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Phase noise of dispersion-managed solitons
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We quantify noise-induced phase deviations of dispersion-managed solitons (DMS) in optical fiber commu-
nications and femtosecond lasers. We first develop a perturbation theory for the dispersion-managed nonlinear
Schrodinger equation (DMNLSE) in order to compute the noise-induced mean and variance of the soliton
parameters. We then use the analytical results to guide importance-sampled Monte Carlo simulations of the
noise-driven DMNLSE. Comparison of these results with those from the original unaveraged governing equa-
tions confirms the validity of the DMNLSE as a model for many dispersion-managed systems and quantify the
increased robustness of DMS with respect to noise-induced phase jitter.
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I. INTRODUCTION

The performance of many light wave systems is ulti-
mately limited by quantum noise. Scientifically and techno-
logically important examples include optical fiber communi-
cation systems and femtosecond (fs) lasers: the former are a
key enabling technology for the information age, while Ti:
sapphire fs lasers have applications to optical atomic clocks.
Estimating the performance of these systems is a timely
problem. Because both kinds of systems are designed to op-
erate with very high accuracies, however, failures result from
the occurrence of unusually large deviations, which makes
calculating error rates extremely difficult. Direct Monte
Carlo (MC) computations of failure rates are impractical due
to the exceeding number of samples necessary to obtain re-
liable estimates, and analytical predictions are impossible
due to the scale and the complexity of these systems. In
particular, errors in both systems are often phase sensitive,
and both systems employ the technique of dispersion man-
agement, whereby pulses propagate through a periodic con-
catenation of components with opposite signs of dispersion
[1,2]. The probability of rare events can often be efficiently
calculated using importance sampling (IS), with which the
noise is sampled from a biased distribution that makes the
rare events occur more frequently. For IS to be successful,
however, one must bias toward the most likely noise realiza-
tions that lead to the events of interest. For systems modeled
by the nonlinear Schrodinger equation (NLSE), this is made
possible using soliton perturbation theory (SPT) [3-6], but
this tool is not available in dispersion-managed (DM) sys-
tems. Recently [7], we developed a perturbation theory for
the dispersion-managed NLSE (DMNLSE) that governs the
long-term dynamics of DM optical systems [8—10], and we
performed importance-sampled MC (ISMC) simulations of
the pulse amplitude and frequency. Here, we employ this
perturbation theory in order to compute noise-induced means
and variances, and we develop IS for the DMNLSE by ex-
plicitly formulating and solving the optimal biasing problem.
We then perform ISMC simulations of the pulse phase,
where the choice of biasing is nontrivial. Finally, we com-
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pare these results to the original unaveraged system as well
as to systems with constant dispersion.

II. PERTURBATIONS OF DM SOLITONS

The propagation of optical pulses in dispersion-managed
fiber communication systems [1] and Ti:sapphire lasers [2] is
described by an equation which we refer to as NLSE+DM,

i(9q/9z) + (1/2)d(2/z,)(Pql o) + g(2/z,)|q)* g = iv(t,z). (1)

Here, z is the propagation distance, ¢ is the retarded time,
q(t,7) is the slowly varying electric field envelope (rescaled
to account for loss and amplification), d(z/z,) is the local
dispersion, and g(z/z,) describes the periodic power varia-
tion due to loss and amplification. The choice of d(z/z,) is
called a dispersion map and z, is the dispersion map period.
The forcing is v(t,z)=2flvglv,l(t) 8z—nz,), where 8(z) is the
Dirac delta and v,(z) is the white Gaussian noise, satisfying
E[v,(1)]=0 and E[v,(7) vi,(t’)]zo‘é(t—t’)&nn,, where [[ - ] de-
notes ensemble average, the asterisk denotes complex conju-
gation, &,, is the Kronecker delta, and ¢ is the noise
variance.

Once the compression and expansion of the pulse in each
dispersion map is properly factored out, the core pulse shape
obeys the DMNLSE [8-10]. Namely, to the leading order
we, can approximate the solution of Eq. (1) as §(w,z,)
=e‘iC(§)“’2/2ﬁ(w,z), where f(w)=[e ™ f(f)dt is the Fourier
transform of f(z) (all integrals are complete unless limits are
given) and {=z/z,. Here C({)=z,J5[d({')-d]d{’, where d is
the average dispersion. The exponential factor in front of
i(w,z) accounts for the rapid “breathing,” while the slowly
varying envelope ii(w,z) satisfies the perturbed DMNLSE

i(Auldz) + (1/2)d(Pul )
+ff ”(t+r’)“(r+z”)“z<,+,'+,")R(t’,t")dt/dt”= iV(t,Z), (2)

where the asterisk denotes complex conjugate and for brevity
up=u(t,z), etc. The kernel R(¢',1") quantifies the average
nonlinearity over a dispersion map mitigated by dispersion

management: R ) =[[e® "+ " (o' ") dw' dw’, where
r(x)=oe"“Wg(¢)de.
The DMNLSE and its solutions depend on a parameter s,
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called the reduced map strength, which quantifies the size of
the dispersion variations around their mean. Dispersion-
managed solitons (DMSs) are traveling-wave solutions of the
DMNLSE. If u(,(t,z;s):e”‘zdzf(t;s), then f(w) satisfies a
nonlinear integral equation which can be efficiently solved
numerically [7]. The invariances of the DMNLSE then yield
from u,(t,z;s) a four-parameter family of DMS,

uppis(t,235) = € CUIAL(A(t - T);A%), (3)

where A and ) are the DMS amplitude and frequency,
O(t,2)=Q(t—T)+D is the local phase, and T and ® are,
respectively, the mean time and the mean phase. In the un-
perturbed case, the mean time and the mean phase evolve
according to T=0 and ®=(A2+Q?)/2. (Hereafter, the over-
dot denotes differentiation with respect to z.)

In the presence of perturbations, the DMS will evolve. If
u(t,z)=upys+w solves the noise-perturbed DMNLSE,
w(r,z) satisfies the corresponding perturbed linearized
DMNLSE. But part of the noise goes to change the soliton
parameters. The noise-induced DMS parameter that changes
at each map period are found by demanding that w(z,z) re-
mains small, and are written as Q(nz))=0Q(nz,)+AQ, where
for 0=A,Q0.T it is AQ=(e®y0,v,(1))/(yo.yo). While [7]

AD = (y g, v, (0)ya»ya) + Q<€i®XT7 v yasya). (4

Here, {(f,g)=Re [f“(t)g(t)dt is the inner product;
va(t),...,yep(r) are the neutral and the generalized eigen-
modes of the linearized DMNLSE; and y4(7),...,vq(t) are
the adjoint modes [7]: y;=—dU/ d¢, yo=iéU, )

Yo=iU, yu=5[U+&aUI0E) +25(aUIds)],  (5)

while yg=iy,, yr=—iya/A, yo=—yr/A, and y,=U. Here &
=1—T(z) and U(t,z)=u(r,z)e"® is the DMS envelope. All of
these results reduce to those arising from soliton perturbation
theory for the NLSE [4] when s=0.

II1. NOISE-INDUCED PARAMETER VARIANCES

When the perturbation in Eq. (2) represents noise, the
above results yield a system of nonlinear stochastic differen-
tial equations (SDEs) for the evolution of the DMS param-
eters under the effect of noise,

0=rp(), P=12A+ 0+ QD) +vp()  (6)

for 0=A,Q,T, where the source terms are vo(z)
:(e’("))_)Q,S>/<)_/Q,yQ> for all Q. We employ a continuum ap-
proximation of Egs. (6), considering v(z,z) to be a zero-mean

Gaussian ~ white-noise  process  with  autocorrelation
E[S(t,2)S*(t,2)]=028(t—1") 8(z—z"). The sources
v4(2), ..., vp(z) are then independent zero-mean white-noise

processes, with autocorrelation E[SQ(Z)SQ/(Z')]=UZQC%Z—Z/),
where 0,=02|lyol?/(yp.v0)* All of these variances depend
on the soliton amplitude A as well as on the map strength s,
and therefore on the propagation distance z. As a result, it is
not possible to integrate Egs. (6) in closed form, even in the
case of constant dispersion. If the amplitude deviations are
not large, one can approximate o'i, ,cré, as constant. In
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this limit, Egs. (6) can be integrated exactly to give Q(z)
=0,+Wy(z) for 0=A,Q, while

T(z)=T,+ [(Qz")dz" + Wi(z), (7a)

D(2) = 5 [[AXZ") + Q2(2)]dz + [§02")S1(z))dz’ + Welz),
(7b)

where Wy(2)=[{Sp(z")dz is a zero-mean Wiener process
with autocorrelation ]E[WQ(z)WQr(z’)]za'zQé‘QQr min(z,z’).
Unlike other soliton parameters, the mean value of the soli-
ton phase is affected by the noise

E[D(L)] = 3(A2+ QD)L + 1(0% + oh)L>. (8)

Stochastic calculus also yields the variances of the noise-
perturbed output soliton parameters as Var[A(L)]=0§L,
var[Q(L)]:o‘f)L, var[T(L)]:o‘2TL+%o'§1L3, and

var[®(L)] = (03 + Q20p)L + Q050412
+3(A20% + Q2oL + S5 (0 + oH)LE. (9)

The cubic dependence on the distance of the phase jitter due
to the Kerr effect is the Gordon-Mollenauer jitter [11], but
note that additional contributions are present. Remarkably,
these results are formally identical to those for the NLSE
[12]. The dependence of the variance on the soliton ampli-
tude, however, is dramatically different due to the different
dependence on A of the norms and inner products [7]. More
importantly, these results are not enough to accurately esti-
mate the occurrence of those rare events in which the noise
produces large phase deviations, because (i) the prediction
for the mean phase is inaccurate, as we show below; (ii) the
knowledge of noise-induced means and variances is not
enough to estimate behavior in the tails, because not all soli-
ton parameters are Gaussian distributed; and (iii) even if the
output probability density functions (PDFs) were Gaussian,
extrapolating the results to reach the distribution tails would
magnify all uncertainties exponentially, thereby making any
prediction meaningless.

IV. MOST LIKELY NOISE-INDUCED PHASE DEVIATIONS

Even though perturbation theory is not enough by itself to
predict failure rates, it provides a key tool to implement IS.
To successfully apply IS, one must first find the most likely
noise realization subject to the constraint of achieving a
given parameter change. For additive white Gaussian noise,
this problem is solved by minimizing the negative of the
argument of the exponential in the noise PDF, namely, the
integral [|v,(x)[?dx, subject to the constraint AQ,=AQ e
The solution is [7]

Vn,opt(t) = AQtargetei@)(Z)XQ(t)<)_7Q’yQ>/||)_)Q||2 . (1 O)

To induce a larger-than-normal parameter change, one can
then bias the noise by concentrating the MC samples around
Vn,opt(-x)' That iS, Vn,biased(t): Vn,opt(t)"'vn(t)’ where Vn,opl(t) is
given above and v,(f) is unbiased.

Once the most likely noise realization that produces a
given parameter change AQ, at each map period is known,
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one must also find the most likely way to distribute a total
parameter change AQ,,, at the output among all map periods.
In principle, when seeking large phase changes, one must
bias an appropriate combination of all linear modes. Among
the terms in the right-hand side of Eq. (6), however, changes
in Q2 and <e‘i®)_1T,S>Q are second order in the noise, while
changes in A? are first order in the noise, because 0,=0
while A, # 0. We thus introduce the auxiliary quantity ¢(z)
such that d¢p/dz=A?/2+v4(z) and ¢(0)=D, and consider
the optimal biasing problem for ¢(z). In the continuum ap-
proximation, the biasing function is then

b(t,2) = Ayaya.ya)lyal? + (b= A%2)y ey yo) lyall*. (11)

[The direct phase biasing is not given by ¢z,, but rather by
(¢-A?/2)z,.] Minimizing the sum of the L, norm of this
biasing function over all amplifiers is equivalent to finding
functions A(z) and ¢(z) that minimize the functional

A, $) = [{(10)A” + (1/03) (¢~ A12)ldz. (12)
The Euler-Lagrange equations associated with J[A, ¢] yield

d-A2=co, (13a)

2A4(1/0%) + AX(910A)(1/a73) + cH(9I9A) (05) + 2cA =0,
(13b)

where c is a Lagrange multiplier. The solution of the system
composed of Eq. (12), together with the boundary conditions
A(0)=A,, $(0)=A(L)=0, and (L) = ryreer» determines the
optimal amplitude and the phase paths around which one
must bias the ISMC simulations. [The condition A(L)=0 ap-
plies because amplitude changes at z=L do not produce
phase changes.] This system can be integrated numerically
using relaxation methods or numerical continuation software.
Different output phases can be targeted by solving the system
for different values of ¢, which determines the amount of
biasing being applied (¢=0 yields no bias). Equations (11),
(12), (13a), and (13b) reduce to known results in the case of
constant dispersion [4,13]. But unlike the constant-dispersion
case (and unlike the case of time biasing), here the direct
phase biasing is not constant in z. Physically, this is a con-
sequence of the different way in which noise is translated
into phase jitter in the DMNLSE by way of the linear modes.

V. ISMC SIMULATIONS

We now discuss ISMC simulations aimed at computing
the PDF of the soliton phase at the output. To quantify larger-
than-normal phase deviations, we perform the following
steps at each map period: (i) recover the underlying DMS
from the noisy signal; (ii) obtain the linear modes and adjoint
modes of the linearized DMNLSE around the given DMS;
and (iii) generate an unbiased noise realization, shift its mean
with the appropriately scaled adjoint modes, and update the
likelihood ratios [7]. We then add the noise to the pulse,
propagate the noisy signal to the next map period, and repeat
this process until the signal reaches the output. For each
noise realization, the full DMNLSE is used to propagate the
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FIG. 1. (Color online) Mean (top) and variance (bottom) of the
soliton phase as reconstructed with standard MC simulations. Thick
(red) lines, DMNLSE. Also shown for comparison are results for
constant-dispersion NLSE solitons with the same amplitude (blue)
as the DMS, same energy (magenta), and same width (orange).
Dashed lines, predictions from perturbation theory.

signal. (The linearized DMNLSE is only used to guide IS via
its modes.) Even though the noise-induced DMS parameter
changes at each map period are small, the accumulation of
these changes often results in a significantly distorted output
signal.

We choose system parameters based on realistic values
for optical fiber communications. Typical values of system
parameters for fs lasers can be obtained from Ref. [14]. We
consider a piecewise constant dispersion map, with equal-
length normal and anomalous dispersion sections and local
dispersion coefficients of 23.27 and —22.97 ps?/km, result-
ing in an average dispersion of 0.15 ps?/km. We set the unit

time to 17 ps, corresponding to d=1 and s=4, and we use the
resulting dispersion length of 1923 km to normalize dis-
tances. We consider a transmission distance of 6000 km (or
L=3.1201) and amplifiers spaced 100 km apart, for a total of
N,=60 with dimensionless spacing z,=0.052, and we set the
map period to be aligned with them. We take a nonlinear
coefficient of 1.7 (W km)~!, a peak power of 3.51 mW, a
loss coefficient of 0.25 dB/km, a spontaneous emission fac-
tor of 1.65, resulting in a dimensionless noise variance o2
=1.873 X 1073 and an optical signal-to-nosie ratio of 9.3 dB.
We normalize pulse powers with the power needed to have
g=1, namely, 3.51 mW. Finally, we take input pulses to have
unit peak amplitude, resulting in A, =1.

VI. NUMERICAL RESULTS AND DISCUSSION

Figure 1 shows the numerically reconstructed phase mean
and variance as functions of distance for the DMNLSE, as
well as the corresponding values for constant-dispersion
NLSE solitons with same mean, amplitude, or energy as the
DMS, plus the predictions of perturbation theory. Note that
the DMS has the lowest variance of all. (The constant-
dispersion NLSE soliton with same width as the DMS has a
much lower energy, which makes it much more susceptible
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FIG. 2. (Color online) PDF of output phase. Solid line, ISMC
simulation of DMNLSE with 50 000 samples. Squares, standard
MC simulation of the NLSE+DM with 250 000 samples. Dashed
curve, ISMC simulation of the noise-driven SDEs (6). Dotted-
dashed curve, a Gaussian PDF with variance given by Eq. (9).

to Gordon-Haus jitter.) Note that the means and the variances
of the numerically reconstructed phase depend dramatically
on the particular definition of phase used in the simulations.
Hence, consistency is crucial to ensure agreement between
theory and simulations. Here, the phase of a noisy pulse is
defined (both in the theory and in the numerics) as that of the
underlying DMS (obtained as in [7]).

A significant discrepancy is evident between analytical
and numerical results for the mean phase. No satisfactory
explanation currently exists for this effect, which also occurs
for the NLSE [13]. Tt is likely to depend on a failure of SPT
and/or from second-order effects. (Numerical results show
that the discrepancy also depends on the computational noise
bandwidth.) On the other hand, the analytical prediction for
the variance agrees very well with the numerical results, both
for the NLSE and the DMLNSE.

Figure 2 shows the PDF of the DMS output phase as
computed from ISMC simulations of the DMNLSE (2), stan-
dard MC simulations of the NLSE+DM (1), plus a Gaussian
distribution with variance given by perturbation theory and a
PDF obtained from direct ISMC simulations of the SDEs (6).
The ISMC results collect samples generated with a few bi-
asing targets, using multiple ISs [15] to properly combine the
data. The PDFs from both the DMNLSE and the NLSE
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clearly deviate from Gaussian, but they agree very well with
each other as far down in probability as the unbiased MC
simulations can reach. Conversely, while the Gaussian ap-
proximation agrees well near the peak of the PDF, for devia-
tions from the mean phase of 7r or more (a value that is
relevant for fs lasers) it is off by several orders of magnitude.
Similarly, the SDEs obtained from perturbation theory fail to
accurately reproduce the full dynamics of the soliton phase at
lower-than-average values of phase. Remarkably, however,
ISMC simulations guided by perturbation theory yield the
correct phase behavior.

Importantly, results from the noise-perturbed DMNLSE
and NLSE+DM agree pathwise, not just in the overall PDFs
at the output. That is, they agree for each noise realization as
a function of distance. These results, which are surprising
given the “softness” of the phase and the complexity of the
system (nonlinearity, dispersion, noise, large deviations etc.),
provide further confirmation of the validity and the robust-
ness of the DMNLSE in capturing the essential dynamics of
DM systems. Its usefulness is also increased by the availabil-
ity of tools such as the perturbation theory presented here, an
analog of which is lacking for the NLSE+DM.

Similar dynamics should also arise for nonsolitonic
pulses, but the analysis for that case will be more compli-
cated because generic pulses do not preserve a flat phase
across their temporal profile upon propagation.

An important question is also whether these results can be
used in fs lasers in order to quantify the probability of the
occurrence of phase slips in optical atomic clocks. Since gain
and loss play an obvious role in lasers, one could expect that
it will be necessary to derive a perturbation theory for the
nonconservative version of the DMNLSE that was derived as
a model for fs lasers [16]. Since the DMNLSE itself provides
a surprisingly good quantitative description of these lasers
[14], however, whether or not such an extension will indeed
be necessary remains at present an open question.
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