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A self-consistent, microscopic theory of scattering of light by molecular aggregates is evolved from the
standpoints of random-phase-modulation theory and stochastic theory. Contemporary theory is founded
on the premise that the scattered light spectrum is proportional to a four-dimensional Fourier transform
of the molecular density-correlation function. This premise is justified only in a continuum
representation of density, but it breaks down when the motion of discrete molecules is taken into
account. The Rayleigh spectrum is shown to be a manifestation of translational degrees of freedom of
molecules, much as the Raman spectrum is of internal degrees. Both the central and shifted
components are attributed to propagating waves representing probability densities. Theoretical spectra
are in agreement with experimental data in both the kinetic and hydrodynamic regimes, and the shifted
frequencies are simply related to the rms speed of typical molecules. This theory also provides a
mechanism which could account for deviations of total integrated intensity from that predicted by
incoherent scattering. Such deviations are simply related to the ratio of intensities of the shifted and
central components of the spectrum. Success of this theory, however, is not achieved without complete
departure from conventional approaches of kinetic theory. By necessity, statistical aspects of the
problem are approached through the use of a set of partial differential equations for the probability
densities of continuous, differentiable stochastic processes. Statistical trajectories of molecules are
characterized by a single function h () defined as the logarithmic derivative of the conditional
expectation value of velocity. Solutions based on the asymptotic behavior of h (7) suggest the possibility
for existence of other lines at the high-frequency end of the Rayleigh spectrum.

I. INTRODUCTION

The resurgence of interest in Rayleigh scatter -
ing of light in liquids and gases resulted to a large
measure from invention of the laser and the ana-
lytical work of Komarov and Fisher,! who related
the spectrum of scattered light to the function
S(I—E, w), often called the structure factor, which
is interpreted as a four -dimensional space-time
Fourier transform of the molecular density-cor -
relation function G(p, 7). It appeared possible,
therefore, to infer some information on the dy-
namic structure of molecular aggregates through
analysis of Rayleigh spectra.

In a series of papers, Yip and his co-workers
proposed a kinetic calculation of Rayleigh spectra
by extension of developments in transport theory
and neutron scattering. Almost concurrently,
Mountain”*® developed a number of hydrodynamic
calculations for the density-correlation function.
It appears, however, that no attempt has been
made at evolving a theory of light scattering from
a unified set of principles. Although recent kinetic
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calculations of the spectra by Sugawara, Yip, and
Sirovich®'®—based on approximate solutions of
the Boltzmann transport equation for two specific
interaction potentials —are in agreement with the
observed spectra of Xe and CO, at a large viewing
angle of 169.4°, they are not conclusive evidence
that kinetic theory provides a truly microscopic
theory of light scattering. Instead, these solutions
essentially provide methods of calculation for the
density-correlation function which, no doubt, are
useful. As a theory of light scattering, however,
composed of a self-consistent body of principles
as a framework for interpreting observed phenom -
ena, kinetic theory has neither explained the very
existence of a Brillouin doublet as a manifestation
of microscopic molecular events, nor predicted
an analytical relation between the doublet frequen-
cies and molecular quantities. In contrast, hydro-
dynamic theory interprets the doublet as a conse -
quence of propagating density fluctuations and pre-
dicts the doublet frequencies in terms of acoustic
velocity. To the extent that it attributes the ob-
served phenomena to strictly collective or con-
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tinuum aspects of the molecular aggregate, hydro-
dynamic theory is self-consistent in principle.
But, as is to be expected, it is limited and, there-
fore, it fails to predict correctly the spectra at
large angle, when the frequency shifts associated
with individual molecules become comparable to a
characteristic frequency such as collision rate.

It is commonly accepted that at small viewing
angle the gas behavior is hydrodynamic, but that
it becomes collision dominated, and therefore
kinetic, at large angle. Such dichotomy is not
desirable in any theory, being a limitation of
theory and not a consequence of the inherent na-
ture of a gas.

From the classical viewpoint, scattering of
light by molecular aggregates involves principles
of electrodynamics, mechanics, and probability.
It is desirable, if not essential, that the roles each
of these principles plays in determining the ob-
served effects be segregated as much as possible.
For example, even a single particle in a well-de-
fined deterministic motion theoretically exhibits a
scattered light spectrum which broadens with
increasing viewing angle relative to the particle
trajectory. Dependence of the observed spectra
on angle, then, cannot be attributed unequivocally
to a collective property of the aggregate. More -
over, the findings of Sugawara, Yip, and Siro-
vich,®''° showing virtually no difference in the
results of calculations based on Maxwell and elas-
tic-sphere molecules, suggest that statistical
principles may be of greater significance than
particular forms of mechanical forces. Since
Rayleigh scattering offers the potential for inves-
tigating molecular aggregates, it is all the more
imperative that observed phenomena be logically
connected to their origins. Otherwise, any infer-
ences on dynamic features of the aggregate would
be open to question.

Principles of classical electrodynamics and
stochastic theory can provide a firm basis if the
probelm of scattering is so formulated that the
underlying random processes are properly inden-
tified and sufficient detail is included in the statis-
tical description of these processes. As a rule,
microscopic formulations of any problem are more
realistic and contain greater detail than their
macroscopic counterparts, and, when properly
stated, they must tend to the latter as a limit.
There being no question on the limitations of
hydrodynamic theory, the puzzlement is with the
failure of kinetic theory in not explaining the Bril-
louin doublet. In principle, as much detail can be
included in the calculation of the density-correla-
tion function as compatible with the kinetic model
adopted, but the point of departure for both kinetic
and hydrodynamic analyses of the aggregate has

generally been the result given by Komarov and
Fisher,! or its equivalent, relating the scattered
field to the density-correlation function of the ag-
gregate. The weakness lies in this analytical con-
nection of scattered field to density, the latter
being a space-time stochastic process pertaining
only to the number of ary group of molecules that
happen to be in a volume element at a given point.
Whatever analytical form the density takes, it
remains a collective property of the aggregate but
not of an individual molecule. A microscopic
theory of scattering which is compatible with
microscopic analysis of the aggregate is more ap-
propriately founded on a viewpoint which consid -
ers the positions of individual molecules as ex-
plicit stochastic processes since they manifest
themselves as random phases in the scattered
field.

However, in this viewpoint, the sources of the
radiation field are in motion, thus necessitating
a formulation based on the electrodynamics of
moving media. As such, the spatial Fourier-
transform relationship between the scattered
field and the density-correlation function is no
longer tenable mathematically. This transform
relationship is neither peculiar to Rayleigh scat-
tering nor is it a consequence of the statistical
nature of sources. It is a property, inherent in
the Green function of the Helmholtz equation,
which materializes if, and only if, the spatial co-
ordinates of the source of radiation are indepen-
dent of time. Thus, the weakness in contemporary
theory is not so much in the kinetic calculations
of the density-correlation function as in the im-
proper formulation of the radiation field. There
is, however, a fundamental inconsistency when
the density of the scattering medium is treated
from a microscopic standpoint and the radiation
aspect is implicitly founded on a continuum des-
cription of the medium.

The work in this paper represents an attempt at
evolving a self-consistent, explicitly microscipic
theory of light scattering from a unified set of
principles. Although it does not include effects
of such refinements as molecular anisotropy and
finite boundaries, it leads to remarkable quantita -
tive agreement with experiment, in both the
hydrodynamic and kinetic regimes, notably pre-
dicting correct values for the Brillouin frequencies
in terms of molecular quantities. This success of
theory, however, is not achieved without complete
departure from conventional approaches of kinetic
theory and statistical mechanics. The principal
theme consists in formulation of the scattered
field as a randomly phase-modulated field whose
statistical properties are derived from the class-
ical equations of motion of typical single molecules
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and pairs of molecules subject to general princi-
ples of stochastic theory.

The fact that random motion of the molecule
affects the phase of oscillations of its dipole
moment is far from being a new idea, dating to
the pioneering work of Rayleigh.!! Recently,
Clark'? also considered a formulation using ran-
dom phases as a starting point. What the present
work demonstrates, in addition to a new statistical
approach, is a rigorous relationship (within con-
straints of the radiation zone and nonrelativistic
approximations) between the scattered field and
the random molecular motion. In this way, a

certain parallelism to the Raman effect is achieved.

It is recalled that the Raman spectrum is a man-
ifestation of internal and rotational degrees of
freedom of the molecule which affect its polar-
izability, whose temporal variation is viewed
classically as amplitude modulation of the scatt-
ered field. The Rayleigh spectrum, as will be-
come evident, arises principally from transla-
tional degrees of freedom of the molecule as a
unit, which appear as phase modulation of the
scattered field. Phase modulation naturally
accounts for the broadening of spectrum with in-
creasing viewing angle.

The entire problem of light scattering is treated
in classical terms. Classical analysis of the mo-
lecular statistics is necessary because the optical
radiation fields, both incident and scattered, are
formulated from the standpoint of classical elec-
trodynamics. The formalism of the latter requires
explicit characterization of the point sources of
the field as functions ﬁ( t). In this context, it is
important to distinguish the particle, as such, and
the space in which the particle is described. We
view the physical concept of the existence of a
particle to be equivalent to the mathematical
existence of a class of functions {ﬁ( t)} which map
the domain set {¢} to the range set {T}, so that if
the element ¢, is mapped to ¥, = R(¢,), under a
particular mapping, one speaks of the particle
being at T, at time #,. Mechanical laws are then
merely the rules which restrict the mappings to

specific classes which we call possible trajectories.

However, existence of a mapping does not imply
that the position T can be determined with accuracy,
owing to one’s imperfect knowledge of all the fac-
tors, including the act of measurement_,. which
might influence the trajectory. Hence R(?) must
be considered as a stochastic process such that
the position is probabilistic, insofar as measure-
ment is concerned, allowing specification only to
the extent that R(¢) lies in a finite interval (¥, ¥
+ dT] with probability p(T)dT. In this viewpoint,
then, every particle has associated with it a
mathematical mapping ﬁ( t), governed by mech-

anical laws and whose range set is {T}, and a pro-
bablity measure density field p(T), defined on the
range set and governed by the axioms of probabil -
ity theory.

Modern quantum theory, however, places a
lower bound on the intervals within which position
and momentum may be specified, through the
Heisenberg uncertainty principle, for typical Car-
tesian components,

(8P, ~(aX) >0

It is well, therefore, to estimate whether or not
classical treatment of the translational degrees of
freedom of a molecule is valid. To this end, we
consider the square root of the variance of momen-
tum of a single particle, resulting from the Gaus-
sian probability density, as the uncertainty (APy),,
(see Corollary 2.3 below). We find the correspond-
ing uncertainity in position to be

(AX),, =1 /2(mkpT)V?,

where m is the mass of the molecule, %z is the
Boltzmann constant, and T is the Kelvin temper-
ature. In terms of the gram molecular weight
M, the uncertainty at T = 300 °K becomes

(AX),, >2.02X10™M V2 c¢m.

Consequently, even for the hydrogen molecule,

M =2, the lower bound on the uncertainty in posi-
tion is at least an order of magnitude smaller than
molecular diameters, which are typically of the
order of 10" cm. This bound is even smaller for
heavier molecules. Thus, a molecule is a large
object, in Dirac’s sense, amenable to classical
treatment insofar as translational degrees of free-
dom are concerned. Quantum effects are not ex-
pected to be significant, and representation of
molecular motion by stochastic trajectories should
lead to a reasonable description of observed phe-
nonmena. A similar calculation of the energy
variance shows the lower bound on the time scale
to be of order 10-!3 sec as compared with typical
mean molecular collision times of 10-1° sec.
Hence, throughout this paper, mathematical
continuity of trajectories and the limit A¢— 0 are
understood as idealizations of the lower bounds
imposed by quantum theory.

Since the theory departs substantially from pre-
vious approaches, exposition of viewpoint and
analysis is detailed. At this point, however, it
seems appropriate to summarize the main body of
experimental evidence, and to review briefly the
evolution of contemporary theory and interpreta-
tions. This review is then followed by sections on
scattering theory, statistical theory, and compar-
ison to experiment, in that order.
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II. REVIEW

Briefly and qualitatively, the salient experimen-
tal observations of Greytak, Benedek,!®'!* and
Clark'? are as follows. When a beam of mono-
chromatic light, having frequency w, and wave
vector Eo, is scattered by a neutral gas, the spec-
trum of scattered light manifests a finite width
centered about w,. When the gas pressure and
temperature and angle of observation relative to
Eo are appropriately selected, a distinct fine struc-
ture appears in the spectrum consisting of three
lines: the Rayleigh line with undisplaced frequen-
cy w,, and the symmetrically displaced Brillouin
doublet at frequencies w,+ wp and w, - wp, the
frequency shifts being of order 10° MHz. The
a.ngle of observation determmes the wave vector
K through the relation K= k0 ks, where ks is
the scattered field wave vector in the direction of
observation. If ¥ is the angle between K, and K,
then to a good approximation K = 2k, sin(3y). Ac-
cording to current theory, the Brillouin doublet
appears with a fair resolution when the ratio of
27/K to the molecular mean free path is much
greater than unity, i.e., under small angles for
a given pressure. This ratio, y, is also consid-
ered as the parameter which determines the char-
acter of the gas as kinetic or hydrodynamic.?*°

More significantly, as the angle increases from
near-forward to near -backward directions, the
Brillouin doublet apparently loses resolution, and
the entire spectrum broadens by as much as ten-
to-one relative to the breadth at small angles.

Dependence of the total integrated intensity on
viewing angle has thus far remained an open ques-
tion. In xenon and argon, George et al.'® observed
marked departures from the angular dependence
characteristic of dipole radiation of the Rayleigh
theory; it is not clear how much of this deviation
was due to their neglect of the cosecant correction
owing to the changing effective volume. Watson
and Clark,'® on the other hand, report no angular
deviations in nitrogen. Calculations by Thiemer?!’
and Fieock!® have led to the conclusion that the
finite sizes of detector and scattering region can-
not account for these angular deviations. Several
authors have also observed a discrepancy in dif-
ferential scattering cross section, the observed
value being almost twice as large as that ex-
pected.’®*!® Implications of the above observations
are discussed throughout the sequel; our attention
is now turned to a brief review of theory.

In classical theory, Rayleigh scattering may be
formulated from two viewpoints: the macroscopic
or continuum viewpoint, and the microscopic or
kinetic viewpoint. Validity of the fomer depends
on how the wavelength and frequency of the incident

oo

wave compare with characteristic distances and
times of the molecular aggregate, such as mean
free path and time, and on the degree of detail to
be included in the theory. In the macroscopic
viewpoint, due to Smoluchowski®® and Einstein,?!
light is scattered by local spatial inhomogeneity
of dielectric constant or density, the mean values
contributing to forward scattering only. When the
inhomogeneity varies in time also, the effect is
manifested in the spectral composition of the scat-
tered light. Brillouin® resolved the time -depen-
dent fluctuations into a set of random acoustic
waves, which diffract the incident light and cause
a Doppler shift in its frequency. In a more recent
treatment, Pecora? starts with the fluctuation as
a perturbation on the mean value, thereby showing
that the first-order scattered field is caused by a
continuous distribution of dipoles whose macro-
scopic moment density is proportional to the ran-
dom fluctuation.

In the microscopic viewpoint of Rayleigh,!! which
historically predates the macroscopic one, each
molecular dipole is an independent scatterer, ne-
glecting correlations in the random molecular mo-
tion, so that the total intensity is proportional to
the number of molecules, and its spectrum is a
replica of the incident light, except for the multi-
plicative factor wi. The argument for independent
scattering is precisely that the phases of oscilla-
tion of the molecules are completely uncorrelated,
owing to their random motion. Because the phase
correlation is neglected, no mechanism is provided
for the spectral composition of scattered light.
Komarov and Fisher® reverted to the microscopic
viewpoint, but considered some details of molec-
ular motion, concluding that the scattered intensity
is proportional to the space -time Fourier trans-
form of the molecular density-correlation function.
Thus, analytical efforst shifted to calculation of
this correlation function by both kinetic and hydro-
dynamic methods.

Even as the density-correlation function is cal-
culated by a kinetic-microscopic method, however,
contemporary interpretation of what causes the
phenomenon of light scattering is basically the
macroscopic viewpoint, the doublet arising from
scattering by propagating density fluctuations, and
the central component from nonpropagating fluc-
tuation. In addition to the duality in viewpoint,
this division of fluctuations into propagating and
nonpropagating components seems to be somewhat
artificial because any dynamic field process (in-
cluding a diffusion process) is resolvable into
propagating waves via the Fourier integral in four
dimensions, i.e., the space-time analog of the
Wiener -Khinchin theorem.?* Strictly speaking, the
only component of the spectrum which is nonpro-
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pagating is that at zero frequency.

Mathematically, the essential difference between
macroscopic and microscopic formalisms of ra-
diation from a source distribution lies in the role
of spatial coordinates of the source. In the
macroscopic case, the source of the radiation
field is an actual or an equivalent current density
field J(T, t). Even when J(T, t) is a stochastic
process, the spatial coordinates are additional
indices on equal rank with time and independent
of it. In molecular scattering, the current density
is simply related to the number density (T, ¢),
and it is this continuum stochastic process that
characterizes the scattered field. In the micro-
scopic case, the coordinates of the moving point
sources are functions of time. In molecular scat-
tering one deals with N stochastic processes R(t),
representing molecular coordinates, and it is
they that determine the character of the scattered
field. A consistent treatment of the radiation
field must deal with the motion of the sources
explicitly.

Contemporary theory of light scattering is
founded on the premise that the scattered light
intensity is the space-time Fourier transform of
the molecular density-correlation function. Inas-
much as this relationship is valid only when the
source of radiation is a continuum, which is at
rest relative to the observer, and since it fails
when the source is a collection of moving points,
contemporary theory is implicitly founded on the
macroscopic viewpoint of scattering, and it must
be regarded as such. What kinetic theory has
introduced is a computational refinement into the
continuum theory but not a fundamental change of
viewpoint.

It is reasonable to conclude that, to date, a
self-consistent, dynamic, microscopic theory of
light scattering has not been proposed. In the
following exposition, we attempt to lay the frame-
work in which such a theory can evolve.

III. SCATTERING THEORY

A. Preliminary Considerations

There is no basis in purely statistical theory
which can attribute the broadening of spectrum
with increasing angle to statistical properties of
the aggregate which is generally assumed to be
isotropic. This phenomenon, then, must be occur-
ing on a molecular level; that is, it cannot be a
manifestation of some collective property of the
aggregate, such as density or temperature, if the
viewpoint is to be consistently microscopic. Since
the frequency spectrum is a property of oscilla-
tions, and these are characterized by a phase and
an amplitude, the broadening effect must be attri-

buted to either the amplitudes or phases of oscil -
lations of individual molecular dipoles. Experi-
ence with phase -modulation theory indicates that
the broadening of the spectrum must be related

to the molecular phases. For it is well known
that the spectrum of any phase- or frequency-
modulated oscillating function depends strongly
on a parameter called index of modulation, and
the breadth of the spectrum for large index can be
as much as 100 times that for small index. Phys-
ically, the effective phase of the incident field that
the molecule experiences is determined by its
position in the wave field, and in turn, the phase
of the scattered field depends on the position of
the molecule relative to the observer. Thus, if
R,(t) is the position vector of a nonrelativistic
molecule, k,and k are the wave vectors of the
incident and scattered fields, respectively, the
effective phase apparent to the observer is

(& —IT:O) °ﬁ,(t), which is a random phase if the mo-
lecular m_gtion is random. Accordingly, the pa-
rameter K=k —Eo plays exactly the role of index
of modulation.

The mechanism of phase modulation is actually,
but tacitly, included in any consistent, dynamic,
microscopic formulation of scattering; the initial
expressions of Komarov and Fisher and their
equivalents contain this. However, the mechanism
is obscured and overlooked in the process of
averaging over all the molecules from the outset.
This brings us to the fundamental thesis of this
paper.

The averaging over all molecules from the out-
set is an unnecessary complication if one admits
the fundamental principle underlying all of statis-
tical mechanics?®: that in the course of time, the
behavior of a single molecule and a pair of mol-
ecules is statistically indistinguishable from that
of any other single or pair of molecules selected
at random.

Equivalentl_y, the representative ensemble of the
coordinates Ry(¢) of the ith molecule, taken as a
stochastic process, is the same as the represen-
tative ensemble for ﬁ,(t) of the jth molecule in the
sense that both ensembles are composed of the
same set of representative functions with the same
probability measure; for N molecules there are
N statistically identical ensembles. It should be
possible, therefore, to gain insight into the mech-
anism of scattering by first focusing attention on
a typical molecule and pair of molecules taking
due cognizance of their trajectories in a stochastic
manner.

B. Radiation from Moving Dipoles

We adopt a conventional model of representing
the gas by a distribution of dipoles, each molecule
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having an induced dipole moment proportional to
the incident field at the position of the molecule.
The principal electrodynamic distinction between
dense and dilute systems rests in the difference
between the local field at the molecule and the
incident field. For simplicity, this paper is con-
fined to dilute systems in which equating the two
fields is a valid procedure, i.e., multiple scatter-
ing is negligible. It is also restricted to electric-
ally neutral molecules whose motion is nonrela-
tivistic. The position vector of a ty_gical molecule
is taken to be a stochastic process Ry(¢, o) defined
on the Cartesian product set {¢, ¢}, ¢ being the
time and o a subset of the sample space Z on which
a suitable probability measure P(o) is defined.

We assume that all processes are stationary at
least to second order, and that the ensemble is

so constructed that time and ensemble averages
are equivalent.

To determine the radiation field on the ¢th mo-
lecule, one selects a representative function
R,(t, 0,) for a given 0,, and computes the field
conventionally using the Hertz potential Z,, it
being understood that the Maxwell field equations
map each element of the ensemble ﬁ,(t, o) to an
element 2,(§, t, o) in the ensemble of the radiation
field at the position R. In what follows, therefore,
we omit writing o explicitly, except when emphasis
calls for it.

Our purpose now is reduction of the scattered
field to a phase-modulated function. Let Eo(ﬁ, t)
be the electric vector of the incident field and a
the polarizability of the modecule. Then the mo-
lecular dipole moment is

PR, t)= aEy(R, t)AR -R,(2)), (1)

and its radiation field at points R#R, is determined
from the Hertz potential Z;(R, ¢) satisfying the
standard field equations, in RMKS,

E,R, t)= VXVXZ,R, t), (2)

- - 9 P

Hl(R’ t)= €0—8—t VXZI(Rg t): (3)
e 1 0% = — 1 - =
VZ;(R,t)—C—zgt—zzi(R,th-E—oPa(R,t)- (4)

The permittivity here is taken to be that of vacuum
since the effect of polarization is already accounted
for in the induction zone by the very field being
computed. Inasmuch as Eq. (1) signifies a moving
source, the entire problem must be treated in the
time domain. The solution to Eq. (4) is obtained
directly via its Green’s function, viz.,

8
- - 1 g - -P. ﬁ/ r
L@, 0= g [ar [ dR'Tk-—ﬁT(_ )
xb(t'-t+%|ﬁ—§'|>. (5)

After substituting Eq. (1) and carrying out the
integration over R’ subject to the usual far-zone
condition, R>>R;, we reduce Eq. (5) to

- - o n_. —
L@, )= 2 [ E@e), 1)
o

x‘é(t’ —%R-R,(t') —(t—%R)) at', (6)

where R = ﬁ/R is the radial unit vector from the
origin to the point of observation.

Although one can evaluate the integral (6) by
again using the formal property of the & function
(distribution), it is necessary for our purpose
first to make a nonlinear transformation of time:

= -1RR,  ax=arli-R B,
where B, = V,/c, and V, is the velocity of the mol -
ecule. We now proceed to make an iterative
Taylor expantion of ﬁ,(t’) about #'= £ to obtain
for the first iteration

Ri(t) = Ry(£) =Bi(E)R *Ry (&) + + =+

A few repetitions show that all terms decrease in
ascending powers of 3;, so that ﬁ,(t')= ﬁ,(&) in the
nonrelativistic limit 8;<<1. The correction intro-
duced by ﬁi is significant only in the argument of
the 6 function; it is negligible in the differential
dt’ consistently with the radiation-zone approxi-
mation. With this correction, then, Eq. (6)
becomes

Z(®, )= Z;,"G‘—OR-[:'E’O(E,(@, E+2R -ﬁ.(e))

ol

This integral is simply a statement that the retar-
dation in time depends on the position of the mol -
ecule, which is itself a function of this retarded
time. It takes an added meaning, however, when
the incident field is a uniform, plane, monochro-
matic wave of the form

EyR, t)=8E,exp(ik, R —iw,t), (8)

€ being the fixed polarization vector of the wave.
The additional retardation arising from the par-
ticle position then appears as a time -dependent
phase angle as may be seen by substituting (8) into
(7) to get
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ZR, 1)= g SEG ( -5:-), ©)
where
®,(t) = expl—iw,t ~i K-R,(2)), (10)

K=Es -Eo; Es=i?k0'

Here, E, is the wave vector of the scattered field.
From here on, the incident field is assumed to be
plane and monochromatic. The exponential repre-
sentation is understood to be an analytic signal, in
the sense of Gabor, whose real and imaginary
parts are Hilbert-transform pairs.?® This choice
simplifies stochastic aspects of the problem though
the actual field is the real part of @;.

The electromagnetic field is now obtained by
substituting Eq. (9) into (2) and (3). Carrying out
the details and observing that w,>>KV; and
| dV,/dt| << w,c, we obtain, for the radiation field,

= = akz ( _£>

E‘(R, t) GOR E RXRXe@ ° ’ (11)
- > a C A -> R

H‘(R, t)= Z;R?—EORXBQ(< -;). (12)

We have verified that, within the constraints of
the radiation zone and nonrelativistic approxima -
tion, a moving dipole excited with a monochromat-
ic wave is equivalent to a stationary dipole fixed
at the origin but excited with the phase-modulated
function ®,(¢). Clearly, ®,(t) reduces to e ¥,
with a fixed phase, when the dipole is static, as to
be expected. The problem has been cast in a very
lucid form in which translational degrees of free-
dom of the molecule appear as the information
encoded into the phase of scattered field much as
the internal degrees of freedom are encoded as
amplitude modulation through a time -dependent
polarizability in Raman scattering.

In the present microscopic viewpoint, the para-
meter K plays the role of index of modulation
whose value to a large measure determines the
spectrum of the modulated wave. It also deter-
mines the instantaneous frequency of ®;(¢) which,
by definition, is the temporal derivative of the
total phase, i.e.,

w(t)= w,+ K- V,(2). (13)

This is exactly the frequency change one would
obtain for small velocity if the phenomenon were
viewed as a relativistic Doppler effect. It is pre-
ferable, however, for logical consistenty, to view
it as a consequence of phase modulation. The rel-
ativistic Doppler effect is a consequence of in-
variance of the four-vector (k iw/c) under Lorentz
transformation of the special relativity of uniform
motion. Since a molecule in random motion is

necessarily accelerated, strictly speaking, spe-
cial relativity is not tenable. One might argue
that between collisions the molecule is in uniform
motion; but this argument amounts to a restric-
tive presupposition on molecular motion whose
very nature is to be deduced from observations

on the scattered field. Equation (9) shows that it
is not necessary to invoke the Lorentz transforma-
tion. Inasmuch as their validity is contingent only
upon the conditions V,/c<<1 and |dV,/dt | << w,c—
conditions amply statisfied in molecular motion —
Egs. (9), (11), and (12) include accelerated, ran-
domly moving molecules.

Before passing to the autocorrelation function of
the field, we pause to examine the basis of the
Fourier space-time transform relation between
the scattered field and the density-correlation func-
tion. We observe that Fourier transformation,
over time, of the general integral solution in Eq.
(5) converts it to

P(sz)

'(R w) = 41re IR [

xp(ik|R -R'|)dR’,

(14)

where k= w/c and the prime on Z and P in this
case only denotes Fourier transform over time.
Obviously, this integral is also the general solu-
tion of the Helmholtz equation obtained by Fourier
transformation of Eq. (4). In particular, when
R>R’ in the radiation zone, Eq. (14) reduces to

TR 0)= e [ PIR, 0 TR AR, (15)

47nRe,
where k= Rk. This integral is properly interpre -
ted as_ the Fourier space transform of the source
field P,(R’ t). Note, however, that the integration
is with respect to spatial coordinates of the source
field, which to begin with are independent of time,
and that the relationship is valid only for the
transforms over time. It is on the basis of this
integral only that one can justify the transform
relationship between the scattered field and the
dens1ty -correlation function. In contrast, when
P(R t) is given by a summation of terms like

that in Eq. (1), the general solution for each term
is given as

o oo (R(t')t
Zy(R, )= 47e, f R —ﬁ,(t')‘
x6<t'—t+%|§—ﬁ,(t')l)dt'. (16)

Under the radiation-zone approximation, R, (¢’)
<<R, this integral reduces to (6). There exists
no valid mathematical manipulation by which these
integrals, (6) or (16), can be reduced to a space
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transform of the discrete source field for the

sole reason that the integrands are implicit func-
tions of local time. This is a matter of impossi -
bility in principle and not one of inability to devise
a suitable approximation leading to the desired
result. The point is extremely important because
approximations through a vague succession of
Fourier transformations and inversions, coupled
with averaging over time and ensemble, ultimately
result in a tacit but serious confusion of correla-
tion functions with probability density functions.
Unless the autocorrelation function of the radia-
tion field, which is random, is defined and under-
stood in the strict sense of optical coherence
theory and stochastic theory, the very meaning

of a spectrum via the Wiener -Khinchin theorem
becomes questionable.?”

C. Autocorrelation of Scattered Field
The problem of finding the autocorrelation func-
tion of the scattered field has been reduced to that
of finding correlation functions of phase -modulated
signals whose theory is well developed. Here we

include only those relations needed for our purpose.

Throughout the remainder of this paper, we adopt
the following notations and conventions.

Where necessary to distinguish between time and
ensemble averages, the former is designated by
brackets (**+) and the latter by E{***}; thus

T
(f(t, 00 = tim 5 [ 7t 00t amn
E{f(t,0)} =, £(t, 0)dP(0). (18)

Careful distinctions are drawn among a random
process Ry(t, 0), its domain set {¢, o}, and its
range set {¥}. A probability measure is properly
defined only on the sample set Z or the range set
{F}. Accordingly, the symbolism

pF)T = P{R,(H(F, T + dT ]}

denotes the probability of the semiclosed interval
(T, T + dT] of the range set defined as the mea-
sure of the subset of all ¢ such that R, (¢,0)
&(T,T + dT). The probability of a vector quantity is
understood to mean the joint probability of its
Cartesian components.

In terms of the probability density on the range
set, the expectation of any deterministic function
of ﬁ,(t) becomes

E{fRq(t,0)} = [.2 f(F)p(¥)dF (19)
and its autocorrelation function,
Clty, t,) = B{ AR(t,, oONFH(Ry(t,, 0N}

= f_:,f_‘:f(;)f*( TPy(F, ty T, t,)dTdT,
(20)

where the asterisk denotes complex conjugate,
dT = dxdydz as usual, and P;; is the joint probabil -
ity density,

Py (-I.‘, ta; -fo:t1)d;d-{'o
= P(R,(t,)(F, T+ dT]; Ry(t,) € (Fo, To + dT,

It is emphasized that all integrals with proba-
bility densities extend over (—«, %) in the range
set by definition of probability. It is not an approx-
imation dictated by physics or a particular geo-
metry. The physics of a situation determine the
particular analytical expressions for the probabil -
ities.

To determine the autocorrelation of a phase -
modulated function we shall need the following
probability densities:

P(T)dT,= P{R,(0)E (T,, Ty + dT,]},
Wy (T, 7| F)dT
= P{R,(1)E (T, T + dT] |R,(0)E (T, T, + dT,l},
j=1,2.

In this notation, the event upon which the proba-
bility is conditioned is to the right of the vertical
bar. The joint probability densities are now de-
fined as

Py(T, 1% = o(FIW (T, 7|To), j=1,2. (21)

All probability densities are invariant under trans-
lation of time in accordance with the assumption

of stationarity. Also, by definition of W,, and P,
we have the useful properties

W11(-1=9 0'-1.‘0) = 6(;‘ ";o) ’ (22)

P (T, T;T0) = Pyy(To -T;T), T=t,—t,. (23)
We now proceed to calculation of the autocorrela-
tion of the scattered field.

Of the several autocorrelation functions that can
be defined for an electromagnetic field,?® the one
most suitable to light scattering is defined as

T®, 7= (E®, t + )xXH*®, t)R . (24)

From here on, time averages are replaced by
equivalent ensemble averages in accordance with
the hypothesis of ergodicity. Thus

'R, 7)= E{ER, 7)< H*R, 0)- &} . (25)

This choice of definition is motivated by the fact
that the time-averaged total intensity is simply
I,(R)=T(R,0). (26)

Moreover, by the V&_’.iener -Khinchin theorem, the
spectral function S(R, w) and I'(R, 7) form the
Fourier-transform pair
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SR,w)= [CTR,7)e™ dr, 27
r'®,7)= 51-1;/‘ SR, w)e™T dw. (28)
It is seen from Eqgs. (26) and (28) that S(ﬁ, w) is

indeed the observable quantity in any spectroscopic
experiment since

Lo @)= 5+ [ S® wdo. 29)

The total electromagnetic field is the sum of the
fields from N molecules,

B® 1)-5E® 1), (30)
=1

5, 1)=3 A 1), ST
i=1

each of the partial fields being of the forms (11)
and (12). When one substitutes Eqs. (30) and (31)
into Eq. (25) and executes the algebraic operations
indicated, there results an equation of the form

I'R,7)=AR) e OT(‘%, ) )

N N -
+2, 2K, 7)), : (32)
i1=1 4
where
Ty, (K, 1) = E{exp( —i K+ R,(7) +i K-R,(0))} (33)

is the cross-correlation function of the phase -
modulated signals from a typical pair of molecules
¢ and j.

It is at this point that we invoke the principle of

statistical identity of single and pairs of molecules.

Accordingly,
ru (K’ T) =r11(ﬁ, T), all ¢
Tyy(K, )= T K, 7), alli#j

the subscripts refering to molecules 1 and 2 of a
typical pair selected at random. Thus the auto-
correlation of the field of N statistically identical
molecules becomes

(R, 7) = Ix(R, 6) e™*“o"

X{I‘u(ﬁ, T)+ 3(N - nl 1"12(1-2, T)+ rzl(ﬁy T)]} ’

(34)
where
N 27,4
In(R, 6)= (et ceoE3sin'd (35)

is the Rayleigh intensity one would obtain if the
molecular positions, and therefore the phases,
were uncorrelated at £=0and £ =T7; 6 is the angle
subtended between the incident-field polarization
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¢ and the direction of observation, R.

The spectrum is now obtained from the defini-
tion (27). However, since TI',, is a correlation
function, it has the universal property I‘n(ﬁ, T)
= I‘;“z(ﬁ, —7). Consequently, the spectrum sim-
plifies to

S(R, w)=Ig(R, 6)[S,,(K, ) + (N - 1)ReS ,(K, @)],
(36)

where = w - w, is the translated frequency and

S,, and S,, are, respectively, the Fourier trans-
forms of I'};, and I'},; S,, is always positive, real
function of Q.

Returning to the definition of the autocorrelation
function in Eq. (20) and the form of I';; in (33) we
observe that, because of the peculiar form of a
phase -modulated function, its autocorrelation
function is the Fourier integrals

Iy, 7= [[exp(-i KT +iK-F)Py(F,7; T,)dFdT,,

ji=1,2. (37

In probability theory, the Fourier transform of
a probability density function is its characteristic,
or moment generating, function. It is well known
in modulation theory?® that the autocorrelation
function of a stationary phase-modulated signal is
the characteristic function of the joint probability
density of the random phase. Hence, we arrive at
the general theorem for scattering of light:
Theorem 1. The autocorrelation of the field
scattered by N statistically identical molecules is
proportional to the sum of the characteristic func-
tions of the joint probability densities of positions
of single and paired particles,

r(ﬁ, T) = IR(R', 6) e—‘wof{pn(i{) T; _K)-F%(N - 1)
x[plz(ﬁy T "K)
+pp&, -7 -K). (38)

Further reduction of this relation is not possible
without additional restrictions. For the case of a
statistically homogeneous process, however, the
conditional probability densities depend only on
differences T —T, in the range set. Using the fact
that

[ p(F)dT,= 1,
and the relation (21), one obtains for the homo-
geneous case
T,&,7)= [Wy(p,T)e X Pdp, B=F-F,. (39
Equation (38) now reduces to

T(R, 7) = Ig(R, 6) e ~*“0" [w,,(K, T) + (N = 1) Rew ,,(K, 7)].
(40)
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This equation provides the starting point for anal-
ysis of the statistics of a gas. When the system is
isotropic as well, then W, and W, depend on ab-
solute differences |5| and their characteristic
functions w,; depend on |K| only.

D. Scattering by Gas
The second term in Eq. (40) can be further ar-

ranged in a form which is more suitable for anal-
ysis and interpretation by introducing two additional
stochastic processes defined as
R.(¢, 0)= 3R, (2, 0) + 3R, (2, 0), (41)
Ro(t, 0)= Ry(t, 0) -R,(t, 0), (42)
together with the probability density functions
W (T,7|T)dT
= P{R,(T)E (F, T + dT]|R(0)E(F,, Fo + d T},
Wo(T,7|T,)dT
= P{R(1)E (F, T + dF]|R(0)E(Fo, Fo + dTol},
G(T,)dT,= P{Ry(t)e(Fo, To+ dT,l}

The processes ﬁc and ﬁo, for a system of particles
having identical mass, are recognized as the co-
ordinates of the center of mass of a pair and the
reduced coordinates about the center of mass,
respectively. In terms of these functions, the
second term in Eq. (34) corresponding to the sec-
ond term of Eq. (40) takes the form

T',(K, 7) = E{exp( - i K[ R (1) —=R,(0) + 1R(7)
~$R(0)+ RO}
(43)
Now, from the standpoint of a typical pair of par-
ticles, the chaotic force field due to the remaining
(N -2) particles is an external force. By the well-
known theorem of classical mechanics on the in-
dependence of motion of the center of mass and
the reduced motion about the center of mass, the
processes Ro(t) and R -(t) are statistically inde -
pendent. Therefore, the expectation of the product
of any functions of R and R equals the product of
the expectations, i.e.,
I, 7)= &, I, 7), (44)
where
L&, 7)= E{exp(- i K-[Ro(r) -R, ()},  (45)
LK, 1) = E{exp(= 2i K+ [ Ry(1) - Ro(0)])
x exp(- iK*Ro(0)}, (46)
By the same procedure as in the previous section,
we have for a statistically homogeneous system

T (K,7)=w, (K, 1) (47)

8
and
LK, 7)= [exp(~ 4iK-BW (B, 7)
x exp(~iK * 7o) G(F)dpd T,
= wo(3K, T)g(K) . (48)
Equation (43) therefore simplifies to
T',(K, 7)=w,(K, 1w (K, 1)&®) . (49)
In obtaining this relation, we have also proved that
w 5K, 7) = w (K, o (3K, )&(K), (50)

which can be seen by comparing (34) and (40) with
(49). Alternatively, it could be obtained via a
theorem of probability theory, namely, the prob-
ability density of sums of independent random
variables is the convolution of the probability
densities of the summand variables. Hence the
characteristic functions, being Fourier integrals,
factor into a product.

Before proceeding further, we call attention to
the limiting property of W, and W, inherent in
their definition as conditional probability densities,
namely

Wi(T,0[T) = 0(F -%F,), i=0,c (51a)

w,(K,0)=1 (51b)
It follows that

w (K, 0) = gK), (52)

which is to be expected since G(p) is precisely
W .(P, 0) by definition.

The autocorrelation function of the scattered
field in (40) now takes the general form, valid for
a statistically homogeneous system of particles,

(R, 7) = Iz(R, 6) e™*@o"
x (w,,(K, 7) + g'(K) Refw, (K, T 3K, 7)),
(53)
where
g'(K)= W -1)g(K). (54)

Recalling that the total integrated intensity I, is
simply I'(R, 0), we also have from the properties
ofw,,, w, and w,,

I,(R)=I5R, 0)[1+g'K)]. (55)

To obtain the spectrum, let S7, S!, S, and S! be
the Fourier transforms of the real and imaginary
parts of w,_.(K 7)and wo(K 7), respectively. Then
the total spectrum, as defined in (36), becomes

S(R, w) = IR(R, 61 S,,(K, Q)

+ g/ B[S *sH@) - (Sixshy@)]},  (56)
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where the last terms are convolutions
(%)) = [ S,(K, @ -0")S,(3K, @)’ .  (57)

Equations (53), (55), and (56) are the principal
results of this section on scattering theory. No
restrictions have been imposed on the statistics

of the particles other than that of homogeneity,
i.e., the probability densities are functions of the
vector difference p =T -T,, which is weaker than
isotropy. From here on, it is a problem of statis-
tical theory and mechanics to determine the forms
of S;,, S;, and S,, which we attempt in the next
section. However, to consolidate the development
here, we state some results which are essential
to discussion of the spectrum of a gas. It is shown
in the following sections that for a gas wc(ﬁ, 7) and
wyK, 7) are real so that S} and S} vanish, and that
[Eq. (111)]

S(3K, 2) = $6(2 —Q5) + 350 + 25).
Under these circumstances, Eq. (56) reduces to

SR, w) = Ie{ $,,(K, ) + 1'(K)

X[S,(K, @ + @p) + So(K, 2 -25)]},
(58)
where the superscript on S, is deleted since w, is
real. This expression in essence summarizes
the general features of the Rayleigh-Brillouin
spectrum of gases. Under appropriate conditions
determined by I-E, when S,(K, 2) and Sc(ﬁ, Q) are
sufficiently narrow and have their peaks at £ = 0,
the first term in (58) would correspond to the
undisplaced Rayleigh line while the second and
third terms to the symmetrically displaced Bril-
louin doublet.
Although the forms of S, and S, are not deter-
mined at this point, Eq. (58) together with (55) and
the general relations

SR, Q)= [S,/(K,Q)de=1 (59)
and
2[S.(K, @R = [S,(K,Q)%dQ, (60)

verified in Appendix B, contain several broad con-
clusions worth emphasizing, especially in light of
the qualitative observations enumerated in Sec. II:

(1) The undisplayed Rayleigh line is a manifesta-
tion of the statistical trajectory of a typical single
particle, while the Brillouin doublet is a manifes-
tation of dynamic interference between typical
pairs.

(2) The ratio of total integrated intensities of
each of the Brillouin lines to that of the Rayleigh
line is g'(K)/2.

(3) Deviations of the total scattered intensity

I, in magnitude and dependence on angle, from
that predicted by incoherent scattering I, is

determined solely by the functional dependence of
g’ on K.

(4) Existence of a Brillouin doublet in a given
gas and deviations from incoherent Rayleigh scat-
tering are concommitant phenomena.

(5) In view of the integral relation (60), in
general, the natural width of the Rayleigh line is
greater than those of the Brillouin lines at the
same viewing angle.

As pointed out by Komarov and Fisher! and
others,'° the scientific value of Rayleigh-Brillouin
scattering does not lie so much in calculating the
spectrum from known or assumed features of the
gas, as in the inverse process of deducing proper -
ties of the gas from observed spectra. In this
respect, one of the valuable conclusions of the
present microscopic theory is the fact that g'(ﬁ)
is directly measurable from observed spectra at
successive angles. However, in actual measure-
ments the relationship of g’ to intensities is not as
simple as that stated above, but it is corrupted by
response of the measuring instrument as discussed
in Sec. V.

IV. STATISTICAL THEORY
A. General Background

In the preceding development we have maintained
that molecules are statistically identical in that
the trajectories of all single molecules and pairs
of molecules are described by the same probability
densities W,, and W,,. This hypothesis, however,
does not imply that molecules do not interact. On
the contrary, it is our imperfect knowledge of the
chaotic interaction among molecules that necessi-
tates probabilistic analysis in the first place. Each
molecule moves in accordance with the total force
field due to the remaining (N - 1) molecules, and
by statistical identity we mean that, as a stochas-
tic process, the force field experienced by one
molecule is the same as that by any other molecule
in the sense that the representative ensembles are
composed of the same functions with the same
probability measure. Each member function of
the ensemble is understood to be a deterministic
function of { ¢, o}; the randomness arises in the
selection of a particular function corresponding
to a subset o with probability P(c). The classical
equations of motion for a single particle are
viewed as linear operations mapping every mem -
ber function ﬁ,(t, o) of this ensemble to a mem -
ber function (¢, 0) in the ensemble representing
the force field. If each member function ﬁ, is
differentiable and integrable, the differential and
integral operators we will write are understood in
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the ordinary sense.
Our central problem now is as follows: Given
the linear operator equation

£R(t,0)] = F(¢, 0),

we wish to find the probability densities for ﬁ,(t, o).
We approach this problem through solution of re -
cently derived partial differential equations for
probability densities of a general class of stochas-
tic processes. We first state these relations as
background materia_,l_.

Theorvem 2. Let R(t,0)=(X,(t,0),..., X,(t,0))
be a Cartesian vector stochastic process in the
space of continuous differentiable functions, and
let¥=(x,..., x,) be its range set. Then, if the
process is stationary, the conditional probability
density

W(F, 7|F,)dFdT,
= P{R(1)= (F, T + dT]|R(0)E (T, Ty + dT,]}

satisfies the set of equations provided the first m
derivatives are statistically independent of ﬁ(t, o)
at simultaneous time.

oW o

o - iTx? W, (61)
#¥W a8 9 9

a2 "oy, ox, W ~5y, AW (62)

where
vy = E{X(7)|R(7) = T;R(0) = T},
uy = E{X(1)X,(7) [R(1) = F; R(0)=F},
a; = E{X,(1)|R(7)=T; R(0)=F o}

are conditional expectations of derivatives of
X,(T) given R(¢) at £ =T and £ = 0.

In the expressions for the conditional expecta-
tions the dot denotes temporal derivative and the
abridged notation R = ¥ is understood as R lying
in the semiclosed interval (T, T + dT]; repeated
indices are summed from 1 to z. It should be
emphasized that conditional expectations may in
general be functions of T, ¥,, and 7, even when
the marginal expectations are not. For brevity,
the symbol E{-++} is used henceforth to denote
the conditional expectation defined above.

Three important corrollaries of this theorem
are essential to the development that follows.
They are:

Corollary 2. 1. Conditional expectation and
temporal differentiation are commutative opera-
tions,

am amx
g;ﬁEc{Xi} = Ec{'gm-"} ,

Covollary 2.2. 1§ R(t,0) and R(¢, 0) are statis-
tically independent, then the conditional probabil -
ity density of & (7) given R(7) and R(0) is of the
general form

P{R(1)= EIR(r) = F; R(0) = 7o} = F(E -9)dF,

where f (%) is the marginal probability density of
R(t) and W) = E{R(7)} is the conditional expecta-
tion defined in Theorem 2.

Covollary 2.3. ¥ X,(t, o) and X,(¢, 0) are statis-
tically independent at simultaneous instants, and
if there exists a Hamiltonian function relating
the 6N stochastic processes X, and X;, then the
marginal probability density of any X, is Gaussian
independently of the potential function in the Ham -
iltonian; that is

P{X,(t)= &} = f(£)dt
= (m/21rk,,T)1/2 exp(-m&2/2kyT).

This theorem has been derived for a general
class of stochastic processes whose only restric-
tion is that each member function R(¢, o) of the
ensemble be continuous and differentiable in ¢.

Its proof and implications are discussed else -
where®®; here, we reduce it to the particulars of
a homogeneous, isotropic gas. In Corollary 2.3,
it should be noted that f, is the probability density
of a Cartesian component of the velocity of any
single molecule. It should not be confused with
the Maxwell distribution function, whose conven-
tional significance is that of being the fractional
number of molecules whose velocities lie within
a certain interval. It can be shown,?® by the
hypothesis of statistical identity and Corollary 2.3,
that if N(7, ¢, 0) is a stochastic process such that
Nd¥ is the number of molecules whose velocities
at time ¢ lie in the interval (V,V + d¥V], then the
expectation value of N(V, ¢, 0) is the conventional
Maxwell function.

The power of this theorem lies in the fact that
the probability density is determined as a solution
of a partial differential equation once its moments
V, wu;, and 2 are specified. It is motivated by the
viewpoint that in a physical system the role of an
ensemble is no more than that of an abstract
representation of the system, and what distin-
guishes one ensemble, or sample set {0}, from
others similarly composed is precisely its prob-
ability measure, which must be so endowed with
particular properties as to give an accurate,
though probabilistic, description of a set of
events (or measurements on the system) sequenced
in time. Probability and statistical theory provides
only the discipline and logical structure, but it
does not provide an/apriori probability measure;
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the only conditions that probability theory imposes
on the measure are those stated in its three well-
known axioms.3° Indeed, in any statistical repre -
sentation or analysis of a real-world system, the
central problem is that of judicious assignment of
a realistic probability measure, and the latter is
realistic when it leads to agreement with observa-
tion through the logical framework of the theory.
One effective way of specifying a measure is to
specify its moments. In a mechanical system, the
moments V, u#;;, and 4 are determined from the
particular differential equations which every
member R(t, o) of the ensemble must satisfy, i.e.,
the classical equations of motion.

When writing a differential equation of motion,
however, one is immediatley faced with the re-
lated questions of scale of the time intervals At
and the meaning of collision. In the final sense,
collision is really just another conceptual model
for the interaction between two particles wherein
momentum and energy are exchanged. However
short the duration of this exchange may be, a
collision is a force that the molecule experiences,
and hence should not be separated from the total
chaotic force field though it is convenient to do so
sometimes. When the time scale is sufficiently
short, and granted that the force of interaction
between colliding molecules depends on their
spatial separation, what we call a collision be -
comes a gradually unfolding process which is
continuous in time. On the other hand, when
collisions are viewed separately from the total
force field, one invariably reduces the process to
a discontinuous one whose limiting form, on time
intervals much longer than the duration of the
discontinuous steps, is inevitably an irreversible
relaxation or diffusion. Much detail is then lost.
For example, the diffusion equations of Chapman-
Kolmogorov and Focker -Planck describe the con-
tinuous long -term limit of what is a discontinuous
Markov process in the short term 3!:32

Typically, the probability densities obtained
from such equations satisfy the Smoluchowski
relation,3!

W(T, t|To to)= [W(F, t|T, tW(T, t,, [T, to)dT,,

provided {,<?,<t. This is the continuous limit
of the one -step Markov process, which is based
on the crucial property of “independent incre-
ments.” That is, the process in the interval

[¢,, t,] is statistically independent of the process
in (¢, t], regardless of choice of ¢,. The obvious
question is how small can the time intervals be
before this one -step independence breaks down.
The theorem stated above, when applied to a
mechanical system, states that the value of Rat
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t + At is linearly dependent on Rat ¢. More
specifically, the coordinates at ¢ + A¢ and the mo-
mentum at ¢ are statistically dependent, though
they are independent at the same instant, ¢.

B. Constraints

To reduce Theorem 2 to a form suitable for a
mechanical system, with R being the three -dimen-
sional coordinates of a typical molecule, we need
to impose only one requirement, namely, that the
probability densities must be independent of the
choice of reference frame. Because of the form
of Eqs. (61) and (62), rotational invariance under
orthogonal transformations is assured if the
conditional moments %;; are components of a
tensor and v; and a; are components of vectors.
This implies that ¥ and 2 have fixed orientation in-
dependently of the reference frame. If ¥ is a vec-
tor, then it follows, from Corollary 2.2, thatu;;
is a tensor. However, since the derivatives 8/0x;
refer to the components of ¥ and not ¥ -, reduc-
tion of the moments to components of tensors as-
sures rotational invariance only but not transla-
tional. For complete independence from choice of
reference frame, the system must be invariant
under translation as well, thereby requiring the
probability densities to be functions of p =7 - TF,.
That is, the process must be homogeneous. This
condition is satisfied if the moments, in addition
to being functions of 7, are at most functions of
the difference p =% —T,. We summarize the fore-
going as follows:

Theorem 3. The necessary and sufficient con-
ditions for the probability density W(T, 7|T,) of the
stochastic process ﬁ(t, 0) to be invariant under
orthogonal rotation and translation of reference
frame is that the conditional moments a and V be
vectors which are functions of =T -T, and
T=1t,-t,.

The condition of isotropy, W = W(|5|), while
not necessary for invariance, is motivated from
empirical consideration. In addition to invariance
under transformation, one requires the probabil -
ities describing a fluid to be independent of any
direction even in a particular reference frame.
Obviously, isotropy presupposes statistical homo-
geneity.

On the basis of the foregoing discussion, the
following constraints are taken as sufficient for
description of a statistically isotropic fluid:

(1) The conditional expectations of velocities
and accelerations are fixed in space and directed
along the line, p=T -T,, joining the initial and
final positions.

(2) sStatistical behavior of a single particle and
the center of mass of a pair of particles is iso-
tropic in the laboratory frame.
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The first constraint appears to be related to
Chandrasekhar’s concept®! of “probability after-
effect.” If one accepts an interpretation of expected
value as the “most probable value,” then, in the
case of a single particle, the physical significance
of a radially directed ¥ is the tendency of the
particle, which has moved from T, to T in the
interval [0,7], to continue to move in the direction
T -T,. However, it should not be surmized that
the actual path from T, to T is a straight line.
Moreover, that the conditional expectation of
velocity has a fixed direction does not in any way
imply the random process R (¢, o) to have pre -
ferred direction.

It seems worthwhile to comment here on alter-
native constraints which one might adopt to achieve
invariance. Because of the independence of
orthogonal components of the equations of motion
in classical mechanics, it seems plausible to re-
quire the orthogonal components X; (¢,0) to be
statistically independent. This condition coupled
with homogeneity, but not isotropy, was therefore
pursued to its logical consequences, resulting in
some severe conditions on the moments and the
probability density of velocity, as required by
Theorem 2. The results, not included here for
brevity, were found to be reasonable in that a
physical interpretation could be given to each of
the subsidiary conclusions and conditions. How-
ever, the hypothesis fails in one critical respect
in that the scattered light spectrum to which it
leads becomes negative for some combinations of
parameters, notably the vector K defined in Sec.
I, which clearly contradicts the mathematically
established fact that the spectrum of a stochastic
process is always positive.

Statistical independence of orthogonal components
and isotropy, on the other hand, are in general
incompatible conditions. Both conditions are
simultaneously satisfied if, and only if, the or-
thogonal components are independent Gaussian
processes. Thus, were we to impose both con-
ditions, we would severely restrict the theory.

In what follows, therefore, we assume the two
constraints listed above, and, motivated by
Theorem 3, as sufficient conditions for analysis
of an isotropic fluid. The remaining properties,
to be derived next, result from mechnaical laws.
It should be noted, however, in the limit of long
time intervals, 7, when events at ¢ + T become
statistically independent of those at ¢, isotropy
coupled with independence is consistent with
limiting Gaussian forms.

C. Probability of a Single Particle

In this section we obtain the particular form of
the partial differential equations resulting from

the constraints of Sec. IV B. In order to simplify
the first term of Eq. (62), it is necessary to re-
vert to the general integral definition of the mo-
ments u,,, viz.,

9 9 _f —a__ 9 .
Bx‘ 8x, u”vvll B E‘ E-’ ax‘ ax, Wll.f(E’ TI r’ ro) JE ’
(63)

where in abbreviated notation

@& 7 FE)E=P{R(N =EI R(r) =HRO) =F,}

is the conditional probability density (cpd) of the
velocity. For the particular case on hand, how-
ever, f is the displaced Gaussian density by
Corollaries 2.2 and 2.3, and W,, is a function of
p only. Also, & and ¢, in the integrand are strict-
ly parameters of integration, and the indices are
summed from 1 to 3.

The key to simplifying this term is the following
identity, valid for any constant vector §, and a
differentiable function ¢ of the radial coordinate,

9

S 155120 15 7240
o, o(p) =54 B +p|p><ql i

4, —

9 ax,
where j is the unit radial vector. With this iden-
tity and the Gaussian form of f, Eq. (63) reduces
to

5 28 32Wf *
. =1l . 2 T
ax, %, Uy Wiy ap? |5 1% o(E -¥)dE

P12 fis prEaE.  (65)
p 9p

To perform the indicated integration, it is con-
venient to select one of the £ axes parallel to p
and to make the substitution £’ =% —%. The first
integral, then, becomes the mean square of a
Cartesian component of R. After carrying out the
details, and using the fact that ¥ is radial, we find

9 9 82w, 1 aw,
ox, ox, W= (i + %) 0k & Ju 2=k, (86)
where

is the mean square speed resulting from the
Gaussian form of f,. The terms multiplied by %%
in (66) are recognized as the radial part of the
Laplace operator, V2. Thus, substitution of Eq.
(66) into (62) gives the intermediate form

8%W, %W,
%uf, v 2Wu + vap%‘L -V iWu =—a—-_r2‘u'

(68)
Our next task is to express the conditional mean

acceleration 4 in terms of ¥, using Corollary

2.1 and Eq. (61). To this end, we introduce the

logarithmic derivative defined by
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eh—n

-a—’i (1), (69)

which plays a fundamental role in the statistics of
the system. In terms of this function, and by
Corollary 2.1, we have

VAW, =h(T)V-¥W,,. (70)

Substituting Eq. (61) into (70) and the result into
(68), we obtain the final desired form:

92w, 32w W,
1,202 2 u. _u_ RSV
ULV IW, + v ys Py =h(7) o (71)
Equation (71) is the principal relation governing
the cpd of position of a single particle. It is evi-
dent from the definition (69) that v(7) and k(7) are
related as

v(1)=b exp| fo’h(t)dt] , (72)

where b is an arbitrary constant.

So far no mechanical principles have been in-
voked except the Hamiltonian relation implied in
the Gaussian form of f(-¥) as stated in Coroi-
laries 2.2 and 2.3. However, the Gaussian form
affects only the particular value of u, but not the
form of Eq. (71). It is also evident that, through
W,,, the second-order statistics of a single parti-
cle is completely characterized by the one function
h(7), the logarithmic derivative of the conditional
mean velocity. The problem of statistical anal-
ysis, therefore, devolves to that of deducing the
form of this function, a task which is far from
being trivial. At this writing, no attempt has
been made at determining %(7) from mechanical
principles, but we will deduce some useful asymp-
totic properties by considering the equations of
motion next.

With the viewpoint that collisions are an insep-
arable part of the total stochastic force field, and
faced with imperfect knowledge of the temporal
evolution of this force, the only equation of motion
one can write, without major presuppositions, is
simply

m:ﬁl(t, o)=F,(t,0), (73)
where
Ft,0)= 5 1,0, R). (74)
j=2

The conventional concept of collisions can be in-
cluded by replacing the summation in Eq. (74) with
a random time sequence (Poisson sequence) of &
functionals with random amplitudes. The total
force here is a stochastic one because each of the
R, (¢, 0) is a stochastic process inasmuch as the
remaining N - llpartlcles comprising the environ-

ment, are also in unknown chaotic motion. More-
over, Eq. (73) as it stands is nonlinear, since the
desired function R, appears nonlinearly in the
force term. However, we have seen that for sta-
tistical description of the system, it is not essen-
tial that an explicit solution R, be found in the or-
dinary sense. All that we require are conditional
expectations of the derivatives at given values of
R,at =7 and £ =0. As far as determining these
expected values is concerned, the problem is a
linear one. We need only keep two points in mind.
First, the expectation of the sum of random
variables is the sum of the expectations of the
summand. Second, each member function -ﬁ(t, 0)
of the ensemble is a deterministic function, the
differential equation being a mapping from one
ensemble to another. Every member function
must, therefore, satisfy all relations implied in
the differential equation, the most important one
being the energy relation. Thus, through the usual
steps of classical mechanics, we find that in the
interval [ 0, 7] every member function R,(, o)
satisfying Eq. (73) must also satisfy the relation

InR2(r,0) = 4mR2(0,0) + €,(1,0), (75)
where
N e 3
€1,00=% [y £,,°R,dt (76)
i=2

is recognized as the net energy gain of a single
particle from the environment of the remaining
N-1 particles. The relation among the conditional
expected values follows readily from Eq. (75) as

E{#2(1, o)} =E{R2(0, o)} + '% (1), 1)

where €, is the conditional expected value of the
net energy gain in the interval [0, 7] .

Now we compare Eq. (77) to the independent re-
lation for the conditional expectation of squared
speed as obtained from the known density f (F —v)
We find

E uf (1) =uy +v%(1) . (78)

i=1
As inherent in the definition of conditional prob-
ability, and by virtue of independence of coordi-
nates and velocities (momenta) at simultaneous
time, all conditional expectations of velocity at

7 =0 necessarily reduce to the corresponding mar-
ginal ones. Hence, it is known that

E,{B2(0, o)} =E{R2(0, o)} =us . (79)

Since the left-hand sides of Eqs. (77) and (78) are
identical, it follows that

v3(1) = 'Zn—E,('r) . (80)
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Thus the conditional mean velocity, and therefore
h(1), defined in Eq. (69), is identified with the con-
ditional mean change in energy. In fact, 2k(7) is
also the logarithmic derivative of €,(7). It must be
emphasized that €,(7) cannot vanish identically for
all 7; otherwise, Eq. (61) leads to inconsistency.
However, by definition of €,(7, 0), it is evident
that both €, and v vanish at 7=0. Moreover, since
it is necessary that as 7 increases the particle
statistics become independent of conditions at 7=0,
the conditional expectations must tend to the mar-
ginal ones in the limit 7 - . Consequently, since
the marginal expectation of velocity must vanish,
€, and v must vanish in this limit; otherwise, the
particle would have a net drift over a long period
of time. To summarize,

g () =0, (81a)
v(0)=0, (81b)
v(x) =0, (81c)

The conditions (81) necessarily imply the following
asymptotic behavior for the logarithmic derivative
h(T):

1
h(T)—~ - 7=0 (82a)

h(T)=~-, T=w (82b)

as may be verified by referring to Eq. (72); ¢ is
a constant which has the significance of some
characteristic reciprocal-time or frequency.

Interestingly, with the asymptotic form (82b),
Eq. (69) reduces to the homogeneous Langevin
equation

&\ =0, (83)

whose validity is known to be restricted to time
scales encompasing many collisions in the con-
ventional sense. Also in this limit, v2 as defined
in Eq. (72) becomes negligible so that the asymp-
totic form of Eq. (71), the principal equation for
W,,, tends to the conventional damped wave equa-
tion, viz.,

%W, . oW,
%uf,VzWu= a72 +§;:’— . (84)

On a coarser time scale, and when ¢ is sufficient-
ly large such that

oW, 1| 8%W,
[ | (89)

the damped wave equation is further approximated
by the ordinary diffusion equation

1uf o 8W,
3¢ VW, = aT ° (86)

If £ is interpreted as a collision frequency, then
the ratio u% /3¢ is identical to the celebrated Ein-
stein relation for the diffusion constant,

2
T
S=ar (®7)

as can be seen from Eq. (67). It is indeed remark-
able that Einstein predicted this relation from
purely statistical considerations of the idealized
random-walk model of Brownian motion. It is now
well known that if a stochastic process satisfies
the inhomogeneous Langevin equation its condition-
al probability density is governed by a diffusion
equation.3!

D. Probability of Pair of Particles

In this section, we obtain the equations for the
cpd of the center-of-mass coordinates R, (¢,0),
and that of the reduced coordinates R(t,0).
Statistics of the center of mass is similar to that
of a single particle, but that of the reduced coor-
dinates deserves special attention.

1. cpd of Center of Mass

The procedure for deriving the partial differen-
tial equation for W, is virtually the same as that
for W;,. In the latter, the cpd of velocity was
needed, but in this case the cpd for the velocity
of center of mass, £, (£-¥,), is not necessarily
Gaussian. To determine f, from the known Gaus-
sian marginal densities of each of the particles of
the pair, one needs the joint probability density
of the velocities &, (¢, 0) and R,(¢,0), which is not
known. This circumstance, however, does not
create any difficulty since the form of f,, as it
was emphasized in connection with Eq. (71) for
the single particle, does not affect the form of the
partial differential equation, but it only determines
the numerical value of the marginal expectation of
the square of velocity at 7 =0. The latter can be
deduced alternately from the energy relation.
Thus, through exactly the same steps as in the
previous section, we find

2w, oW, oW,
SUZVEW, + 02 _WQ =—a‘7.‘zc' =h. (T)?.f . (88)

To relate u.,, 2., and &, to the corresponding
quantities of a single particle, we refer to the
equation of motion of the center of mass:

wmB,(t,0)= Fy(t,0)+ By (t,0), (89)

where F,(¢,0) and F,(¢, 0) are defined as in Eq.
(74). Note, however, that even though they annul
each other, the terms f,, and f,, are included in
the total forces to preserve statistical identity of
F, and F,. Since statistical identity of two sto-
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chastic processes means precisely equality of
their probability measures and moments, the
expectation of the force on the center of mass is
twice that on a single particle; and since the mass
is also doubled, it follows that

E,{R,(r,0)} = E{R,(r, o)} . (90)

By Corollary 2.1, Eq. (90) implies that the con-
ditional expectation of velocity of the center of
mass is equal to that of the single particle, V,=7,
which in turn implies equality of the logarithmic
derivatives i, (7) and i (7).

Next, we determine «., from the energy relation
which is obtained in a way similar to that used for
Eq. (77). However, the expectation of net energy
gain in this case is twice that of a single particle
as evident from Eq. (89). Thus

E{R(r,0) =E{R0,0)} + 2e(n. (1)

Note that the expectation of energy gain, as re-
lated to v in Eq. (80), is in agreement with the
equality V, =V deduced above. Now, from the
generic form of f,, given by Corollary 2.2, we
have the independent relation

u ()= [ &f(E-,)dE,
which reduces to

uZ (1) =ud + V¥(7), (92)

where u2 is the second moment of the unknown
density f, (£). Comparing Eqs. (91) and (92), and
recalling that conditional expectations reduce to
marginal ones at 7 =0, we obtain

u2=E{R2(0,0)} . (93)

By the principle of equipartition of energy, which
must be satisfied by the marginal expectations at
7=0, the total energy of the pair must divide
equally between the two degrees of freedom, as-
sociated with the center of mass and the reduced
coordinates, so that

mul =smuf (94)

where u is given in Eq. (67). With the foregoing
relationships, Eq. (88) takes the final form

32
V2W +1)28—:)Vc- a—.f' h(T )'a—vV-e (95)

Comparison of Eqs. (71) and (95) shows that W,
and W,, are governed by virtually the same equa-
tion, the difference being the factor of 3 in the
first terms.

2. cpd of Reduced Coordinates

The statistics of reduced motion about the cen-
ter of mass is significantly different from that of
the center of mass of a single particle. By its
definition in Eq. (42), ﬁo(t,o) satisfies the equa-
tion of motion,

miy(t,0)=Fyt,0) ~Fy(t, 0). (96)

Agam, to preserve statistical identity of F2 and
F,, the interaction terms ', and f,, are not iso-
lated as they would be in deterministic analysis
of reduced motion. Now, since the total force is
the difference between statistically identical pro-
cesses, it follows that

Ec{ﬁo(‘r,o)} =0. (97)

By Corollary 2.1, the vanishing conditional mean
acceleration necessarily implies that the condi-
tional expectation of velocity is a constant, ¥,. It
is shown in Theorem 4, Appendix A, that this
constant _{nust be the conditional root-mean-square
value of Ry(7,0), i.e.,

vi=u§=E{R}(7,0)}, (98)
and that the condltlonal probability density of the
reduced velocity Ro must be
; Ry (0,0) =T} = 6(E ¥,)d¢&.

(99)

We are now in a position to simplify the first term
of Eq. (62). For this purpose, it is more conve-
nient, to use an alternative form of the identity
(64) namely,

P{ﬁo('r,c) =£|Ry(r,0) =T

8 9 3 - -
49 5%, ox, ¢=§1q§v2¢ -gxV-gx V¢, (100)

where the operator V is understood in its Carte-
sian form. With the integral form of the moments
u;; as given in Eq. (63), and the particular form
of the velocity cpd in Eq. (99), we find

o @

ox, % —u;; Wo= BVEW, =V, X VI X VIW,. (101)

Since ¥, is radial and W, is a function of p only,
the second term in Eq. (101) vanishes. This con-
dition, together with (97), reduces Eq. (62) to
%W,
,‘2 ’
which is the desired equation governing the cpd
of the reduced coordinates.
The value of v, is determined from the velocity
cpd in Eq. (99) and the energy relation. Since v,
is constant, it has the same value at ¢t =7 and ¢ =0;

RV, =2 % (102)
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that is
R=E{R2(r,0)} =E,{R2(0,0)} . (103)

Alternatively, this relation is also obtained by
direct integration of Eq. (96), as was done for the
single particle in obtaining Eqs. (91)—(93), and
noting that in this case the expectation of net en-
ergy gain vanishes, being a difference of statis-
tically identical processes. Since at 7=0 condi-
tional expectations reduce to marginal ones, the
right-hand member of Eq. (103) must satisfy the
principle of equipartition of energy, that is

mv=3mu . (104)

Consequently, Eq. (102) reduces to the final form

2uzvew, =2

S (105)

where u, is given in Eq. (67). Equation (105),
which is recognized as a wave equation, is inde-
pendent of the form of intermolecular forces. As
evident, it is largely a consequence of statistical
principles. Note also that it is not an approxima-
tion, as in the case of Eq. (84).

It is interesting to compare the energy relation
of the center of mass in Eq. (91) to that of the
reduced coordinates in Eq. (103). These relations
show that, as far as expectation values are con-
cerned, the net gain of energy in the interval
[0, 7] due to interaction of the pair with the N-2
energy particles as an environment is manifested
entirely in the motion of the center of mass, the
reduced motion about the center of mass remaining
unaffected. In this sense, the forces of the N-2
particles are equivalent to an “external” force.
This interpretation, however, refers to expecta-
tion values (in a classical sense), and its physical
significance must be accepted in the context of
repeated trials. That is, in repeated observations
at¢{=¢, and ¢ =¢;+7,i=1,2, ..., the two sets of
measurements differing by the interval 7 would
yield the same average values for the energy in
the center-of-mass frame. There is no implica-
tion, however, that the motion about the center of
mass is free of force at all time.

In summary, we have found from a set of hypoth-
eses and theorems, together with the laws of
classical mechanics, that the conditional proba-
bility density of the separation between a pair of
particles is governed exactly by a wave equation.
The resulting solution, however, need not be a
physical wave such as density or pressure wave.
It is a wave in abstract probability space indi-
cating that the probability of a particular separa-
tion undulates in time. The principal equations
governing the conditional probability densities of
the positions of a single particle and the center of

mass of a pair are Eqs. (71) and (95). The time
scale on which these equations describe the pro-
cesses is dependent solely on the detail included
in the logarithmic derivative, 4 (7), of the con-
ditional expectation of velocity. As mentioned
earlier, at this writing, no attempt has been made
at a detailed analysis of #(7). Accordingly, the
significance of its asymptotic value ¢, Eq. (82),
and whether it can be properly interpreted as a
collision frequency remain unsettled. Neverthe-
less, we consider the damped wave equation (84)
as an approximation which is intermediate between
the coarse description provided by the diffusion
equation (86), and the fine-scale description pro-
vided by the as yet unknown form of Eqs. (71) and
(95). Exact solution of the damped wave equation
leads to surprisingly close agreement with ex-
perimental data as we consider next.

V. APPLICATION TO LIGHT SCATTERING

In the following sections, particular solutions
are obtained for the various terms of the natural
spectrum given in the general form in Eq. (58).
For convenience of reference, “natural spectrum”
designates the spectrum prior to being altered by
intervening instruments, while “modified spec-
trum” refers to what is actually observed. The
effect of instruments is considered in Sec. VB,
after which theoretical and experimental results
are compared in Sec. VC.

A. Natural Spectrum

Our interest here is mainly in calculating the
characteristic functions of probability densities,
all of which are constrained to the initial condi-
tions,

w(K,0)=1, (106a)

gw(ﬁ,obo, (106b)
where w stands for w,,, w,, or w, in the first
condition, (106a), which follows readily from

the properties (22) and (51), while the conditions
(106b) in the case of w,, and w, follow from Eq.
(61) and the fact that ¥(0) =0; however, in the case
of w,, the condition follows from the radial orien-
tation of v,.

Equation (105), which is an exact one for W,(p,7),
is considered first. By Fourier transformation of
this equation, one obtains, for the characteristic
function w, (K, 7),

2
(K, 7) + 2K (K ,7) =0 (107)

The particular solution of this equation subject
to the initial conditions (106) is found to be
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wo(K,7) = cos(V2 Ku,t). (108)

It is recalled that in Eq. (56), the spectrum is
related to w,(3K,7) which is, by Eq. (108),

wy(3K,7) =cos(R7), (109)
where
Qp=(Q1/V2)Ku,. (110)

Next, the spectrum term S§ is found from its
definition as the Fourier transform of the real
part of w, over 7. Thus, from Eq. (109), one
obtains

SHK,7)=30(Q - Q) +36(Q +Q5), (111)
which justifies Eq. (58) and the inferences drawn
therefrom at the end of Sec. IIID. As discussed
there, Q, is identified as the angular frequency
of the Brillouin doublet. From its definition
(110) and that of »,, in (67), this frequency is

3k T \V?
=k (278l
25 ( 2m > : (112)

This expression is used later when experimental
data are compared to theoretical calculations.

We turn now to w,, and w, which are treated
concurrently owing to the similarity of their equa-
tions. As mentioned at the end of Sec. IV, exact
solution of Eqs. (71) and (95) cannot be obtained
at this time since the form of z(7) is not known;
only its asymptotic properties were determined.
Hence for a preliminary appraisal of theory
against experiment, we consider Eq. (84) which,
.after Fourier transformation, becomes

82 9 12772
qu(K,T)+§5-T~wu(K,T)+§u,K w,, (K,7)=0.

(113)
The Laplace-transform method is most convenient
for solving this equation since the spectral function
is obtained in the process by simply setting the
image parameter s equal to iQ. After transform-
ing Eq. (113), subject to the initial conditions
(106), and solving the resulting algebraic equation
for the Laplace transform of u;,, one obtains

w,,(K,s)= A1

T I (114)

Inversion of w,, gives

w,(K,T)=e ¢7/2 (cosh\QoT+X§— sinthT> , (115)
0

where
Q=3 -303%. (116)

While the time domain solution w,,(K, 7) is not
needed to obtain the spectrum, it will prove useful
later when we examine effects of instrumental
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response. The spectrum S,,(K,Q2), however, is
obtained from the relation

S,,(K,Q)=Rew ,,(K,iQ), (117)
implied by its definition. Thus, from Eq. (114),
2 02
= Zor — i T EaT
SLK,R) 3 (5923 -7+ 0? (118)

To obtain w (K,) we observe that the asymptotic
form of Eq. (95) is, correspondingly,
2

9 d
3z W)+ w (K, T) + LuyKw (K,7) =0, (119)

which differs from Eq. (113) by the factor of 3
multiplying «%. Equivalently, this factor can be
associated with K, so that by inspection one obtains

wc(K’T) =wu((1/ﬁ)K,T) (120)
and
S,(K,Q)=$,,(1/V2)K,Q). (121)

By Eq. (121), the complete spectrum in Eq. (58)
now takes the particular form

S(R,w) = I5[S,,(K,9Q) + 58’ KNS, (1/V2)K,Q2 - Q5)
+S,(I/V2)K,Q +Q,)], (122)

and the corresponding autocorrelation function
takes the form

F(ﬁ,T) =Ige'o"[w,,(K,T)
+g'(Kw,,(1/V2)K,T)cos(Q,7)].

(123)
It is convenient, for graphical presentation, to
define the dimensionless frequencies

v=0/Qy, (124)

B=8Q,/t=Ku,/V2 (125)
and the normalized spectrum

So(v,8) = (32/Ix)S(R,w) . (126)

In terms of these dimensionless frequencies the
normalized spectrum is

So(v,8) = Sg(v,8) +38"K)[S5(v,B) +S5 v,B)],  (127)

where S, and S7 are the normalized versions of
the terms in Eq. (122), and which, by Eq. (118),
are

2
Sg(v,B) TFE AR (128)

X B 1
SB (V;B) -ﬁz[é_ — (V:t 1)2]2 +(V:l: 1)2 .

The parameter B8 as defined in Eq. (125) is deter-
mined by K, which in turn is determined by the

(129)
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viewing angle from K =2k, sin(3y); for a particular
value of K, both 8 and g’'(K) are fixed. Interest-
ingly, B is similar to the reciprocal of y, the
parameter employed by Yip and others?-%:1° in
kinetic calculations of the molecular density-cor-
relation function. While in these treatments y
is the sole parameter characterizing the shape
of the spectrum, here we find that both 8 and
£'(K) significantly affect the shape. In the context
of modulation theory, Bis the index of modulation.
Typical spectra for several fixed values of B
and g’ are shown in Figs. 1 and 2, where all curves
have been scaled such that S,(0,8)=1. It is evident
that when B is less than 0.5, the spectrum exhibits
the behavior predicted by hydrodynamic theory,

and when 8 is of order 1, kinetic behavior is dis-
cerned. In particular, when B is equal to or less
than 0.1, the peaks of the composite spectrum
virtually coincide with those of the individual
terms S; and S}, namelyat v=-1,0,+1. Under
such condition, meaningful ratios of peak inten-
sities and linewidths can be defined. From Egs.
(128) and (129), we find the ratio of each of the
displaced peaks to the center peak to be g'(K)/2,
and the dimensionless full linewidths at half-
amplitude to be

Bvp- L4 -1 (4 -1 B, 130)

Avg =%{§'Bz -1+ [(%Bz -1)2 +§_B4]1/2}1/2 . (131)

12 T T T T T T T
B [S,0,8)
0.1] 450.9
1.0 05| 18.9
08| 7.8I
= 08} .
7
4
u FIG. 2. Typical spectra
Z o6} - showing the effect of in-
o creased value of g/(K).
H Ordinate normalized to the
3 0.4l B value of S4(0,8).
=
@
(@]
-4
0.2} .
[0} |

1.5 1.0 0.5 (0] 0.5
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However, with g less than 0.1, Eqs. (130) and
(131) are approximated by the leading terms of
their expansions, namely

Avg= 4B, (132)
8. (133)

The natural width of the Rayleigh line is therefore
approximately twice that of each of the Brillouin
lines, which agrees with the general property
conveyed by the integral relation (60). It is worth-
while to estimate these linewidths. For typical
values of 8=0.1 and Brillouin frequency f, = 100
MHz, the Rayleigh and Brillouin linewidths are
13.3 MHz and 6.7 MHz, respectively. These
widths are comparable to typical bandwidths of
spectrum analyzers, so that the effect of the latter
must be taken into account.

w(o

Avg=

B. Modified Spectrum

Typically, the scattered light is collected onto
a photomultiplier tube through a spectrum analyzer
having a narrow bandwidth centered about the
translated frequency ©,. The situation is that of
linearly transforming an input stochastic process
to an output process. It is well known that if
the system is time-invariant and the input is
stationary, then the input and output spectra are
related via the system response function H(Q.,.Q,s)
assa

S,(Q,2,) = |H®,2,)[?SQ), (134)

where all frequencies are translated, Q=w - w,
and Q ,=w, - w,. In this case, the linear system
is the spectrum analyzer and |H(Q,R,)|* is com-
monly referred to as the instrumental profile.

The photomultiplier tube, at the output of the
analyzer, responds to the total integrated inten-
sity, and, because its response is comparatively
broad-band, its output current pulse rate is pro-
portional to

L(@)= [ |HE@,2,)|2s@)d. (135)

Operationally, one slowly varies the frequency
Q, and measures the integrated intensity of that
portion of the input spectrum that falls within the
narrow pass band of the spectrometer determined
by |H®,2,) |

Analytic forms of H(Q,Q,) are usually not known
so that one must rely either on assamed approxi-
mations or on numerical integration using mea-
sured profiles. In recent experiments, Clark'?
employs the latter. Here, however, for the pur-
pose of a preliminary appraisal of theory, and
to hold the computations to manageable propor-
tions, we use the Lorentzian approximate form

Q
2 _ 1
IHL(Q,‘QS)I _(Q _Qs)z +Qi ) (136)

where Q, is the half-width at half-amplitude. Since
|H,|? is a function of the difference @ -Q, the
integral (135) becomes in essence a convolution
integral which can be evaluated analytically.
Rather than evaluating it by the method of residues
in the complex plane, we take advantage of results
in the previous section. We note that

s?f_ibsf = f_”exp(—iﬂs'r -Q,|7|)dr,

so that the convolution of the Lorenzian function
with S(R,Q) is equivalent to the Fourier transform
of the product of ¢~ ®!7! and the inverse of S(&,2)
which is T'(R,7) in Eq. (123). For example, to
find the convolution of the first term S,, in Eq.
(122), one replaces iQ with iQ +Q, in Egs. (117)
and (118). With similar procedure for the re-
maining terms, we find, after dividing all fre-
quencies by Q, and replacing v, by v,

L,(v,B) =1,(v,B) + 38" K)[I; (v,8) +I; (v,B)],  (137)

where

UV +bc,
I‘(V’ﬁ)z(cl-vz)2+(U+b)vz ’ (138)
LB =1 U+ 1) +be, (139)

=12 +(U +b)(vx1)® "

The other symbols are
U=9,/9,,
c,=3+U7+(1/8)U,

As to be expected, Eqs. (138) and (139) reduce to
the natural spectrum when the finite instrumental
width U vanishes. However, the case of greater
importance is when the instrumental width exceeds
the natural linewidth, i.e., when U >p3. Equiva-
lently, when U is finite and B tends to zero then
the three components of the observed spectra
virtually become scaled replicas of the instrumen-
tal profile. Typical modified and natural spectra,
I, and S,, are shown in Fig. 3.

b=1/B+U,
c,=3+U%+(1/B)U.

C. Comparison with Experimental Results

An important test of the preceding theory is
provided by the expression for the Brillouin fre-
quency Q,. When the instrumental profile is suf-
ficiently narrow so that overlap is negligible, the
maxima of the composite spectrum, I,, coincide
with those of the component terms I, and I3. In
such cases the observed Brillouin doublet occurs
at the normalized frequencies v=z1, in actual
frequency at +Q,/27. Otherwise, when the three
components overlap, one must find the roots of
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FIG. 3. Effects of a
Lorentzian instrumental
profile: solid curves are
natural spectra, Sy(v,B);
dashed curves are the cor-
responding modified spec-

] tra, S,(v,B), the instru-
mental half-width being
U=0.2.
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al,/8v=0, which is a tedious task.

It is convenient for computation to express the
molecular mass m in Eq. (112), in terms of the
gram-molecular-weight M and the Avogadro
number N,, and the wave vector K in terms of
wavelength A,. The Brillouin frequency is then
given by

1/2
fo= 5 [BaT] " stnt, (140)

where p is the viewing angle. Using this expres-
sion, we calculate frequencies for several gases
on which measurements were made by Greytak
and Benedek'® and Clark.'?

The calculated and measured Brillouin frequen-
cies are compared in Table I. As is evident,
agreement between theory and experiment is
excellent. A curious trend, however, is also
discerned in that the calculated frequencies are
lower than the measured ones in monoatomic
gases, while the converse appears to hold in
polyatomic gases. At this stage of both theory

1.0 0.5

and experiment, it is not certain how much of this
trend is a result of experimental discrepancy,
arising from instability of lasers and spectrum
analyzers, or that of theoretical representation

of a complicated molecule as a simple nonrotating
dipole. These calculations, however, demonstrate
that the microscopic formulation of scattering and
the statistical theory of the preceding sections are
well founded and point in the right direction.

The next items to be compared are the spectra
of Xe and CO, at an angle of 169.4° corresponding
to the kinetic regime. For this comparison both
parameters, 8 and g/, are needed. However, since
B depends on ¢ whose theoretical significance —
other than that of being some characteristic fre-
quency—has not been established, and since at
this writing an analytic form of g’ has not been
determined, a numerical method was employed to
evaluate these parameters for best fit of theoret-
ical curves to experimental data in the sense of
least rms error.

Experimental data points were read from photo-

TABLE I. Comparison of calculated and measured Brillouin frequencies.

Molecular Temperature Calculated Measured
Gas weight (g) (K) frequency (MHz) frequency (MHz)
He 4.003 295° 279.91 288.5%
Ar 39.94 301 89.51 93.0+2
Xe 131.30 298.5 49.16 50.8+2
N, 28.016 301 106.87 100.5+2
CoO, 44.01 297.9 84.83 81.5+1.2
CH, 16.032 297.7 140.51 129.0+4

® Data from Ref. 12. All others from Ref. 13. Laser wavelength, 632.8 nm; ¥=10.6°.
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graphic enlargements of Fig. 2 in Ref. 13 after
the abscissa, given in absolute frequency scale,
was normalized to v using values of f; calculated
from Eq. (140). The ratio of the measured ordinate
at v=+1 to that at v=0, together with a fixed
value of 8, was then used to compute g’ from the
theoretical ratio I,(1)/I,,(0) provided by Eq. (137).
This constrains the calculated curves always to
pass through the datum point at v=1. With g’ thus
fixed for each B, the modified spectrum I,(v,B)
was calculated as function of v for a succession
of values of 3, until the least rms error was found.
The best fit of the theoretical curves to experi-
mental data is obtained with =0.732 and g’ =0.502
for Xe, and $=0.91 and g’=0.508 for CO,. As is
evident in Figs. 4 and 5, agreement between theory
and experiment is remarkably good. A slight
discrepancy near the skirts of the spectra is pri-
marily due to the Lorentzian approximation of

(GHz)

the instrumental profile, which is known to fall
off less steeply than the measured ones.3* The
effect of this approximation, which is most pro-
nounced near the skirts, is also discerned in
the theoretical curves of Fig. 3.

1t is interesting to evaluate ¢ from the relation,
¢= Q,/B, using the calculated values of 3. With
25=3.33x10° sec™! in Xe and Q,="5.74x10° sec™!
in CO,, as obtained from Eq. (140) with $=169.4°,
we find the corresponding values of ¢ to be 4.55
x10° sec™! and 6.30 x 10° sec™!, respectively. In
Table II, these values of ¢ are compared to colli-
sion frequencies as calculated from the kinetic
theory® of elastic-sphere molecules and another
based on the Boltzman theory.’® While of the
same order of magnitude, the values of ¢ are
somewhat lower than the elastic-sphere collision
frequencies. It remains a question for further
theoretical and experimental exploration to as-

T T T T T T
> 06| i /9. = 0.910 ]
g g =0.508
b 05 fg = 0.914 GHzA
2 04 FIG. 5. Comparison of
a8 theoretical spectra (solid
N 03 curve) as calculated from
&1 0.2 Eq. (137) against experi-
s mental data of Ref. 13 for
g 0.l CO, at 750 mm Hg. Nor-
P4 . ] malized instrumental half-
) ] _
Tis 20 -o05 ) 0.5 0 .5 width, U =0.112.
NORMALIZED FREQUENCY, v
1 ] ] 1 | L 1
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certain whether or not {—which is the long-term
asymptotic value of the logarithmic derivative
defined in Eq. (69)—is indeed a collision rate in
the conventional sense.

Turning to g’(K), we notice its value is virtually
the same in both gases. We recall that g(X) is
the characteristic function of G(), the latter being
the probability density of R,(¢,0) which is the
separation between a typical pair, and there are
N(N -1)/2 stochastic processes R,(¢,0) with identi-
cal probability densities G(T). It can be shown,
by the hypothesis of statistical identity, that the
quantity

m(T)dr =IN(N = 1)G(T)dr

is the density of the expectation value of the number
of pairs whose separation lies in (F,T +df]. As
evident from its definition in Eq. (54), g'(K) is

2/N times the Fourier transform of this mean
density. While data and computations on two gases
do not constitute sufficiently conclusive evidence,
the results here suggest that the analytic form of

&' may depend far more on statistical principles
than on particular intermolecular forces.

For an additional test, the preceeding computa-
tional procedure was applied to the modified
spectrum resulting from solution of the diffusion
equation, (86). In this case, the three components
of the pure spectrum are Lorentzian in shape.

The minimum rms error occurs when 3=0.745

and g’ =0.522, for Xe, and the corresponding
spectrum is as shown in Fig. 6. Theory and ex-
periment do not agree in this case, indicating

that the diffusion equation is not as good an approx-
imation to the general equations (71) and (95), as

8
TABLE II. Comparison of ¢ to collision frequency.
Pressure e Collision  Frequency
Gas (mm Hg)  (10° sec™) (10°® sec™)
Co, 750 6.30 8.822 6.09"°
Xe 780 4.55 6.05°

2 Data from Ref. 35. Elastic-sphere values corrected
to given pressure and temperature of 25°C.
b Data from Ref. 36. Corrected to same conditions.

the damped wave equation (84). Obviously, the
latter describes events separated by shorter time
intervals.

VI. DISCUSSION

A striking outcome of the preceeding micro-
scopic theory is the possibility of existence of new
spectral lines which heretofore have not been
observed. Equations (128) and (129) show that as
B increases beyond unity, each of the three spec-
tral components begins to show maxima at its
outer extremes while the maximum corresponding
to small 8 diminishes to a minimum. A typical
natural spectrum for 8=5.0 is shown in Fig. 7
wherein the peaks Bl and B2 represent the split
Brillouin terms, and R the split Rayleigh term.
As it can be verified from Eqs. (128) and (129),
the individual peaks occur at the normalized
frequencies,

Veu =t [} -1/2p772,
voy=t[3 -1/28]Y2+1,

T
B = 0755

g'= 0.522
fg = 0529 GHz

>
|
n .
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w
'—.
z
- FIG. 6. Comparison of
8 theoretical spectra as cal-
5 culated from diffusion equa-
< tion for Xe as in Fig. 4.
z ]
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and the critical point of transition where these
frequencies become real are 8> 0.866 for the
Rayleigh term, and 8> 1.22 for the Brillouin
term. In the extreme cases of very large 8, say
B8>10, the frequencies of the maxima of the com-
posite spectrum approach v=+0.816, +0.423,
+1.577, indicated by vertical bars in Fig. 7.

Splitting of the lines is a high-frequency phe-
nomenon related to events in short time intervals
in the limit 7- 0. It is typical of random phase or
frequency modulation with large modulation index,
this being a ratio of the mean deviation in fre-
quency to the mean rate of this deviation, which
is essentially the significance of B. That the
present theory can predict this effect is largely
a consequence of proper formulation of the radi-
ation field and the fact that the probability densi-
ties were determined on a time scale shorter
than the mean period between collisions. If the
motion of a particle were described as a limiting
form of a zero-order Markov process, resulting
in the Langevin equation of motion over a time
mesh At encompassing many collisions, then
W,, would have been governed by a diffusion equa-
tion. In that case, both the Rayleigh and the
Brillouin line shapes would have been Lorentzian,
negating the possibility for existence of high-fre-
quency peaks.

This conclusion of splitting lines, however,
should be treated with extreme caution. Because
it occurs at relatively high frequency, and there-
fore is related to events as 7-0, conditions
might easily fall at the borderline of the long-
time asymptotic behavior of the logarithmic de-
rivative #(7). We recall that it is precisely the
asymptotic behavior of #(7) that leads to the

28

OF RAYLEIGH SCATTERING 987

damped-wave approximation of the general equa-
tions (71) and (95). Yet, when one considers the
other extreme as 7- 0, solutions to the short-time
asymptotic form of Eq. (71) turn out to involve
Bessel functions, again raising the possibility

of spectral peaks at the high-frequency end.

It should be interesting to verify this effect
experimentally. To estimate the conditions for
its existence, consider collision frequency as a
rough estimate of ¢. It is necessary that the colli-
sion frequency be maintained sufficiently high to
ensure asymptotic validity of the damped-wave
approximation. To increase B at the expense of
diminished collision frequency (¢), through reduced
pressure, would defeat this condition. It appears
that helium under atmospheric pressure offers
the desired combination of a large 8 at moderate
collision frequency, when viewed from an angle
of 170°. Under these conditions, Q, is 18.96 x10°
sec”! as calculated from Eq. (140) with the laser
wavelength being 632.8 nm. Assuming a collision
frequency of 6.0 x10° sec™*, we find B is equal to
3.16. At this value of B, the split Rayleigh lines
would be well resolved at approximately 2.4 GHz,
while the split Brillouin lines would be too close
to it to be observed, depending on the instrumental
profile.

Among several refinements that could be incor-
porated into the theory are effects of internal and
rotational degrees of freedom of the molecule. It
must be emphasized, however, that the internal
degrees cannot affect the phase of the scattered
field in any appreciable way if the formulation is
to be consistent with the assumption that the mole-
cule is much smaller than the wavelength, which
is the condition justifying its representation as

INTENSITY

NORMALIZED

FIG. 7. Typical theoret-
ical natural spectra at
high values of . The
dashed curves represent
the convolution of the ac-
tual spectrum (solid) with
a Lorenzian instrumental
profile.
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a dipole. A time-dependent polarizability is the
only classical mechanism by which internal struc-
ture of the molecule can logically be connected to
the scattered field which, as is well known, forms
the theoretical basis for classical interpretation
of Raman scattering. Since the frequencies of
Raman spectra are an order of magnitude higher
than those encountered in Rayleigh scattering,

the internal structure of the molecule is not ex-
pected to modify the latter. Rotation of the mole-
cule, however, could have an effect which is
readily included through the use of a time-depen-
dent, tensor polarizability. Since rotation of

the molecule is expected to be slower than internal
electronic processes, slight modification of the
Rayleigh spectrum is theoretically possible. Ef-
fects of the tensor nature of polarizability would
be manifested as depolarization of the scattered
field.

Another factor which was not considered is the
fact that not all the molecules within a region
scatter simultaneously. Since the incident beam
intersects a segment of the region, only those
molecules which happen to be in the incident field
contribute to scattering. Strictly speaking, all the
results of the preceding sections are contingent
upon the probability that a particular molecule and
pair of interfering molecules lie within the illumi-
nated region.

A third aspect which deserves attention is the
effect of finite boundaries, which would seem to
present itself as a straightforward boundary-value
problem. However, although the partial differen-
tial equations (71), (95), and (105) are invariant
under translation, the solutions, when constrained
to boundary conditions, would not be. Hence, the
conditional probability densities would no longer
be functions of the difference T —T,, which necessi-
tates using the general form of Theorem 1 in terms
of joint probability densities.

VII. CONCLUSIONS

We have evolved a consistent microscopic theory
of Rayleigh scattering in its simplest form, which
provides a basis to account for the observed effects
from a unified set of principles. It has also been
demonstrated that the Rayleigh spectrum is a
manifestation of external degrees of freedom of the
molecule, these being the information encoded into
the phase of the scattered field. The theory divides
the effects into two parts: one related to the sta-
tistical trajectory of a typical single molecule
causing the undisplaced Rayleigh line, and the
other related to interference between pairs causing
the Brillouin doublet. Both the Rayleigh and the
Brillouin lines are described by propagating waves,

the latter in exact sense and the former as an
approximation to the general description provided
by solutions of Eq. (71). In a microscopic view-
point, however, these waves represent conditional
probability densities propagating in the abstract
space which is the range set of the random trajec-
tories. It would be worthwhile to find a connection
between these waves and the acoustic waves of
hydrodynamic theory.

The same parameter g’(K) that determines the
intensity of the Brillouin doublet can also explain
the deviation, if any, of the total integrated inten-
sity from that predicted by incoherent scattering.
Measurement of ratios of the Brillouin intensity
to the Rayleigh intensity as a function of angle
would provide needed information on the analytic
form of g'(K).

Agreement of theory with experiment was
achieved through complete departure from conven-
tional methods of kinetic theory, especially in
its viewpoint of collisions, and through proper
formulation of the radiation field in terms of
moving sources. The present theory is based on
the major hypothesis of statistical indistinguish-
ability of single particles and pairs of particles
and the well-developed theorems of probability
theory. Departure from kinetic theory consisted
in this hypothesis and the use of a new set of
equations for differentiable stochastic processes,
extending the time scale to intervals shorter than
a collision period. The remaining restrictions
to small volume and spherically symmetric mole-
cules have bearing only on the radiation aspect
of the theory, while restriction to dilute systems
affects both the radiation aspects, through in-
equality of the local and incident fields, and the
statistical aspects, possibly, through the inter-
action potential. If particular forms of interaction
potential affect the statistics, they are expected
to do so only through the logarithmic derivative
h(7) of the conditional expectation of velocity or
energy. Except for the possible dependence of
k(1) on specific forms of interaction, all other
results, especially the Brillouin frequencies, are
independent of this potential. Since this function
holds a key to statistical features of the aggregate,
through Eqgs. (71) and (95), determining its ana-
lytical form poses an important problem for
further investigation.

The problem of interparticle interactions was
approached from classical theoretical standpoints
largely for the sake of maintaining over-all logical
consistency with classical treatment of the radia-
tion aspect of light scattering. In treating the
particle statistics from the standpoint of the axi-
omatic theory of probability, however, we have
also arrived at the surprising result that the
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principles of classical Newtonian mechanics
imposed as constraints on the classical theory of
probability lead to a wave description of the prob-
abilities of trajectories of randomly interacting
particles. This indicates that a wave-mechanical
description of particle interactions is not peculiar
to quantum mechanics alone. Although the philo-
sophical and pragmatic implications of this finding
are beyond the scope of this paper, they remain
as most interesting and fundamental questions
deserving of further serious attention.
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APPENDIX A: A THEOREM

Theorvem 4. If the conditional expecta:;tion of
the continuous, differentiable process R(t,o0) is
a constant, radial vector v, then its conditional
probability density is

PR =E|R(r) = 7;R(0) = T} = 6(F - VdE,

whose second moment is |v|2.
Proof. Since the components v;, i=1,2,3, are
constant, differentiation of Eq. (61) yields

a o oW

Pl v (A1)
Using Eq. (61) again gives

W _ 9

a7t V1% %y, ox, (A2)
Subtracting Eq. (A2) from (62) gives

8 9 B

a—;‘ 5;; (uyy = v0,)W=0, (A3)
where

wgy =00, = [(£,8; = 0,0, W (E -V)dE, (A4)

and f(£ —7) is the unknown conditional probability

density of ﬁ(t,o). The integral (A4) is independent
of 7, so that if any solutions of (A3) exist, they
are not functions of 7. But this contradicts the
hypothesis that W(p,7) is a function of 7. The
only condition under which Eq. (A3) is valid and
W=W(p,7) is if each coefficient vanishes, i.e.,

uy;-vw,=0, 4,j=1,2,3.

In particular, the variance of ﬁ(t,o) is

ud, - |v[2=0.
By a well-known theorem of probability theory,
the probability density of a random variable whose
variance vanishes is a § distribution localized
at the expected value.
APPENDIX B: DERIVATION OF EQ. (57)

Equation (60) follows from the Wiener-Khintchin
theorem. If C(7) is an autocorrelation function
with spectrum S(f2), then

C(r)=21—7r Je 9s(Q)an, (B1)

from which one obtains
2 c)=-L f Q25(Q)dn (B2)
ar? PX :

In particular, if S,(K,) stands for S, or S, and
w ,(K,7) for w,, or w,, then

8* 1
~ 57 WalK,0) =5 fmsa(K, Q)dg . (B3)

Noting that at 7=0 both 2 and V vanish in Eq. (68),
one obtains after Fourier transformation of this
equation

9
FWM(K,OF—%K"’uf,wu(K, 0). (B4)

Similarly, by the development of Sec. IVD,
32
577 %elK,0) == K uw (K, 0). (B5)

Since w (K,0)=1 and w,(K,0)=1, Eq. (60) follows
by combining (B3), (B4), and (B5).
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The ground-state correlation energy of the electron gas is calculated in the region of intermediate
densities using the variational method of Becker, Broyles, and Dunn for two trial wave functions. Each
trial function is taken to be a product of two factors, one factor being the ground-state wave function
for the ideal gas of spin-1/2 particles and the other being a product of pair functions in the relative
coordinates of the electrons. In one trial function a single pair function is used; in the other, the pair
functions between parallel and antiparallel spins are allowed to differ. The pair functions are
parametrized and approximations to the energy minimized. The three-particle correlation functions
appearing in the kinetic energy are replaced by either the Kirkwood superposition approximation (KSA)
or the convolution approximation (CA) to give two approximate energy functionals for each wave
function. The ideal-gas N -particle probability density is approximated by a Boltzmann factor with an
effective pair potential. This effective potential is obtained by inverting the hypernetted chain equation
for the known pair-correlation function of the ideal Fermi gas. The pair-correlation functions for the
interacting system are then calculated by means of the hypernetted-chain equation. The CA correlation
energies join smoothly with both the high- and low-density expansions. The CA and KSA correlation
energies differ by less than 4% everywhere in the intermediate-density region. The pair-correlation

functions exhibit generally reasonable physical behavior.

I. INTRODUCTION

Since the pioneering work of Wigner! many
studies have been devoted to the problem of cal-
culating the ground-state correlation energy of
the electron gas. The correlation energy is defined
by

€. =€=€yp, (1.1)

where ¢ is the ground-state energy per electron
and €, is the familiar Hartree-Fock approxima-

tion to € given by':?
€yr = €7t €, (1.2)
with
€, =%€p, €,=-8¢%,/4m,

where €, =#k%/2m, k,=(31p)"3, and p denotes
the mean density of electrons. In conventional
units one has

€yr = 2.21/72 -0.916/7, Ry,



