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The ground-state correlation energy of the electron gas is calculated in the region of intermediate
densities using the variational method of Becker, Broyles, and Dunn for two trial wave functions. Each
trial function is taken to be a product of two factors, one factor being the ground-state wave function
for the ideal gas of spin-1/2 particles and the other being a product of pair functions in the relative
coordinates of the electrons. In one trial function a single pair function is used; in the other, the pair
functions between parallel and antiparallel spins are allowed to differ. The pair functions are
parametrized and approximations to the energy mimfr1i~ed. The three-particle correlation functions
appearing in the kinetic energy are replaced by either the Kirkwood superposition approximation (KSA)
or the convolution approximation (CA) to give two approximate energy functionals for each wave
function. The ideal-gas N-particle probability density is approximated by a Boltzmann factor with an
effective pair potential. This effective potential is obtained by inverting the hypernetted chain equation
for the known pair-correlation function of the ideal Fermi gas. The pair-correlation functions for the
interacting system are then calculated by means of the hypernetted-chain equation. The CA correlation
energies join smoothly with both the high- and low-density expansions. The CA and KSA correlation
energies differ by less than 4% everywhere in the intermediate-density region. The pair-correlation
functions exhibit generaHy reasonable physical behavior.

I. INTRODUCTION

Since the pioneering work of Wigner' many
studies have been devoted to the problem of cal-
culating the ground-state correlation energy of
the electron gas. The correlation energy is defined
by

~a= ~ ~HF y

where & is the ground-state energy per electron
and e« is the familiar Hartree-Fock approxima-

tion to & given by"
~HF = ~I+~x y

3e k~/4n, -'
where er=h'kr/2m, k~=(3s'p)'~', and p denotes
the mean density of electrons. In conventional
units one has

e„~ = 2.21/r,' -0.916/r, Ry,
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where r, is the ion-sphere radius (the radius
of a sphere of volume 1/p) in units of the Bohr
radius.

Asymptotic expansions of &, are known in the
limits of very high' ' and very low' densities.
These expansions are presumed to give good
approximations to e, in the regions y, s 0.5 and

y, a 20. By interpolating between the high- and
low-density expansions Carr' and Isihara and
Montroll' have obtained estimates of e, in the
region of intermediate densities. Various at-
tempts' "to extend the high-density perturbation
theories into the region of metallic densities
(2 s r, s 6) have been made. Paralleling these
studies there have appeared several variational
methods, ""all based on the trial wave function

e, =D. exp --', pe(e„)),
j&j

(1.3)

4 =D DBexp --,' u„~jj
j&j

(1.4)

where D, is the ground-state energy eigenfunction
of an ideal Fermi gas written as a determinant of
single-particle momentum-spin states and the
subscript 0 denotes the set of spin coordinates.

The purpose of the present work is to obtain
correlation energies and spin-averaged correlation
functions g(r) in the range 0.5 s r, s 20 using the
trial function in Eq. (1.3) and a modification of
the variational calculation of Becker, Broyles, and
Dunn": a suitable parametrization of u(r} is chosen
and approximate forms of the associated mean-
energy functional e[u] are minimized by variation.
Then, using a simple generalization of the above
trial function, spin-spin correlation functions are
calculated at metallic densities.

The choice of the second trial function rests
on noting that because of the absence of spin-
dependent terms in the Hamiltonian, electrons
with opposite spin components are distinguishable
and, hence, may be treated as different particles,
say, types n (spin up) and P (spin down). To
satisfy the Pauli principle, the wave function must
be antisymmetrized with respect to exchange of
coordinates of electrons with the same spin com-
ponent. A trial function appropriate to this view
is

II. ONE-COMPONENT ENERGY FUNCTIONAL

We consider a completely degenerate system
of N electrons contained in a cube of volume Q

with a neutralizing uniform positive background.
The Hamiltonian operator for this system is

N
H= —

2 Q V', +g v(r„),m j~) j(j
(2.1)

where the electron-electron interaction (including
the background) is

4m
v(r) Ii-ig " e~fr (2.2}

and the usual periodic boundary conditions have
been imposed. It is convenient to choose our unit
of length to be k~' so that henceforth we have

0» =1 and p = I/3w'. Then (k'/2m}v' is replaced
by e~V'.

For the trial function of Eq. (1.3) it is straight-
forward to show that the mean kinetic energy
per particle can be written in the form

hold. Parametrizations of u (r) and u a(r) are
chosen and the associated mean energy functional

e[u, u„a] is minimized, yielding the spin-spin
correlation functions g (r) and g 8(r}.

It is convenient to refer to the functionals e[u]
and e[u„„,u 8] as one- and two-component energy
functionals, respectively. Of course, if one sets
u =—u„8=—u, then e[u, u a]=e[u]. We begin by
introducing approximations to e[u], since gener-
alization of these approximations to e[u, u 8]
is straightforward.

Dunn and Springer have developed a closely
related method for treating this problem in which
the ground state is approximated as in Eq. (1.3)
or (1.4) and an approximation to the SchrMinger
equation is solved for u(r) or for u (r) and

u~a(r). 22 There exists a generalization of this
method to nonzero temperatures in which the Slater
sum is approximated by a Boltzmann factor with

an effective pair potential. "" An extension of
the latter technique is currently under investiga-
tion to approximate the Slater sum and thermo-
dynamic properties of a Quid by treating it as
a mixture of nuclei and electrons with Coulomb
interactions. """

where u„(r,&) is a pair function between a type-
a particle at r, and a type- b particle at rj and
D Dz is the ideal-gas ground-state energy eigen-
function written as a product of determinants,
each composed of the single-particle states of
electrons with one spin component. Since the
numbers of spin-up and spin-down electrons are
assumed to be equal, it follows by symmetry that
the functional equivalencies D =—Ds and u =u +

e~= e, +,'e»Z„'fg-~e. ~'(v,A)'d' r, »

where

2„=Jg [4 ['d'"r

a a

A=+ u(r„).
j&j

(2.3a)

(2.3b}

(2.3c)

(2.M)
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Defining the s-body correlation function by quantum tunneling effect. Hence, following Becker
et al. , we choose the one-parameter form

u(r} =(a/r)(1 —e '"), (2.13)

Eq. (2.3a) is easily reduced to

~ ~(2) + ~(S)
kin I

where

(2.4)

(2.Sa)

eh, = —',pf d'r(e'/r)G(r),

where

G(r) =g(r}—1

(2.6)

(2.7)

is a short-ranged function. If we define the struc-
ture factor by

S(k) = 1+pG(k), (2.8)

where G(k) is the Fourier transform of G(r}, i.e.,
G(k) = f dsr e~s ' G(r),

then Eq. (2.6) can be written in the form

1 d'k 4me2
t 2 (2v}s k' [S(k) —1]. (2.9)

Throughout the present work, unless otherwise
indicated, a tilde will be used to denote the Fourier
transform of a function.

Our problem is to minimize the functional

E' Q = E'h„Q +6&t Q (2.10)

by varying u(r). Now the condition that u(r) be an
extremal of ~[u] is that it satisfies the Euler-
Lagrange equation

se[u]/su(r) = 0. (2.11)

Studies' of this equation under various approxi-
mations show that for large r, in agreement with
Bohm and Pines, "

u(r}-a/r,
where

(2.12a)

,' erp-f d'r [vu(r)]'g(r), (2.sb)

,'erp'f —d'r»d'r» V,u(r») ~ V,u(r|s)g s~(1, 2, 3),

(2.5c)

and we have set g=-gu~.

In the thermodynamic limit, i.e., N- ~ and
0- ~ with p =N/0 held constant, one finds for

the mean interaction energy per particle,

with a given by Eq. (2.12b), and vary 5 to minimize
e[u]. Actually, Becker et al. vary both a and 5,
but at r, =3.39 and 5.65 they find values of a very
close to those given by Eq. (2.12b). As is seen be-
low, Eq. (2.12) ensures that our structure factor
have the small-k behavior given by Pines and
Nozieres, ~ i.e.,

S(k)- fgs'/2mrus, as k-0. (2.14)

III. APPROXIMATIONS TO e[u)

A. Approximations to g and Gkig [u)
(3)

If we denote the Fourier transform of u(r) by
p(k) and use g(r) =1+G(r), then Eg. (2.5b) can
be rewritten

The expression for e~[u] in Eq. (2.5) contains
a three-body correlation function g s~. Starting
from the same trial function the random-phase
approximation (RPA)" of Bohm and Pines has
been applied to obtain a kinetic-energy functional
~ms. '"[u]""free of this difficulty, but the RPA
may be used only at high densities. To eliminate
g

' from el [u] we use two approximations, each
expressing gs~ as a functional of g: the Kirkwood
superposition approximation (KSA),"first applied
to this problem by Becker et al. , and the convolu-
tion approximation (CA).ss In this way we obtain
approximate kinetic-energy functionals e~~"[u]
and eg[u], which can easily be calculated given
u and gfu]. Both eg," and ac~ can be written
e~" plus correction terms. Comparison of the
minimum values of the associated total-energy
functionals F "[u] and e "[u] gives an estimate
of the error introduced into the energy by approxi-
mating g'&.

To enable us to calculate gfu] we follow the work
of Lado": the ideal-gas configurational probability
density is approximated by a Boltzmann factor
with an ideal-gas effective pair potential uz(r).
Hence by Eq. (2.3c) the probability density Q, ~C, i'
can be written approximately as a Boltzmann fac-
tor with an effective pair potential u, (r) =u(r)
+uz(r). An approximate integral equation from the
classical pair theory of fluids can then be used
to calculate g[u] for a given u(r).

a = es/s'ii(u„ (2.12b)
~(2) 6 (2)+ 6 (2)

1 2 (3.1a)

(2.12c)

and co» is the plasma frequency,

rusg = (4vpes/m) ~s .
It is also known that u(0) is finite because of the

where

(3.1b)
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and

e ' = —'e p d'r[u'(r)]'G(r). (S.lc)
p' 2, G(k)[P'(k)]', "dsk-

4
(8.11)

Defining the function bg '~(1, 2, 3}by

g ~(1
x 2, 3) = 1 + G (r») + G(r, s) +G(r, s) + G(r») G(r»)

(u'

'~rp' d'rgmd r»+$u(r») +gu(r»)

x [G(r») +2G(r»}G(r») +4g~~(1, 2, 3)]. (3.3)

+G(r») G(r») +G(r») G(r») + ag~'~(1, 2, 3),
(3.2)

Eq. (2.5c) can be written in the form

and within the CA by

=
d ezp fd'rG(r)[F'(r)]',

where F(r) is defined by

F(k) = p(t)(k)G(k) .

(3.12)

(3.13)

(S.i4)

then for the CA we have the simpler form

We can use Eq. (3.8) with Eqs. (3.11) and (8.12) to
calculate e~" and e~. However, if we note that

is also given by

t2 = ,'erp—fd'r G(r)u'(r)F'(r),

If we define the function

P(r) = [u'(r)/r]G(r),

then Eq. (3.3) can be put in the form

~(s) ~ (s) + ~ (s) + ~ (s)
1 2 s

(8.4)

(3.5a)

e)" =e) "+—,'ezpf d'r G(r)[Q'(r)]',

where Q(r) =u(r)+F(r) or, by Eq. (8.18),

q(k) = y(k)S(k}.

B. Calculation of gfu]

(8.15)

(3.16}

where

e '"=-'e p' k'(3()'(k)G(k)
0 dsk

d (2x)'

dk
e,"'= -',

harp'

2, k(t) (k)G(k)P'(k),

e, = ~&rp d r»d r»V, u(r»)(s) ~ 2 s s

(3.5b)

(3.5c)

If the spin-averaged ideal-gas probability density
is approximated as" "

P(lPe(l'=exp -gu, (ru) fd' rexp Pu(ru}),
j&f j&f

(3.17)

then by Eqs. (2.3c) and (2.4) the pair correlation
function is

~ v,u(r») dg'"(I, 2, 3) . (3.5d)

In Eq. (3.5c) we have written P'(k) for dP(k)/dk.
Now it is well known that for our trial function

the RPA gives

g(r») =N(N —1)p 'f dS dN

x exp —g u, (ru) d'"r exp —P u,(ru)),
j &f j&f

(3.is}
dke~" =e, +-,'erp

( ), k'y'( k) S(k).

But from Eqs. (3.1b) and (3.5b) we have

(3.6) where

u, (r) =u(r) +u, (r) . (3.19)

so that

p~ ()+~ ()
1 1 (3.7)

fRPA + f (2) + Q
(s) + f (s)

kin kin 2 2 s (8 6)

and

~~P~„(1,2, 3}= G(r») G(r») G(r») (3.9)

~~3) (1,2, 3) = p fd4 G(r„)G(r„)G(r„).
Substituting ng~p~„and ~cs~ into Eq. (3.5d), one
can show that es' is given within the KSA by

(3.10)

At this point our approximations to e~ appear
as approximations to es'. The integral in Eq.
(3.5d} can be reduced to tractable forms using
the Kirkwood superposition and the convolution
approximations to +'~(1, 2, 3}which give, re-
spectively, "" g(r) = exp[ -u, (r) +N(r) +B(r)], (3.20)

where N(r) denotes the sum of the nodal diagrams
and B(r) the sum of the bridge (or elementary)
diagrams. Introducing the direct correlation
function C by

C(r) =G(r) -N(r),
it can further be shown that

(3.21)

We return to the problem of calculating u, after
discussing how best to perform the multidimen-
sional integration in Eq. (3.16}. Here we simply
note that uz(r) is bounded everywhere and is of
shorter range than u(r). Thus u(r) and u, (r) have
the same asymptotic behavior given in Eq. (2.12).

Now it is shown in the classical theory of fluids
that Eq. (3.16) can be developed into a diagramma-
tic expansion of the form" "
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N(k) = p[C(k)]'/[1 —pc(k)] . (3.22) known result

If the function B(y) were known, then E(ls. (3.20)-
(3.22) could be solved for the exact g(y}. But the
only known representation of B(r) is a formal in-
finite series. From E(ls. (8.21) and (3.22) we get

S(k) =1/[1-pc(k)], (3.28}

which is the Fourier transform of the Ornstein-
Zernicke integral equation. ""

To calculate g we use the hypernetted-chain
(HNC) approximation"" "in which one neglects
B(y) in E(1. (3.20), i.e.,

g(r) = exp [-u,(r) +N(r)] . (3.24)

The motivation for this choice is a recent study
of the classical electron gas" "in which it was
found that the pair correlation functions obtained
from the HNC equation are in remarkably close
agreement with the Monte Carlo (MC) results of
Brush, Sahlin, and Teller" over a large range
of temperatures and densities. In these calcula-
tions the state of the system is described by the
dimensionless parameter I' = e'/kTr„where k

is Boltzmann's constant, 7 the absolute tempera-
ture, and z, the ion-sphere radius. In the range
1 s I's 10 the HNC and MC correlation functions
are in excellent quantitative agreement and the
potential energies agree to within about 1% 47.
By way of comparison, numerical calculations
using the Percus- Yevick approximation~ are in
much greater disagreement with the MC results.
For example, at I = 2.5 the Percus- Yevick and

MC potential energies differ by about 8%."
We shall assume that the HNC equation yields

a g(r) for the (luantum system with an accuracy
comparable to that for a corresponding classical
electron gas of the same density but at an effective
temperature or, equivalently, an effective I'.
The latter is obtained by matching ut(r) and e /kTr
at large r, i.e. , by Eq. (2.12),

g, (r) = 1 —
—,
' [j,(r)/r]', (3.28)

where j,(r) = (sinr -r cosr)/r'. Note that g~(0) = ~.
The ideal-gas structure factor is given by

S~(k) =-',k —
—,',k', k ~2

(3.2V)

uz(r) = -Cz(y) + Gz(r) —In'(r),
where

C, (k) = p '(1 —[S,(k)] '].

(8.28)

(3.29)

We find that Cz(r) - -2r '+O(r ') as r- ~ and,
hence, that u, (r) -2r '+O(r '). We note further
that u~ (0) = 1.06 and that u~(r) is found numerically
to be a strictly decreasing function.

Within the HNC approximation, E(1. (3.24), the
short-range behavior of G(r) implies that N(r)
has the same long-range behavior as u, (r) and,
by E(1. (3.21), that C(r) has the long-range behavior
of -u, (r}. We decompose u, (r) into long- and
short-range parts by setting

u, (r)=u(„(r)+u (r),
where

u„(r) =u(r) —C,(r)

and

(3.Soa)

(3.30b)

u (r) =Gz(r) —logan(r). (3.80c)

Since G,(r)-O(r '), we see that u (r)-O(r ') as
r- ~. Defining the short-range functions C (r)
and N (r) by

C (r) —=C(r) +u, „(r) (8.31)

=1, k&2,

where S,(k) =1+G(k) and G,(k) is the Fourier trans-
form of G,(r}=g, (r) —1. Since u~(r) is shown in
Ref. 34 to be insensitive to several methods used
to obtain it, we invert the HNC equation using
the exact g,(r) to obtain

r =e'/ ', ff~,(r, = (-,')r~'. - (3.25}

Hence, for the range of densities 1sr,~20 in the
quantum system, the corresponding classical
system falls in the range 1 s I'c 5 within the region
where the HNC equation is known to give very
accurate correlation functions. Thus, our basic
assumption is that the removal of the singularity
at the origin in going from the classical Coulomb
potential to the corresponding quantum effective
potential does not adversely affect the accuracy
of the HNC approximation.

The n-body correlation function of a completely
degenerate ideal Fermi gas can be calculated by
replacing 4, by D, in E(l. (2.4) and performing
the integration. For n =2 one obtains the well-

N (r) ~N(r) -u„(r), (8.82)

with

( )
—e ~~(r)+elf(r) 1 N (r) (8.33a)

p[C(k)]'
N (k) =1 C(k) -u(, (k),

where

C(k) = C (k) uE„(k), -
u„(k) = @(k) —C,(k),

(8.38b)

(3.34)

(3.85)

we have the HNC equation in a form convenient
for numerical solution:
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and, for our parametrization,

y(k) =4vab'/k'(k'+k'}. (3.86}

Having solved Eqs. (8.33) we have G(r} = C (r}
+N (r) and G(k) =C (k)+N (k).

Equations (3.33) were solved by iteration starting
from the initial guess C (r) =0 and computing
successively C (k), N (k),N (r), C (r) until
the change in N (r) between consecutive iterations
was on the order of or less than 1 part in 10'.
Although this process was rapidly convergent,
the total number of iterations required was de-
creased by using Broyles's extrapolation method"
on N (r).

The numerical Fourier transforms were calcu-
lated using Filon's method. " All calculations
were performed to a precision of 15 digits using
512 points and the increment ar =0.05(kp '). To
check our numerical accuracy, we carried out
range-increment tests at two widely separated
densities. The range-increment test consisted
of going to 1024 points and repeating the entire
calculation with each of the increments ~r
=0.05(kp ') and sr=0. 025(k p'}. Our results were
insensitive to this test.

Eliminating C from Eq. (3.23) using Eqs.
(3.34), (3.85), and (8.29) we obtain for the HNC

structure factor

xf ~4 ~'d(n+1) ~ ~ dV, (4.1)

where S„=J ~

4'
~

'd'"r and 4i is given in Eq. (1.4).
Let us define the function ~, , by

» 8}=1+G.b(rla) +G (r»)+G„(r»)

+G~(r»)G (r») +G„(r»)G„(r»)
+G (r»}G~,(r»}+~,»(1, 2, 3), (4 2)

where G„(r) =g„(r) —1. We—further define the
structure factors

(4.3)

In precisely the same manner as in the one-com-
ponent case we find for the mean kinetic energy
per particle

different particles. The total number of type-g
electrons is N, and the corresponding mean
density is p, =N, /G. The total number of electrons
is ¹N +NB, and the total mean density is
P Pf}I+Vg.

Let us consider an arbitrary configuration of
n spin-up and n 8 spin-down electrons with an
electron of type a at r„ type 5 at r„.. . , and

type d at r„. We define the associated n-body
correlation function by

g„...~(1, 2, . . . , n) =Z„'IIN, ![(N, n,-}!p",'] '

s(k) =
1+p[P(k) —C (k)]S (k)

'

Our numerical solution has the large-r form

G(r) - —~(1 + 5}(cos2r}/r~,

(3.37)

(3.38)

=e "+e"'+c'"+~'"
kin kin 2 2 S

where

~kin ~g + 8Epp ~ k [(Q ~„+'iti ~8}s«Rp~ +i f
d'k

(4.4a)

where 5«1. We see from Eq. (3.3V) that the
oscillatory behavior of G(r} arises from the dis-
continuity in S~ (k) at k = 2. There is no r ' term
in Eq. (3.38), since the Coulomb interaction
replaces the linear small-k dependence of S,(k)
by S(k)- hk'/2m'». We can infer that 5 is given

by (1+5)= [1 —pC(2)] '. The asymptotic behavior
in Eq. (3.38) has been obtained elsewhere. "

Equation (3.37) is similar to the perturbation
formula""

S,(k)
1+py(k)S, (k) ' (8.39)

which is expected to be a good approximation at
high densities where u(r) can be treated as a
weak long-range perturbation on u, (r).

IV. TWO-COMPONENT ENERGY FUNCTIONAL

Our treatment of the trial function in Eq. (1.4)
is a straightforward generalization of the previous
development. In this formulation spin-up (type-a)
and spin-down (type-P) electrons are regarded as

+2$«iti~ss e] ~ (4.4b)

e,"!=seppf d'r[(u' )'G„+(u'„8)'G 8], (4.4c)

dgpp(1, 2, 3) = G„(r»)G„(r»)G„(r»), (4.5)

= 8&~P s k ~~G~~+ f}t F6~8 P~~

+(y SG +g«G„B)P~pi],

(4.4d)

=-„e~p g d r„d r„(s) x 2 j' s s

x[V,u (r») V,u„(r»)bg (1,2, 3)

+2V,u«(r») V,u~ii(r»)kg~ ii(1, 2, 3)

+V,u ti(r») ~ V,u 8(r»)4g„8&(1, 2, 3)]. (4.4e)

We have set p»(k) =u,~(k) and P,~(r) = G,~(r)u»(r)/r.
As before, we find approximate forms of es'

using the Kirkwood superposition and the convolu-
tion approximation to ~„,(l, 2, 3). The multi-
component KSA is just
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which gives chose the parametrization u~(r) = ar '(1 —e '~ "},
where a is given by Eq. (2.12b}, and we varied
b and b 8 to minimize the energy functional.

+2G„SP'„+' g. (4.6) V. NUMERICAL RESULTS OF THE VARIATIONS

The two-component CA is derived in the Appendix.
The CA gives

e( = e( "+kerp fd'r[G (g,')'+G,Q,'(g,'+2/,')],
(4.7)

where

'Qx 4'anSaa+((I'asSne ~

Q, = Pa SSaa ~ @3=AanSa8 ~

(4.8)

We now have two approximate kinetic-energy
functionals which can readily be calculated given
the u„and g„. In the thermodynamic limit the
mean interaction energy per particle is simply

e. , = —'pf d'r(e'/r)(G +G„&). (4.9)

To allow us to calculate the correlation functions,

ID, I' is approximated by a Boltzmann factor with

an ideal-gas effective pair potential u'„(r). Thus

IC I' is written approximately as a Boltzmann
factor with effective pair potentials u,', =u„+y',»
where u =uM (since p =p8) andu'&=0. We
obtain u„by inverting the HNC equation for
the exact g, i.e.,

(5.1)

it follows from the Schr5dinger equation that the
functional

~[eF ] = (yZ„) '(D I& I +& —e-„ (5.2)

The correlation-energy functional e,[u] is de-
fined by e,[u] = e[u] —e~, which for a given density
differs from the mean-energy functional e[u] by a
constant. The correlation energy is the minimum
value of e,[u]. The CA, KSA, and RPA correlation
energies are given in Table I with the minimizing
parameters. For the whole intermediate range of
densities 0.5sy, s20, we see that e,A and e, "
never differ by more than 4% and the associated
parameters are also in very close agreement. The
increase in the relative deviation of the RPA
energies and parameters from those of the CA
and the KSA as r, increases into the metallic
region signals the breakdown of the RPA.

We now describe a method used by Dunn and
Broyles" to calculate the correlation energy
for an approximate wave function of the same
form as the trial function given in Eq. (1.3}.
Setting

u~ (r) = -C~ „(r)+ G~~ (r) - Ing~„(r),

where

C'„„(k)=p„'{1-[S,(k)] 'j

and

g' (r) =1 —9[j,(r)/r]'.

(4.10)

(4.11)

(4.12)

e, = —2pf d' vr(r)[g(r) —1]—e, ,

where

(5.3)

is equal to the correlation energy when 4 is the
ground-state energy eigenfunction. Equation (5.2)
is easily reduced to

Note that as r- 0, we have u~ (r)- -21nr.
The two-component HNC equation is then used

to compute the g„. The generalization of the
HNC equation to multicomponent fluids has been
given by Meeron. " For these calculations we

TABLE I. Correlation energies (in rydbergs) and
minimizing parameters 5 (withk& —-1) at various den-
sities for the one-component convolution, Kirkwood
superposition, and random-phase approximations.

(5.4)g(r„) = -, d3 ~ ~ dVQD*, 4, ,

v(r) is given in Eq. (2.2), and e, is the Hartree-
Fock exchange energy given in Eq. (1.2). In
the thermodynamic limit v(r) is replaced by e'/r
in Eq. (5.3). Note that g is not a pair correlation
function according to the definition of Eq. (2.4},
but it is nevertheless a closely related function.
If 4, is approximated as in Eq. (1.3), then Eq.
(5.47 becomes

+s

0.565
1.13
3.39
5.65
7.91

11.3
22.6

0.136
0.107
0.0661
0.0499
0.0407
0.0322
0.0196

0.131
0.104
0.0635
0.0481
0.0393
0.0312
0.0191

CA KSA
C

0.126
0.097
0.0577

0.50 0.50
0.60 0.60
0.85 0.80
0.95 0.95
1.00 1.00
1.05 1.05
1.15 1.20

0.45
0.50
0.65

~CA ~KSA ~
RPA

RPA gfg]= &, J(a3 dv+ In('exy ——PM(r,„().
~NP 0 2 i&9

(5.5)

From the definition of g[u] in Eq. (2.4) it follows
that g[u] =g[2u].

We refer to e,[4] as the Dunn-Broyles (DB)
functional. The DB functional is not stationary
for arbitrary variations about the ground state.
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FIG. 1. Parameter variation at r, = 3.39 for the
random-phase, Kirkwood superposition, convolution,
Dmn-Broyles, and modified-random-phase functionals
(respectively denoted by RPA, KSA, CA, DB, and
MRPA) .

However, the correct correlation energy can be
expected to lie on or near the DB curve e,(b)
obtained by introducing our parametrization of
4 into Eq. (5.3) and varying b To ca.lculate gfII]
we approximate the ideal-gas probability density
by a Boltzmann factor with an effective pair poten-
tial uI as in Eqs. (3.17) and (3.28) and perform
the integration in Eq. (5.5) using the HNC equation
for the pair potential uI = —,'u+uz. Then R,(b) may
easily be calculated from Eq. (5.3). A parameter
variation is shown in Fig. 1. We expect the DB
curve to intersect our best correlation-energy
functional quite close to its minimum. Since the
RPA may be used only at high densities, we have
only to choose between the CA and the KSA. It is
seen that the DB curve intersects the CA curve
closer to its minimum than to that of the KSA
curve.

The MRPA (modified RPA) curve in Fig. 1 is

FIG. 3. Comparison of the CA correlation energies
(solid curve with r, &0.5) with the high-density expan-
sion of Gell-Mann and Brueckner, including the small
correction term of Carr and Maradudin (solid curve
with r, &0.5). The crosses denote our RPA correlation
energies from Table I. The dashed curve is obtained
from Gaskell's approximate correlation-energy func-
tional evaluated for the solution to the associated Euler-
Lagrange equation; the dotted curve is obtained by
minimization of Gaskell's correlation-energy functional
with our parametric form for u(r), the circles locating
the calculated points.

calculated for the MRPA functional, "which may
be obtained by replacing g '~ by g(r») in Eq. (2.5c).
But we see that this functional has no minimum,
at least for a reasonable value of the parameter.
This behavior was found at all densities investi-
gated. Hence, the MRPA appears to be funda-
mentally invalid so far as approximating the mean-
energy functional is concerned.

Figures 2 and 3 show that the curve ec"(r,) joins
smoothly at r, =-25 with the low-density expansion
of Carr et al. ,

'

eI'" = -0. 786r, '+ 26 r5, '~ —2.94r, '+ ~ ~ ~ (5.6)

and at r, =0.5 with the high-density expansion of
Gell-Mann and Brueckner'

= 0.0622 lnr, —0.096+0.018r,lnr, + ~ ~ ~, (5.7)

0.06-

0.04-

-&(R&&-

0.02-

5 lO

S I I I

20 30 50

FIG. 2. Comparison of the CA correlation energies
(solid curve) with the low-density expansion of Carr
et al. (dashed curve) about r, a 25.

Ioo

where the coefficient of r, lnr, is that calculated
by Carr and Maradudin. 4 At r, =0.5 the last
term in Eq. (5.7) is only 4.3% of &hah

In Fig. 4 we compare &c+ with other theories
at intermediate densities. Monnier, "Lee and
Ree" (LR), and Keiser and Wu" (KW) calculate
ground-state energies and correlation functions
of the charged-boson gas using variational methods
and alter the statistics to those for the electron
gas by means of the Wu-Feenberg formalism. "
Using the fermion trial function +~ =M ~, where
4 e = exp [-~g„&II(rI&)] is the boson trial function,
Monnier minimizes the Wu-Feenberg expansion
of (4r~H I4r)/(4rI4r); but LR and KW minimize
(4e~H ~4e)/(4e ~4e) and then apply the Wu-
Feenber g expansion. The discrepancy between
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O. I 2

O.IO

0.08

-&g IR„)

0.06

unless the density is very low, i.e., unless
r, »100, ~. (5.9) is much closer to the low-
density expansion in Eq. (5.6) than is Eq. (5.8).

The correlation energies computed by Lam"
are not included in Fig. 4, since his correlation
functions g(r) take on relatively large negative
values for small separations at low metallic
densities.

At metallic densities Becker et al."minimized
the KSA energy functional for the trial form

0.04
u(r) =ar '(1 —e '")+c(r'+d') ', (5.10)

0.02
X

I I

O.s i z 3 5 7 ) o zo

FIG. 4. Comparison of the CA correlation energies
(solid curve) with those of other theories at intermedi-
ate densities: solid circles, Monnier; open circles,
Lee and Ree; crosses, Keiser and Wu; triangle,
Isihara and Montroll; dotted curve, Pines's alteration
of Wigner's formula; dashed curve, Vashishta and

Sing wi.

e, = -0.88/(r, +7.8), (5.8}

which has the correct behavior to O(r, ') as
y,-~. Nevertheless, Wigner's original formula
(1938)z

P, = -0.58/(r, +5.1) (5.9)

is in much closer agreement with e," for y &2.
It is also interesting to note that at low densities

the LR and KW correlation energies is due

principally to their different charged-boson wave
functions. It should also be noted that Monnier's
boson energies are lower than those of LR, the
differences being quite large with respect to
the correlation energies (from about 50% to 30%
of q&~ as y, increases from metallic to low
densities). It is seen that the correlation energies
of LR and KW do not have the proper behavior
at smaller r,. In contrast with the correct high-
density expansion of Eq. (5.2), I,R find the high-
density form &~ =A.r, ~'+Br, ++ ~ ~, where P
and B are constants. Monnier did not extend his
calculations to densities with y, &3.

The single point of Ishihara and Montroll' given
in Fig. 4 occurs at the minimum of their total-
energy curve, which they obtain by interpolating
between the high- and low-density energy expan-
sions using the method of two-point Pade approxi-
mants. Relative to our correlation energy at that
density their result is about 20% low. The
simple graphical interpolation of Carr et al. ' gives
correlation energies remarkably close to &&~.

Also included in Fig. 4 is Wigner's formula as
altered by Pines, "

e"P"= e, +—erp, k'y'S+ —1, , (S-1}' 4 ' (2w)' 2 (2s)' k'

(5.11)

and the perturbation formula introduced in Eq.
(3.39}, i.e.,

S=S~(1+pPS~) ',
then the Euler-Lagrange equation

5&RPA/by(g) —0

(5.12)

(5.13)

TABLE II. Correlation functions g(r) at various den-
sities determined by the one-component convolution ap-
proximation.

k~~ gz r, = 0.565 1.13 3.39 5.65 7.91 11.3 22.6

0 0.500
0.4 0.516
0.8 0.561
1.2 0.627
1.6 0.706
2.0 0.787
2.4 0.859
2.8 0.917
3.2 0.959
3.6 0.984
4.0 0.996
4.4 1.000
4.8 0.999

0.376
0.419
0.483
0.566
0.659
0.752
0.835
0.902
0.950
0.979
0.994
0.999
0.999

0.292
0.350
0.428
0.523
0.629
0.732
0.825
0.898
0.949
0.980
0.996
1.001
1.001

0.100
0.172
0.273
0.401
0.544
0.684
0.805
0.897
0.958
0.992
1.006
1.009
1.006

0.043
0.100
0.197
0.333
0.495
0.658
0.798
0.902
0.967
1.001
1.013
1.013
1.008

0.022
0.065
0.152
0.289
0.462
0.640
0 ~ 794
0.906
0.974
1.007
1.017
1.015
1.009

0.009
0.038
0.110
0.241
0.423
0.620
0.791
0.913
0.983
1.015
1.022
1.017
1.009

0.0008
0.0083
0.045
0.150
0.338
0.571
0.783
0.930
1.007
1.033
1.032
1.020
1.008

using the Percus-Yevick (PY) equation to compute
g. Springer" then repeated this calculation at
metallic and lower densities using the HNC equa-
tion instead of the PY equation. The PY equation
gave correlation energies much lower than the HNC

equation. In each case it was found that with a
given by Eq. (2.12b), variation of b, c, and d gave
energies differing negligibly from these obtained

by variation of b alone, with c =0. These results
suggest that our simple one-parameter form for
u(r) is sufficiently flexible in the region 1 &r,s 20
so that more elaborate parametrizations would
lower the energy by negligible amounts, indepen-
dent of the approximation used to compute g.

Gaskell" has shown that if one uses the RPA
energy functional
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1.0

0.8

0.6

0.4

0.2

It should be emphasized that the only purpose
of the above comparison with Gaskell is to test
the adequacy of our parametrization for 7,s 1.
At metallic densities the perturbation formula
Eq. (5.12}for S(k} leads to unphysical over-
correlation manifested by correlation functions

g(r) which are negative for small interparticle
separations and, hence, to energies which are
much too low. Gaskell was only partially success-
ful in his attempts to overcome these difficulties.
Comparing with our e,"P~ energies in Fig. 3 (com-
puted from the HNC equation}, it is found that
most of Gaskell's error in the region 0.5&r,
is due not to the RPA but to the perturbation
formula for S(k)—a not-too-surprising result.
However, Gaskell has shown that at high densities
Eqs. (5.11)-(5.14) yield the asymptotic expansion

'0 4 e, =0.05701nr, -0.132+ ~ ~, (5.15)
FIG. 5. Correlation functions g at various densities.

The dashed curve is gz .

has the solution

P =y'S,gk'[k'+(k'+y'S, ')'~]3 ', (5.14)

TABLE III. Correlation energies (in xydbergs) and

minimizing parameters b~~, b~~ (withk&=1) at metallic
densities for the two-component convolution and Kirk-
wood superposition approximations.

KSA b CA b
CA

b ggA bKSA
ne ae a5

3.39 0.0654 0.0633 0.65 0.95 0.60 0.90
5.65 0.0496 0.0481 0.75 1.05 0.70 1.05
7.91 0.0406 0.0393 0.75 1.15 0.75 1.10

where y= Ru»/er and k is in units of kr. [Since
e» = (4spe'/m)~', it follows from the definition
of y that e'= 3wy'er/Skr. ] In Fig. 3 we compare
the correlation-energy curves calculated from
Eqs. (5.11) and (5.12) for our parametric form

P =4sab'[k'(k'+b'}] ' and for Gaskell's p in Eq.
(5.14). Disagreement between the correlation
energy of Gaskell and that obtained by variation
of the one-parameter form is interpreted to
mean that the parametrization is inadequate at
that density. We find that the one-parameter form
is adequate (with error less than 3%} for 0.5 s r,
s1 but inadequate for r «0.5, the difference
increasing as r,-0. This suggests that for a
more judiciously chosen parametrization the
curve -6A would be raised slightly in the region
0.5&r, &1 so as to join more smoothly with the
high-density expansion at y, =-0.5. The close
agreement between the one-parameter energy
of Eqs. (5.11) and (5.12}and the high-density
expansion at y, :-0.1 is seen to be fortuitous.

which has the correct form but incorrect coeffi-
cients [see Eq. (5.7)].

The correlation functions g(r) at the CA minima
are presented in Table II. At any density where
the HNC equation has a solution it is obvious that

g(r) )0 for all r. As r, increases, g(0) decreases
and u(0) increases. Of course, at low densities
g(0) is practically zero. It is seen that the first
maximum of g(r) becomes more pronounced as
the density decreases, and is located at k~r =-4.

Since krr =(~m)~'r/r, = 1.92r/r„where r, is
the ion-sphere radius, the first maximum is at
r=2r, . The density dependence of the g(r) is
illustrated in Fig. 5. For the sake of exactness
we should note that these calculations were per-
formed with the density parameter y' (where

's= 3.39 r, = 5.65 t's= 7.91

gas &aa gas gaa gaS

0
0.4
0.8
1.2
1.6
2.0
2.4
2.8
3.2
3.6
4.0
4.4
4.8
5.2
5.6
6.0
6.4
6.8

0
0.0316
0.121
0.255
0.413
0.573
0.718
0.835
0.918
0.968
0.992
1.000
0.999
0.995
0.993
0.993
0.995
0.997

0
0.0154
0.0746
0.186
0.340
0.513
0.678
0.814
0.910
0.968
0.996
1.004
1.002
0.997
0.994
0.994
0.995
0.998

0.149
0.281
0.444
0.612
0.759
0.870
0.944
0.986
1.006
1.013
1.013
1.011
1.009
1.007
1.005
1.004
1.003
1.002

0
0.0102
0.0575
0.160
0.313
0.494
0.669
0.813
0.914
0.973
1.000
1.006
1.003
0.998
0.994
0.994
0.995
0.998

0.0573
0.154
0.310
0.502
0.689
0.839
0.939
0.995
1.019
1.024
1.022
1.016
1.011
1.008
1.006
1.004
1.003
1.002

0
0.0090
0.0540
0.156
0.314
0.500
0.679
0.823
0.922
0.978
1.001
1.006
1.001
0.996
0.992
0.992
0.994
0.997

0.0200
0.0801
0.210
0.404
0.617
0.799
0.926
0.996
1.026
1.032
1.028
1.021
1.014
1.009
1.006
1.005
1.004
1.003

TABLE IV. Correlation functions g„~(r) and g~s(r) at
metallic densities determined by the two-component con-
volution approximation.
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FIG. 6. Correlation functions g«andg~a at x, = 5.65.
The dashed CUxve ls get~ ~

y = g~»/e~ as above) at the values y' =0.5, 1,
3, 5, 7, 10, and 20. The conventional y, is
related to y by r, = (—n')(~ n') ~ y'= 1.130y

The correlation energies detex"mined by mini-
mizing the energy functional c[u„„,u~] at metallic
densities are given in Table III. These energies
are seen to differ negligibly from the corresponding
energies in Table I. The correlation functions

g, (r) and g~(r) at the CA minima are given in
Table IV. In accordance with the Pauli principle,
g„(0)=0 at all densities because u~ (r)-+~ as
r-0. As the density decreases g~(0) decreases.
In the presence of the Coulomb interaction the
correlation hole between parallel spins is slightly
wider than that of g'„(r) and the antiparallel spina
are rather strongly correlated. The correlation
functions at r, =5.65 are illustrated in Fig. 6, and
the density variation of g~(y) is shown in Fig. V.

VI. CONCLUSIONS

We have applied the variational principle to
the electron-gas ground state in the region of
intermediate densities. To compute the expecta-
tion value of the Hamiltonian for the trial functions
in Eqs. (1.3) and (1.4) we introduced the following
appr oximati ons:

(i) The three-particle correlation functions
appearing in the mean kinetic-energy formulas
ax e expressed as functionals of the pair correla-
tion functions by means of the Kirkwood super-
position and the convolution approximations. Thus,
two approximate mean-energy functionals are
obtained which may easily be calculated for either
trial function, given u or the u„and the eorre-

I I

0 I 2 3 4

FIG. 7. Correlation functions g~a at metallic densities.

sponding correlation functions.
(ii) The ideal-gas configurational probability

density is approximated as a Boltzmann factor
with an ideal-gas effective pair potential. This
allows the correlation functions of the interacting
system to be calculated in the same way as for
a classical Quid with pairwise interactions.

(iii) The pair correlation functions are computed
using the hypernetted-chain integral equation.

We find that the CA and KSA correlation enex gies
differ by not more than 4 in the region 0.5 cy,
6 20, the CA energies being lower everywhere.
It is obvious that in comparing approximations to
the mean-energy functional, a lower variational
energy is not necessarily a better upper bound
to the true energy since it may not be an upper
bound at all. However, the Dunn-Broyles func-
tional, which involves only approximations (ii)
and (iii), intersects the CA energy functional
closer to its minimum than to the minimum of
the KSA energy functional (at least in the metallic
region where the DB functional was computed).
We conclude that the CA shows a slightly greater
degree of consistency with the other approxima-
tions than does the KSA. This xesult leads us
to prefer the CA correlation energies. The 4
relative difference between the CA and the KSA
correlation energies provides an estimate of
the error introduced by approximating g'~.

We must now estimate the accuracy of our
other approximations. In the first place, having
introduced approximation (ii), we must consider
how accurately g(~) is given by the HNC equation
for the effective pair potential u, (r) =a(r) +uz(r);
in the second place, we must consider the very
introduction of approximation (ii), without which
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the HNC equation could not have been used at all.
At densities below the metallic region u(r)»ul(r),
so that the Coulomb interaction dominates the
effect of Fermi statistics. Thus one may expect
that, at low densities, application of approxima-
tion (ii} introduces negligible error, the only
remaining source of error being the HNC approxi-
mation. However, the remarkable accuracy of
the HNC approximation for the classical electron
gas and our assumption relating the quantum
to a classical system by Eq. (3.25) suggest that
at intermediate densities the HNC approximation
itself introduces only a small error into the
correlation energy. We assume that the latter
error is comparable to that introduced by approxi-
mating g'. For r, s 1 and sufficiently small
separations ur(r} &u(r), so that error introduced
by approximation (ii) should become apparent
at high densities. But the good agreement with
the high-density expansion (Fig. 3) implies that
approximation (ii) also introduces little error.

The variational calculations of Gaskell, "
Becker et al. ,"and Springer, "which were dis-
cussed in Sec. V, led us to the conclusion that
more flexible parametrizations would lower our
correlation energies by about 3% at r, =0.5 and

by less than 1% for r, &1. An attempt to improve
upon the present calculation by using more elab-
orate parametrizations would therefore appear
to be illusory without further investigation of
the basic approximations (i)-(iii).

In summary, then, we estimate the error in
our CA correlation energies at metallic densities
to be about 10%. But the close agreement with
both the high- and low-density expansions suggests
that the error may actually be less than this in the
whole intermediate-density range.
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APPENDIX

The correlation functions for a two-component
quantum fluid are defined by Eq. (4.1). The
convolution approximation to g,~ is found in the
same manner as for the one-component case.
First, let us consider g &. Substituting the
expansion for g„s given by Eq. (4.2) into each
of the sequential relations

and

fdi g, ( I, 2, 3) = (fl —1/p )g„,(r„) (Al)

f dS g„q(1,2, 3}=Ag (r„),
it follows that ~ 8 must satisfy

(A2)

and

fdl ~«8(1,2, 3) = fdl-G«(r»)G~&(r, s)

(AS}

f dS Ag „e(1,2, 3) =-fd3G~(r»}G~(r»},

where use is made of

(A4)

(A5)

bg~~~8(I, 2, 3) = p~f d4 G~(r,~)G~(r~~)G„(rs~)

+p fd4G, (r„)G (r„)G~(r„).
(A6}

Now bg~~" (1,2, 3) can be obtained at once from
Eq. (A6) by interchanging indices n and P and

coordinates 1 and 3.
Obviously

c(1,2, 3)=p f d4G (r«)G (r„)G (r„).
(AV)

fd'r G.,(r) = -5.,/p. .
It is clear that bg „8(1,2, 3)=~ 8(2, 1,3). A

particular solution to Eqs. (A3) and (A4), which

is symmetrical in coordinates 1 and 2, is the
convolution form
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Observation of Amplitude Oscillation of Second-Harmonic Ion Acoustic Waves
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For the propagation of an ion acoustic wave, we observed an amplitude oscillation of the second-harmonic
ion acoustic wave, which is qualitatively explained by nonlinear wave-wave-coupled theory with a fluid
model.

I. INTRODUCTION

Since Malmberg and Wharton' observed an am-
plitude oscillation of an electron plasma vrave,
many authors have investigated the amplitude
oscillations of the electron wave and an ion wave.

Although the experimenta1 result obtained by
Malmberg and %barton has been explained by
nonlinear wave-particle interactions, the possi-
bility of linear mixing' between a pseudowave and
an ion acoustic wave has been pointed out as re-
gards the amplitude oscillation of the ion wave.


