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Rotational analogs to magnetic fluxons in conventional Josephson junctions are predicted to emerge in the
ground state of rotating tunnel-coupled annular Bose-Einstein condensates �BECs�. Such topological
condensate-phase structures can be manipulated by external potentials. We determine conditions for observing
macroscopic quantum tunneling of a fluxon. Rotational fluxons in double-ring BECs can be created, manipu-
lated, and controlled by external potentials in different ways than is possible in the solid-state system, thus
rendering them a promising candidate system for studying and utilizing quantum properties of collective
many-particle degrees of freedom.
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I. INTRODUCTION

Remarkable experimental advances have made it possible
to engineer cold atom systems to represent landmark models
from completely different fields of physics. Examples in-
clude quantum phase transitions �1� and the Josephson effect
�2�. Besides intriguing nonlinear dynamics, the Josephson
effect shows macroscopic quantum phenomena with exciting
prospects for applications �3�. Long Josephson junctions
were used, e.g., to trap and study magnetic flux quanta, and
the macroscopic quantum tunneling of such fluxons was ob-
served �4�. Here we predict the existence of topological
condensate-phase structure equivalent to superconducting
fluxons in rotating Bose-Einstein condensates �BECs� that
are confined in two concentric ring-shaped traps. The BECs
in the individual rings are coupled by tunneling through a
potential barrier at all azimuthal angles. The rotational flux-
ons can be understood as vortices that have entered the tun-
nel barrier. They show intriguing dynamical behavior and
macroscopic quantum properties. Easier accessibility and
more straightforward means of manipulation than possible in
conventional Josephson junctions make rotational fluxons in
tunnel-coupled BECs attractive for investigating fundamen-
tal problems ranging from models for cosmological evolu-
tion �5� �as recently studied in disk-shaped BECs �6�� to
possibilities for realizing quantum information processing
�7�.

Recent successful efforts to create annular trapping geom-
etries �8,9� and the routine use of trap rotation to simulate the
effect a magnetic field has on charged particles �10� have
motivated our present theoretical work. Unlike in the previ-
ously considered cases of vertically separated double-ring
traps �11� or coupled elongated BECs �12,13�, we predict
rotational fluxons to occur in the ground states of the pro-
posed system. In contrast to unconfined vortices in harmoni-
cally trapped or two- or three-dimensional annular �14�
BECs, rotational fluxons are confined to the tunnel barrier
region between the coupled rings for energetic reasons and
thus take on properties of topological solitons �15�. Prepar-

ing ground-state solitons by cooling opens unprecedented
opportunities for precision experiments on classical and
quantum soliton dynamics. The phase structures are analo-
gous to magnetic flux quanta occurring in a superconducting
Josephson junction in a parallel magnetic field �3�. In copla-
nar double-ring BECs of mean radius R that rotate at fre-
quency �, such fluxons appear due to a competition between
trap rotation and coherent tunneling. While the former de-
mands a tangential velocity �R different for the two rings,
the latter favors identical tangential velocities. Spatially non-
uniform or time-dependent potential differences between the
two rings as caused by gradient or curved magnetic, gravita-
tional, or optical fields generate forces on the fluxons. We
also consider the conditions under which quantum tunneling
of fluxons may be observed. Further theoretical and experi-
mental studies of rotational fluxons in BECs promise to shed
light on the behavior of collective excitations in interacting
quasi-one-dimensional systems �16� and their macroscopic
quantum properties �4�.

Below we start by presenting the theoretical description of
a tunnel-coupled coplanar double-ring system, which is
based on the Gross-Pitaevskii �mean-field� equation with a
radial double-well potential. Its solution provides the
ground-state phase diagram as a function of trap-rotation fre-
quency and tunnel-coupling strength as shown in Fig. 1. For
finite tunnel coupling and a slow rotation, the phase differ-
ence between the two partial condensates in the individual
rings vanishes. However, beyond a critical value of the rota-
tion frequency, a quantized relative-phase winding between
the two rings is accommodated, corresponding to a single
rotational fluxon whose phase and density profiles are illus-
trated in Fig. 2. The phase structure can be detected experi-
mentally by interferometry. For example after switching off
the double-ring trap, both BECs will overlap in expansion
and interfere destructively �resulting in a density node� at the
azimuthal position of the fluxon. At higher critical values of
rotation frequency, the number of rotational fluxons succes-
sively increases and a one-dimensional fluxon lattice is
formed. After explaining our microscopic model and discuss-
ing numerical results, we present results from an effective
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hydrodynamic theory for BEC phase and density variables
that captures the numerically observed behavior. A classical
equation of motion for rotational fluxons can be derived,
showing that time-dependent and/or spatially nonuniform
potentials accelerate fluxons. We find an expression for the
fluxon’s inertial mass and discuss the possibility of quantum
effects exhibited by these collective degrees of freedom.

II. THEORETICAL DESCRIPTION OF COPLANAR
DOUBLE-RING BECS

We consider a situation where a BEC of atoms having
mass M is confined by an external magnetic and/or optical
trapping potential to two concentric rings with, in general,

different radii Ri and Ro for the inner and outer rings, respec-
tively. We assume that transverse excitations in the indi-
vidual rings are frozen out, allowing for a purely one-
dimensional description. In addition, the two rings are
coupled linearly by tunneling through a barrier with an asso-
ciated tunnel energy J. Following Ref. �11�, we consider the
coupled Gross-Pitaevskii equations for the inner and outer
ring wave functions �i�� , t� and �o�� , t�, respectively, which
are given by

i��t�i/o = �−
�2

2MRi/o
2 ��

2 + i���� + � � � + gi/o��i/o�2��i/o

− J�o/i . �1�

Here �= �Eo−Ei� /2 and �= �Eo+Ei� /2 in terms of the single-
well bound-state energies Ei/o. Rotation around the trap axis
with frequency � is imposed by any �initial� anisotropy in
the trapping potential. Using the normalization condition
�	=i,o	��	�2d�=1 the nonlinear coupling energies are
gi/o=ng1D

�i/o�, where n=N / �2
R� is an average linear particle
density and g1D

�i/o� is the effective one-dimensional coupling
strength �17�. For convenience, we introduce the effective
trap radius R=
2RoRi /
Ro

2+Ri
2 and d= �Ro

2−Ri
2� / �Ro

2+Ri
2�,

which is a measure of the radial wells’ separation, as param-
eters instead of Ri/o. We have solved Eq. �1� using a Fast-
Fourier-Transformation �FFT�-based pseudospectral method
with imaginary-time propagation �18� to find the ground
states of double-ring BECs. For simplicity, we assumed gi
=go�g. To compensate a trivial energy shift between states
in the inner and outer wells due to finite rotation, we have set
� to ���M�2R2d / �2�1−d2�� for Figs. 1 and 2.

In the absence of interactions �i.e., g=0�, stationary solu-
tions of Eq. �1� can be labeled by the quantum number �m of
the angular-momentum component Lz�−i��� along the
symmetry axis of the trap. The condensate wave functions in
the inner and outer rings will be given by �i/o����eim�, and
the phase difference between condensate amplitudes in the
two rings will vanish at every point �. However, a finite g
introduces a mixing of amplitudes with different m values in
the condensate wave function, enabling the appearance of
nontrivial structure in the relative phase. To illustrate this
point quantitatively, we calculated the difference of expecta-
tion values of Lz per particle in the outer- and inner-ring
condensate fractions, i.e., ��Lz
��Lz
o− �Lz
i, where
�Lz
i/o= ��i/o�Lz��i/o
 / ��i/o ��i/o
. In Fig. 1, ��Lz
 /� is plotted
as a function of tunnel coupling J �measured in units
of J0=�2 / �2MR2�� and rotation frequency � �measured in
units of �0=� / �2MR2�� for a particular double-ring geom-
etry. Regions with finite integer ��Lz
 /� are observed, which
correspond to ground states with �one or more� rotational
fluxons present. A representative example for such a fluxon’s
relative-phase and partial-condensate density profiles is
shown in Fig. 2.

Basic features of the phase diagram shown in Fig. 1 can
be understood by a variational consideration that assumes �i�
strong nonlinear coupling g such that both rings are popu-
lated with equal density and �ii� the condensate wave func-
tion in each ring to be given by an Lz eigenstate,
�i/o

�var����=eimi/o� /
4
. The values of mi/o are determined by a
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FIG. 1. �Color online� Phase diagram of coplanar double-ring
BECs. We plot the difference of angular-momentum expectation
values for condensate atoms in the outer and inner rings as a func-
tion of rotation frequency � and tunnel coupling J. Finite integer
values observed at higher frequencies are associated with the pres-
ence of rotational fluxons. Results shown are obtained for a typical
double-ring geometry with d=0.36 and g /J0=100. Parameters and
units are defined in the text.
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FIG. 2. �Color online� Single fluxon in the ground state of a
double-ring BEC signified by the step-wise spatial variation in the
relative phase 
a for condensate fractions in the two rings. Also
shown are partial condensate densities ��i/o�2 for the inner/outer
ring. �� is the azimuth. Parameters are �=5.8�0, J=1.9J0, and
those used in Fig. 1.�
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competition between tunneling, which tends to enforce equal
phase for condensate fractions in both the inner and outer
rings �mi=mo�m�� and rotation. The latter favors the two
condensate fractions to have, in general, different angular
momenta determined by the rotation frequency and the ring
radii �mi/o= m̃i/o� Int�MRi/o

2 � /�+1 /2��. It is straightforward
to derive the energy functional of the system,

E�mo,mi� =
�2

4M
�mo

2

Ro
2 +

mi
2

Ri
2 � −

��

2
�mo + mi� − J�mo,mi

.

�2�

The condition E�m̃o , m̃i�=E�m� ,m�� defines a critical value
Jcr�M�2R2d2 / �2�1−d2��. For J�Jcr, the state having
mi=mo�m� would be expected to be the ground state, cor-
responding to the black region in Fig. 1. In the opposite case,
the phase gradient for partial-condensate wave functions in
the two rings will be different, essentially realizing a vortex
�or several vortices� in the phase difference between the two
rings. Such a situation is signified by the brighter colored
regions in Fig. 1. The variational estimate of Jcr yields a
reasonably accurate description of the actual phase bound-
aries seen in the numerically obtained phase diagram.

III. EFFECTIVE ANALYTICAL THEORY OF FLUXON
PHASE PROFILE AND DYNAMICS

To obtain a more detailed understanding of fluxons in
coupled annular BECs, we consider the dynamics of their
collective phase and density variables. This approach applies
equally well to coplanar and vertically separated double-ring
traps. Writing the partial-condensate wave functions as
�i/o= ��i/o�exp�i
i/o�, we define symmetric and antisymmetric
combinations of their modulus and phase and express the
Lagrangian of the double-ring system in terms of these new
quantities. It is possible to derive a closed equation of motion
for the phase difference 
a=
o−
i that is accurate to first
order in the typically small quantity ER /g, where
ER=�2 / �2MR2� is the scale of energy quantization on the
ring. Its lengthy analytical expression is omitted.

In the stationary limit and to leading �zeroth� order in
ER /g, we find

�1 − d2�ER��
2
a − 2J sin 
a = 0, �3�

which has a single-soliton �i.e., fluxon� solution �19�


a
�fl���,�0� = 
 + 2 arcsin�sn����� − �0�

k
�k�� . �4�

Here sn�u �k� is a Jacobi elliptic function �20� whose param-
eter k is determined from the transcendental relation


� = kK�k� , �5�

involving the complete elliptic integral of the first kind, and
�=
2J / ��1−d2�ER�. Hence, fluxons emerge as stationary
phase configurations, as seen in our numerical calculations.
The dimensionless parameter ��R / �
1−d2�J� can be inter-
preted as the ratio of the quadratic mean radius of the trap
R /
1−d2=
�Ro

2+Ri
2� /2 and the physical length scale of the

fluxon �J=� / �2
MJ�, which is set by the tunnel coupling.
To obtain a dynamical equation for a slowly moving

fluxon, we insert the ansatz 
a�� , t�=
a
�fl��� ,�0�t�� into the

equation of motion for the phase difference. Here �0�t� is the
instantaneous position of the fluxon. Straightforward alge-
braic manipulation yields a Newton-like equation of motion:

Mfl�̈0R = Ffl. �6�

The fluxon’s dynamical mass is Mfl=2
ER /gIflM with the
dimensionless moment of inertia given by

Ifl = �1 + d2��
0

2
 d�

4

���
a

�fl��2, �7a�

�
1 + d2




�

k
E��2
�

k
�k� , �7b�

where E�u �k� is the incomplete elliptic integral of the second
kind �20�. The general expression for the force �torque� on
the fluxon is �21�

Ffl =
2M

g
�

0

2
 d�

2

��
a

�fl�

���t� + d�t� + d� �1 − d2�ER

2�
��
a

�fl� − �d����� .

�8�

Equations �5� and �7b� define a universal relationship be-
tween the fluxon’s dimensionless moment of inertia Ifl and
the variable �. The limiting value of Ifl for small trap size
���1� is a constant ��1+d2� /2�, whereas a linear depen-
dence �2�1+d2�� /
� is realized for large ring traps ���1�.

Inspection of Eq. �8� reveals that fluxons subject to spa-
tially nonuniform � and/or time-dependent � or � will
experience a force. This feature is confirmed by our numeri-
cal solution of Eq. �1�, an example being shown in Fig. 3. In
the case of spatially uniform ��� , t���0�t� and �=0, the

force simplifies to 
2M /g��̇0, which is similar to the result
found previously �13� for phase-imprinted fluxons in a
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FIG. 3. �Color online� Dynamics of a single fluxon under a
time-dependent external field according to Eq. �1� � we show the
total density ��i�2+ ��o�2�. An external potential gradient across the
double-ring trap corresponding to �=0.2�=0.2J0 cos��� is
smoothly turned on at t=10�0

−1 and off again at t=50�0
−1. Other

parameters are J=J0 and g=100J0.
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junction between two parallel linear BECs. The sign
�=sgn�
a

�fl��2
�−
a
�fl��0�� is the topological charge of the

fluxon related to its orientation. Here we found the expres-
sion for the force felt by fluxons in the more general case
with d�0.

If the external fields are time independent and the fluxon
length �J is smaller than the length scale of spatial variations
of �, Eq. �8� can be integrated and written as Ffl=−R−1��V,
where V is a potential energy. For ��1 and to leading order
in d, we obtain

V��� = ��
��d2


ERg
−

2
2d




J

g
����� �9�

for the potential and Mfl=M
32J / �
2g� for the dynamical
fluxon mass.

IV. MACROSCOPIC QUANTUM TUNNELING

Describing the effects of quantum and thermal fluctua-
tions on the fluxon dynamics can proceed in analogy to the
established treatment of Josephson vortices in superconduct-
ing junctions �3�. In particular, the possibility of fluxon �mac-
roscopic quantum� tunneling can be included �22� by direct
quantization of the classical equation of motion �Eq. �6��. A
rough estimate for tunneling of a fluxon through a potential
barrier of height �V and length �l from the WKB method
yields the probability P�exp�−2�l
2Mfl�V /��. In order to

have P�1 /e with �l��J, we need 
Jg��V. Assuming a
double-ring configuration as proposed in Ref. �9� with
R�50 �m, it may be feasible to achieve g /kB�2 �K and
J /kB�0.05 �K and observe quantum tunneling through
barriers �V /kB�0.3 �K at sufficiently low temperatures.

Quasiparticle excitations present at finite temperature will
act as a damping mechanism for fluxon motion �3� and, at
the same time, as a source of quantum decoherence �thus
suppressing fluxon tunneling �22��.

V. DISCUSSION AND CONCLUSIONS

We have predicted fluxonlike topological structure in the
relative phase of condensate fractions in the ground state of
BECs in rotating double-ring traps. These rotational fluxons
are accelerated by spatially varying external potentials that
couple asymmetrically to the two rings and/or time-
dependent potentials. Macroscopic quantum tunneling of
fluxons may become observable and would serve the long
sought goal of preparing macroscopic quantum superposition
states of BECs �see, e.g., Ref. �23��. Future studies will focus
on details of fluxons’ quantum properties and possible appli-
cations �5,7�.
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