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The pushing of the modes of a Fabry-Perot cavity by an intracavity rubidium cell is measured. The scale
factor of the modes is increased by the anomalous dispersion and is inversely proportional to the sum of the
effective group index and an additional cavity delay factor that arises from the variation of the Rb absorption
over a free spectral range. This additional positive feedback further increases the effect of the anomalous
dispersion and goes to zero at the lasing threshold. The mode width does not grow as fast as the scale factor
as the intracavity absorption is increased resulting in enhanced measurement sensitivities. For absorptions
larger than the scale factor pole, the atom-cavity response is multivalued and mode splitting occurs.
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I. INTRODUCTION

The use of strongly dispersive materials whose resonant
features can speed up, slow down, stop, or even reverse the
propagation of pulses of light as a result of their substantially
modified group velocities �1–8� has been proposed for the
enhancement of interferometers �9–12�, the autostabilization
of lasers �12–16�, and the enhancement of optical gyroscopes
�16–22�. In fact, it has long been recognized that the disper-
sion associated with the gain �or absorption� of an intracavity
medium results in a slight frequency pulling �or pushing� and
linewidth narrowing �or broadening� of the cold cavity
modes �23–29�. The dispersion simply introduces an addi-
tional phase shift, whose size and sign is dependent on the
original phase shift to be measured, in a manner that is
analogous to the feedback of a regenerative amplifier. The
question of particular interest is whether, and under what
conditions, such frequency pushing effects result in enhanced
measurement sensitivities.

Previously we demonstrated that the sensitivity of a laser
gyro �or of the modes of a laser to some external perturba-
tion� is inversely proportional to the group index of the int-
racavity medium �16�. This result applies only to the case
where the gain medium is located within the cavity in ques-
tion. An alternative manifestation of the “laser” gyro in-
volves the use of a passive cavity that is maintained on reso-
nance with an externally injected laser using feedback. In
this geometry, the cavity operates far from the threshold con-
dition. As a result, the dependence of the cavity sensitivity
on the group index is substantially different from the case of
a laser. In this Rapid Communication we derive the correct
expressions for the cavity sensitivity as a function of the
group index and confirm these derivations by measuring the
amount of mode pushing due to an atomic vapor cell located
within such a passive cavity. We demonstrate that the sensi-
tivity, defined as the scale factor divided by the mode width,
may be enhanced for such a system.

The transmittance of the coupled atom-cavity system can
be written in terms of the detuning �=�−�0 from the atomic
resonance frequency �0 as �30�

T��,�q� =
�1 − r�2/r

�1 − g����2/g��� + 4 sin2����� + ����
2

� ,

�1�

where ����=2��c��−�q�=2��c��−�q� is the cold cavity
round-trip phase shift and �q=�q−�0 is the detuning of
the qth cold cavity mode from the medium resonance.
The net electric field gain �or loss� per round trip is
g���=ra����=g0���� /�0, where g0 and �0 are line center
values, r is the round-trip reflectivity of the mirrors, and a
accounts for other frequency-independent losses in the
cavity. The complex round-trip transmittivity of the medium
is �̃���=����exp i����, where ����=exp�−�̂���L /2� and
����= �n̂���−1�2��L /c are the real-valued transmittivity
and phase shift, respectively, L is the round-trip length of the
cavity, and �̂��� and n̂��� are the effective absorption
coefficient and refractive index of the medium, respectively.
The relations between these effective parameters and
their more conventional phenomenological counterparts are
�̂���=����� /L and n̂���=1+ �n���−1�� /L, where � is the
round-trip path length of the medium.

The specific detunings of the transmittance maxima and
minima are determined from the derivative of Eq. �1� with
respect to �, i.e., from the solution of the transcendental
equation

�p = �q −
���p� + F��p,g� + �p

2��c
, �2�

where p is twice the pushed mode number, �c=L /c is the
round-trip time, and

F��p,g� = − sin−1�1 − g��p�2

2g��p�
1

2��cn̂g��p�
d ln ���p�

d�
�

�3�

is an additional cavity feedback that accounts for the contri-
bution of the absorption to the mode pushing. By defining an
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effective propagation constant k̂���=2�� /c+���� /L, we
have written Eq. �3� in terms of the effective group index

n̂g��p� =
c

2�

dk̂��p�
d�

= 1 +
1

2��c

d���p�
d�

, �4�

where Td= �1 /2��c�d� /d� corresponds to the delay time of
a long monochromatic pulse as a result of the presence of the
medium. Again, n̂g=1+ �ng−1�� /L, where ng is the actual
group index of the medium. The scale factor sensitivity of
these modes to an external perturbation is then given by the
derivative of Eq. �2� with respect to �, i.e.,

S��p,g� =
d�p

d�
= �n̂g��p� + Tcav��p,g��−1, �5�

where Tcav��p ,g���1 /2��c�dF��p ,g� /d�p is an additional
dimensionless time delay resulting from the interaction with
the cavity.

As a consequence of the strong frequency dependence of
the absorption in comparison with the free spectral range, the
function F�� ,g� must be added to the round-trip phase shift
�+���� to obtain the detuning with respect to the pushed
mode frequencies, i.e., �+����+F�� ,g�=2��c��−�p�, but
while both ���� and F�� ,g� contribute to the feedback, only
F�� ,g� depends explicitly on the net round-trip gain. For a
laser the net gain at the free-running oscillation frequency is
clamped at the threshold value, i.e., g��p�=1, equivalent to a
pole in Eq. �1�, such that F�� ,g� and Tcav��p ,g� become
zero, and we recover the result in �16,21�, specifically that
the scale factor enhancement for a laser is inversely propor-
tional to the group index S�L���p�=1 / n̂g��p�. Below thresh-
old, g��p�	1, the factor F�� ,g� has the same sign as ����
and thus reinforces the feedback, whereas above the lasing
threshold g��p�
1, the factor F�� ,g� has the opposite sign
as ����, thereby diminishing the feedback. Therefore, given
the same level of absorption, larger dispersive feedbacks are
obtained for a passive cavity than for a laser.

The mode widths, on the other hand, are larger for a pas-
sive cavity. The detunings of the half maxima of the trans-
mittance for the pth mode are given by the solution of

�� = �q −
����� � 2 sin−1��z��p,�p�1� − y�����

2��c
, �6�

where z��p ,�p�1�= �1−r�2 /4rTavg��p ,�p�1�, y����
= �1−g�����2 /4g����, and Tavg��p ,�p�1�= �T��p�
+T��p�1�� /2 is the average of the maximum and minimum
transmittance on either side of the pth mode. The full width
at half maximum of the cavity mode is then given by
W=�+−�−.

The mode linewidth and scale factor depend differently
on the group index. The physical explanation for this is that
the group index is not constant over the mode width. Note
that the scale factor becomes infinite when the denominator
of Eq. �5� goes to zero, i.e., when n̂g��p�+Tcav��p ,g�=0, but
the linewidth remains finite. If we define the sensitivity of
the cavity as the scale factor divided by the linewidth, i.e.,
S��p ,g� /W then the sensitivity becomes “infinite” at two
values of the net gain g��p�: �i� for some value of

g��p�	1 corresponding to a pole in Eq. �5� owing to the
very strong dispersive feedback, and �ii� at the lasing thresh-
old g��p�=1 as a result of the zero in the mode width as
determined from Eq. �6�.

II. EXPERIMENT

An external-cavity diode laser having a linewidth of
1 MHz at 780 nm was used to scan over the modes of an
L /2=15 cm, 1 GHz Fabry-Perot cavity containing an isoto-
pically enriched 87Rb cell as shown in Fig. 1. A second 87Rb
cell in a counterpropagating pump-probe saturated absorp-
tion spectrometer was used to provide an absolute frequency
reference. The center frequency of the laser was adjusted to
coincide with the Doppler broadened F=2 to F� transitions
of the 87Rb D2 line by looking for the fluorescence from the
saturated absorption spectrometer, and the laser frequency
was subsequently scanned via external tuning over its full
range of almost 5 GHz, corresponding to several times the
free spectral range of the cavity. Additionally, a Michelson
interferometer was used to correct for nonlinearity in the
frequency scan. The detuning between the cavity mode and
the atomic resonance, �, was varied by adjusting the voltage
of the piezo on the Fabry-Perot cavity mirror and spectra
were recorded for a variety of detunings.

Experiments were performed on Rb cells of two different
lengths: 3 and 8 cm. The Fabry-Perot cavity mirrors were Au
thin films evaporated onto � /10 substrates having a wedge
angle of greater than 30°. The measured finesse was 5.10 for
the 8 cm cell and 4.35 for the 3 cm cell, and the exact free
spectral range �FSR� was 985 MHz. To obtain the complex
transmittivity of the medium �̃���, the transmittance spectra
of the Rb cells were measured at an intensity well below
saturation and fit by assuming a single Gaussian absorption
profile whose center frequency roughly coincides with the
F=2 to F�=3 transition. A slightly better fit that accounts for
the Rb line asymmetry can be obtained by incorporating ad-
ditional Gaussian functions into the model of the Doppler
broadened line to account for the less prominent hyperfine
transitions, i.e., the F=2 to F�=1 and F�=2 transitions, but
this does not significantly change the results. The phase shift
���� was subsequently determined by the Kramers-Krönig
relations. The round-trip frequency dependent and indepen-
dent loss parameters were determined to be �0=0.62 �3 cm
cell�, �0=0.29 �8 cm cell�, and a=0.83, respectively, by mea-
suring the off-resonance cell transmission, as well as the nor-
mal incidence absorption of the Au mirrors. The round-trip
cavity reflectivity was determined to be r=0.55 by fitting the
finesse of the atom-cavity transmittance T�� ,�� to that of the

/ 2L

T (�)�

( )� ��

/ 2�

FIG. 1. �Color online� A Fabry-Perot cavity with an intracavity
dispersive medium.
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data. This value did not correspond to the maximum value
obtained by measurement of the mirror reflectivity
�r=0.93�. However, the measured reflectivity varied strongly
with spot position, therefore, the decrease in cavity finesse
was likely a result of phase and amplitude variations across
the diameter of the Gaussian beam. Moreover, the diameter
of the laser beam was kept less than 1 mm, resulting in some
divergence from plane-wave conditions. The incident and
maximum transmitted intensities were Iin=72 mW /cm2 and
Iout=0.1 mW /cm2, respectively. From the maximum output
intensity, we infer that the intensity inside the cavity was
always much lower than the saturation intensity for the
F=2 to F�=3 transition with �-polarized light �3 mW /cm2�
�31�.

In Fig. 2�b� the effect of mode pushing on the cavity
mode closest to the Rb resonance is shown for the 8 cm cell.
All frequencies are in units of the FSR. As the detuning gets
smaller, the mode is pushed away from the resonance by an
amount that depends on the detuning. For small enough de-

tunings the mode splits as the left and right parts of the mode
are pushed in opposite directions. This mode splitting does
not occur in the case of the 3 cm cell �Fig. 2�a�� because the
absorption and hence the dispersion are considerably smaller,
however, the mode width does increase as a result of the
mode pushing.

In Fig. 3 the frequency detuning of the mode closest to the
Rb resonance is plotted against its unpushed detuning �the
detuning in the absence of the dispersive medium� resulting
in a plot of the cavity scale factor. Near the resonance, the
scale factor is increased by a factor of 2.4 for the 3 cm cell
�Fig. 3�a��, whereas the linewidth is increased by only a fac-
tor of 1.7 �inset�, a result of the variation in the group index
over the width of the mode. In the case of the 8 cm cell �Fig.
3�b��, the dispersion is larger than that required for infinite
scale factor, such that the cavity feedback factor F becomes
undefined and the solution to Eq. �2� becomes multivalued,
resulting in a mode splitting. In this case the slope of Eq. �5�
at �p=0 becomes negative. Notably, the on-resonance group
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FIG. 2. �Color online� Mode pushing of a Fabry-Perot cavity
mode by the F=2 to F� transitions of the 87Rb D2 line for �a� a 3
cm cell at �=0.25 and �b� an 8 cm cell at �=−0.04. In �a� the mode
is pushed to the right and in �b� the pushing results in mode split-
ting. The Rb saturated and unsaturated transmittance spectra are
shown for comparison. The bottom panes show the relative trans-
mittance of the peak of the mode as it is scanned across the reso-
nance. The vertical dashed lines represent the unpushed mode
detunings.
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FIG. 3. �Color online� Cavity scale factor, i.e., pushed vs un-
pushed mode detuning. Near the Rb resonance, the scale factor is
�a� increased for a 3 cm cell by anomalous dispersion and �b� de-
creased for an 8 cm cell as a result of mode splitting. The dashed
curves represent the dispersive and nondispersive contributions to
the mode frequency. The dispersive part is further separated into
phase and cavity feedback functions �upper left inset�. The dotted
line in �a� is a linear phase, constant group index, approximation.
The FWHM of the mode is also shown �lower right inset�.
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indices were n̂g�0�=0.77 and n̂g�0�=0.32 for the 3 cm and 8
cm cells, respectively; i.e., the scale factor pole occurs at an
effective group index greater than zero in contrast to the case
of a laser cavity where the pole occurs at zero effective
group index. Therefore, for the case of a passive cavity, less
dispersion is required to obtain the same enhancement in
scale factor.

In contrast with previous findings �22� that the sensitivity
of the modes of a passive cavity, defined as the scale factor
divided by the normalized mode width, cannot grow above
unity, we have demonstrated that the sensitivity can be in-
creased by anomalous dispersion. It is apparent by inspection

of the two cases presented here that as the cell absorption
increases such that the scale factor passes through infinite
slope, the linewidth always remains finite as a result of the
group velocity dispersion. The deviation of the data from the
theoretical prediction in each of the figures is most likely a
result of optical pumping effects involving the hyperfine
resonances on the low frequency side of the Doppler broad-
ened line. The sensitivity should be controllable by increas-
ing the number of atoms in the F=2 level via optical re-
pumping or by introducing an additional element into the
cavity, i.e., by increasing the frequency dependent or inde-
pendent losses, respectively.
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