
hence there is no net current flowing out of the source. All
particles are eventually reflected back into the source. A
comparison with the exact Green’s function shows that all
features, including the nodal structure are mirrored perfectly
by the semiclassical Green’s function. However we must
face the fact that the semiclassical approach will fail at the
caustic where two trajectories merge into one. Here the de-
ficiency can be repaired by making use of the uniform ap-
proximation �see Appendix C�. The uniform approximation
is slightly more complex than the semiclassical approxima-
tion.

To demonstrate how well the approximation works we
present a cut of the Green’s function parallel to the x axis
�Fig. 5�. The semiclassical approximation starts to deviate
from the exact solution near the caustic where the saddle-
point approximation that underlies the semiclassical theory is
no longer valid. The spike in the figure marks the position of
the caustic. At the caustic the semiclassical approximation
should be replaced by the uniform approximation which is
seen to match the exact quantum solution very well.

The mapping of the Coulomb problem to a 1D problem
has the great advantage that tunneling properties in a Cou-
lomb field can be easily calculated in semiclassical approxi-
mation because one can avoid the inherent difficulties asso-
ciated with multidimensional tunneling. Tunneling
trajectories are shown in Fig. 7. In the tunneling region there
is exponential decay but no reflection. The analytic continu-
ation of the action into the tunneling sector is given in Ap-
pendix C. The same projection method as before can be used.
This time the Morse indices are no longer integers and will
depend on how deep the particle will move into the tunnel.

VIII. CONCLUDING REMARKS

Lambert’s theorem has proven powerful for calculating
the semiclassical Green’s function �Eq. �42�� because it al-
lows to parameterize all dynamical quantities in terms of
distances. This feature allowed us to eliminate the eccentric
anomaly which is ambiguous in the angles and therefore has
to be treated very carefully �15�. The n-dimensional Cou-
lomb problem could be reduced to one-dimensional motion.
The reduction is achieved by the introduction of new vari-
ables ��=r+r��s. All necessary reduced actions could then
be found analytically. We derived a closed expression for the
semiclassical Green’s function. The Morse indices followed
directly from the analytic form of the Van Vleck–Pauli–
Morette determinant.

The semiclassical energy Green’s function is found to be
an excellent approximation to the exact Green’s function. It
also yields the correct bound-state energies for hydrogen in
all dimensions. We should point out that the semiclassical
approximation also works very reliably even at low energies

with small principal quantum numbers. We found that also in
those cases semiclassics matches the quantum-mechanical
Green’s function extremely well. For small quantum num-
bers one has less nodes and the elliptically shaped caustic
shrinks.

In energetically forbidden regions there are no classical
trajectories. Nevertheless we can continue the semiclassical
Green’s function into the tunnel. The exit of the tunnel can
be dealt with in semiclassics by invoking corrections given
by the uniform approximation.

The motion in a Coulomb potential is an important prob-
lem in quantum mechanics. It is therefore useful to learn how
the semiclassical limit of the energy Coulomb Green’s func-
tion emerges from a coherent summation of all amplitudes
that belong to an infinite number of classical trajectories. The
results of this paper can be readily implemented into real-
space problems in the presence of Coulomb interaction. One
example is the quantum behavior of Rydberg atoms �10,16�.
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FIG. 5. Plot of G�3��r ,r� ;E� with principal quantum number �
=29.2 and center of force at the origin. The initial position vector is
located at r�= �1232,0 ,0� Bohr radii, the final position vector
shown along the x axis for fixed y=400 Bohr radii. �a� Quantum-
mechanical Green’s function, �b� deviation of the semiclassical
Green’s function from the quantum-mechanical one, �c� deviation
of the uniformly approximated Green’s function from the quantum-
mechanical result. The uniform approximation agrees with the
quantum-mechanical result better than 1/100.
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APPENDIX A: REDUCED COULOMB ACTION

In order to eliminate the eccentricity 
 in Eq. �14� in favor
of spatial positions we introduce in a first step the new vari-
ables

cos g ª 
 cos� 	 + 	�

2
	 and d ª

	 − 	�

2
. �A1�

In a second step we substitute

� ª d + g and � ª g − d �A2�

to arrive at Eq. �8�. We next relate the variables � and � to
spatial positions. The radial position of any point M or N on
the ellipse �see Fig. 1� relative to the center of force is given
by

r2 = ��x − 
a�2 + y2� , �A3�

where x and y are the coordinates relative to the center of the
ellipse. With the help of Eq. �5� we easily find

r = a�1 − 
 cos 	� . �A4�

In terms of the variables g and d we have

r + r� = 2a�1 − cos g cos d� �A5�

and

�r − r�� = 2a�sin d cos g� . �A6�

Without loss of generality we can assume 0�d�� and 0
�g�� /2. From the last two equations we then readily con-
firm the desired result, Eq. �9�.

APPENDIX B: E�0: SCATTERING STATES

To treat scattering states in semiclassical approximation
we can use the same formalism as for bound states. In an
attractive force field and for E�0, there is no caustic and
hence no reflection at b. As can be seen from Fig. 6 we then
have only two hyperbolic trajectories leading from N to M.
The one-dimensional variables are again ��=r+r�� �r−r��.
The projection of the motion onto a line applies again but we
have to consider the change in geometry.

1. Attractive coulomb interaction

In this case we obtain

Gsc,attr
�n� �r,r�;E� = −

i

�

1

�2�i���n−1�/2 � ���D①� exp� i

�
W1�

+ ��D②� exp� i

�
W2 − i

�

2
�n − 2��	 , �B1�

with W1=W+−W− and W2=W++W−. The action follows
again from Eq. �16�, adapted to E�0,

�W��attr
�E�0� = ��Kc

�a
�

2a

��/2�2a + �̃�/2
�̃�/2

d��̃�/2�

=�Kc�

a
�1

2
��4a + �����

+ 2a ln
��� + �4a + ��

�4a
	 . �B2�

2. Repulsive Coulomb interaction

If the potential is repelling we have again two hyperbolic
trajectories which connect N and M. But now a caustic sepa-
rates the classically allowed region from the energetically
forbidden region. Classically allowed motion occurs for
4�a����. The corresponding reduced action reads

�W��rep
�E�0� = �� Kc

��a�
�

2a

��/2�− 2�a� + �̃�/2

�̃�/2
d��̃�/2�

=�Kc�

�a�
�1

2
��− 4�a� + �����

+ �a�ln
��� − �− 4�a� + ��

��� + �− 4�a� + ��

	 . �B3�

For completeness we write down the action in the classically
forbidden tunneling region where �−�4�a�,

F

M

N

FIG. 6. For E�0, hyperbolic trajectories connect N and M, with
the center of force at F. In the repulsive case �not shown� there is a
caustic in contrast to the attractive case where every point in space
can be reached.
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�W−�rep
�E�0� = � i�� Kc

��a��2a

�−/2�2�a� − �̃−/2
�̃−/2

d��̃−/2�

= � i�Kc�

�a�
�− ��a� +

1

2
��4�a� − �−��−

+ 2�a�arctan� �−

4�a� − �−
	 . �B4�

APPENDIX C: ANALYTIC CONTINUATION INTO THE
TUNNELING REGION

1. Uniform approximation

The semiclassical Green’s function is derived from the
exact expression for the quantum-mechanical Green’s func-
tion by making use of the saddle-point approximation �SPA�.
However this approximation is not valid at the caustic where
two saddle points merge into one. In this case the uniform
approximation �UA� will cure the deficiency of the SPA. The
method is standard. For more details the reader is referred to
�5�, p. 118ff, p. 131ff. Here we follow the method outlined in
Ref. �17�. For n=3 we have

Gua�r,r�;E� =
ei	

2�2��
�d0Ai�− �� − id1Ai��− ��� �C1�

with

	 = � 1

2�
�W+ + W−� if I�W−� = 0,

R�W+/�� if I�W−� = − I�W+� ,
� �C2�

� = ��
3

4�
�W+ − W−��2/3

if I�W−� = 0,

−
3

2
�R�W+/���2/3 if I�W−� = − I�W+� ,�

�C3�

and

d0 = �1/4��D�W+� + �− D�W−��e−5i�/4

d1 = �−1/4��D�W+� − �− D�W−��e−5i�/4. �C4�

2. Tunneling regime

Here we look at classically forbidden motion �+�4a.
This means that point m is lying in the tunnel �see Fig. 7�.
Whereas W− is not changed, W+ must be continued into the
classically forbidden space sector. The analytic continuation
is obtained by making use of Eq. �16�

�W+�forb = ��Kc

�a��0

2a�2a − �̃�/2
�̃�/2

d��̃�/2�

� i�
2a

��/2�− 2a + �̃�/2
�̃�/2

d��̃�/2��
=�Kc�

a �a� � i�1

2
��− 4a + �����

+ 2a ln
�4a

��� + �− 4a + ��
�� �C5�

There are two complex conjugated solutions. For the propa-
gator we select the term with positive imaginary part to en-
sure that the wave function decays exponentially deep in the
tunnel. Note however that both solutions will contribute to
the uniform approximation in the vicinity of the tunnel exit.
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FIG. 7. Bound states and tunneling trajectories: we use the pro-
jection formalism to find two possible paths to a point in the clas-
sically forbidden region. As the electron passes through b into the
tunneling space sector, action and velocity become complex �see
Eq. �C5��.
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