
BILINEAR HYDRODYNAMICS AND THE STOKES-EINSTEIN LAW

it appears possible that the inclusion of triple
products of hydrodynamic variables in our for-
malism converts q~ into a dressed g.
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The ground-state energies of solid He and H, at various densities are calculated using a

self-consistent method in the t -matrix formulation. The two-body equation of motion is solved by
expanding the two-body wave function in terms of partial waves. The partial-wave expansion gives rise
to a set of coupled differential equations which are solved numerically for the ground-state
eigenfunctions. The calculations for He are done using three different two-body potentials, the
Lennard-Jones potential, the Beck potential, and the Frost-Musulin potential. The calculations for H~
are done using the Mason-Rice two-body potential. A bcc structure is assumed for solid He', while an
fcc structure is assumed for solid H, . Exchange effects are neglected. Figures and tables are given
which compare the present results with those of other authors.

I. INTRODUCI'ION

The ground-state properties of solid helium,
which is well known to be the most characteris-
tic quantum crystal, have been the subject of quite
intensive theoretical and experimental activities
in recent years. There exist a number of excel-
lent expositions dealing with the behavior of solid
He' among which one may mention the papers of

Werthamer' and Guyer. ' Here one can find a
series of convincing arguments and figures exhib-
iting the rather unique character of He isotopes
when compared with other solid rare-gas elements
such as Ar, Ne, etc. The helium solid is more
"quantum" than solid H, or D, even though the
masses of the molecules of the latter solids are
smaller than that of He, the kinetic energies
larger, and consequently the excursions around



g50 CANUTO, I ODENQUAI, AND CHITRE

the lattice sites more pronounced. The potential
energy comes to the rescue in all cases except
that of He isotopes, where the potential turns out
to be the least attractive among all rare gases.
As a consequence of this rather peculiar state of
affairs, classical lattice dynamics breaks down
rather badly and a quantum many-body treatment
is therefore needed to describe the system.

The problem of quantum crystals has been stud-
ied by a variety of methods. A method was sug-
gested by Nosanow, ' who employed the cluster-
expansion technique introduced by Van Kampen'
by expressing the trial wave function as a product
of single-particle Gaussian wave functions and a
short-range correlation. Recently, Hansen and
Pollack' adopted the variational calculation to
compute the ground-state energies of solid He' and
He' by a Monte Carlo method and improved con-
siderably upon the original results.

Among the various many-body techniques used
to study the properties of solid He, the t-matrix
method has received renewed attention due to the
works of Sarkissian, Guyer and Zane, ' and Bran-
dow. ' The Bethe-Goldstone equation for the two-
body wave function P»(r}, in the form introduced
by Iwamoto and Namaizawa, 9 has been studied
more recently by Sarkissian' and Guyer and Zane, '
mho, however, did not perform an angular momen-
tum expansion of the wave function. Such an anal-
ysis is performed in this mork. The first explicit
angular momentum expansion of P»(r) was per-
formed, to our knowledge, in a paper by Brueckner
and Frohberg xo where the authors showed that
high partial waves up to l &6 are needed for a
sensible convergence.

In this paper we determine the ground-state en-
ergies of solid He' at various densities using a
self-consistent method in the t-matrix formulation.
Three different forms of the two-body potentials
are used: the I ennard- Jones potential, the Beck
potential, and the Frost-Musulin potential. The
same method is also applied to solid molecular
hydrogen using the Mason-Rice tmo-body potential.
The present approach is similar to that used to
study the crystallization of neutron matter, " so
its application to solids, whose physical properties
are well known, should give an indication of the
correctness of this approach.

In Sec. II we outline the t-matrix approach and
the resulting equations of motion. In Sec. III we
describe the solutions of the equations of motion
in terms of partial waves, while Sec. IV deals
with the self-consistent determination of the single-
particle wave functions. In Sec. V we present
the results of the method applied to solid He' and
8, along mith the results of other authors. Numer-
ical details are presented in the Appendixes.

II. r MATRIX AND EQUATIONS OF MOTION

An exhaustive discussion of the t-matrix ap-
proach can be found in the paper of Guyer and
Zane. ' The original Hamiltonian for @atoms,

g j N

H=Q T(+ —Q V,/,

is formally separated into H= H~+H„where

g I E E
Ho= Q Tg+ —Q Wg/, H, = —Q (V(/ —WU)

» =1 2»st)

T, is the kinetic-energy operator and ~»q is the
tmo-body potential. The Hamiltonian Ho is sup-
posed to be exactly solvable, leading to localized
orbitals. Expanding 8'»& around the lattice site
and retaining only quadratic terms, the eigenfunc-
tions of Ho turn out to be made up of harmonic-
oscillator wave functions of unknomn frequency &.
For example, the ground-state eigenfunction 40
(1, .. ., N) satisfies

H, C (1, .. ., N) = E C, (l, . . ., N),

where 40 (1, . . . , N) is a product of single-particle
wave functions of Gaussian form

g (1, . . ., 8)=JJ y (i), (4)

(+3/a/&a/4) s-4(r -'k
& /2

8» being the lattice site of particle i. The param-
eter a '=(g/m&o)'/' represents the spread of y
around the lattice site.

The Rayleigh-Schrddinger perturbation expansion
of the. energy shift 4E=E —E, gives rise to the
folloming expression:

where the t matrix is defined as

g being the correlation function defined as

Here g» is the two-body wave function, and angu-
lar brackets represent expectation vatues, i.e.,

The Bethe-Goldstone equation in its full gener-
ality is too complicated to handle and hence Iwa-
moto and Namaizawa' and later Guyer and Zane'
have employed a simplified version of it (hereafter
referred to as the INGZ equation). The general
equation has been studied in detail only in the con-
text of nuclear matter. A full discussion of the
mork done on the solution of the equation for appli-
cation to quantum crystals can be found in a reviem



t-MATRIX CALCULATIONS OF THE GROUND-STATE. . .

payer by Brandow. ' The INGZ equation reads

[T,+ T2+ U(1) + U(2) + V,2] t/)» = E»g», (8)

The INGZ equation now reads

[- (|I'/m)v'„+-,'maPr' —~2(o'r Z+ V(r)] g(r)

where T, and T, are the kinetic-energy operators
of particles 1 and 2, respectively, and U(i) defined
by

f0'(t)%(j)Vuks d rs
q&(&) U(&)0(&) =

fe(t)e(j)4od ri dr~

H(12) = H(E) + H(r), (12)

is the self-consistent one-body potential, which in
turn implies a knowledge of g, & (r,&) itself [A. ctu-
ally, Sarkissian and Guyer and Zane have incor-
porated some further terms which are not shown
in Eq. {8); these terms arise from a choice of
single-particle potential which differs somewhat
from Eq. (9). Brandow has argued that the simple-
form equations (8) and (9) should be more accurate
than the modified form used by Guyer and co-
workers. ]

In their work, Guyer and co-workers choose U(i)
to be a harmonic-oscillator potential. One way to
choose the frequency co of this oscillator would be
to treat this as a variational parameter, and adjust
this to minimize the total energy. However, in the
present work we have determined &o (which enters
the wave function through the parameter e) in a
self-consistent manner to be discussed in Sec. IV.

If we expand U(i) in a Taylor series to second
ordex',

U(i) = U(0) +~a(o'( r, - It,)', (1o)

and choose relative and "center-of-mass" coordi-
nates r and R, respectively, defined by

r=r2-r~y 2R=rx+r

the Hamiltonian of Eq. (8) can be written

= E,',y(r), (I I}

E,', = E» —2U(0} —a g&o —&me'6'.

If V=O, the two-body wave function P~q reduces to
y(i)y(j), which can be written

q,&-=y(t)9 ( j)= q (r) e(%), (18)

where

3/2
I p Q -nz( r -h, )g/4

(2 )3/4 (19)

TABLE I. Contributions per particle to the potential
energy for solid He3 gmc) from the first 15 shells using
the Lennard-Jones potential at 0=21 cm3/mole, u2 =1.24

Kinetic energy = 14.94 'K; potential energy =-15.42
'K; E/N =-0.48 'K. Energies are in 'K.

HI. SOLUTION OF TWO-BODY EQUATION

The term r Z = r & cose in Eq. (1V) is a notable
feature of the two-body Hamiltonian. It is clearly
not invariant under space inversion, i.e., H(r)
wH(- r). This is highly reminiscent of the Stark
effect. The cosa term has matrix elements dif-
ferent from zero only for states that differ by one
unit in the angular momentum, i.e., (I~cose ~l')

In the previous treatments, the cose term
was set equal to unity, making Eq. (1'I) spherically
symmetric. This is not strictly justified as one
should, in principle, make a partial-wave expan-
sion of g(~) of the form

g(P) = P (2I+ I)g, (r) P, (cose) . (20)
1 =0

Upon substituting Eq. (20) into (17), multiplying

where

~=- R, —R, being the distance between particles 1
and 2. The eigenfunction P» can, therefore, be
written in the product form

P„=g(r)4(%}, (14)

H(H) = —(I'/4m) Vms+m(u' [If ——,'(E, +H,)]',
(12)

H(r} = —(I'/m) V2+ ~ m&a'( r —b)'+ 2U(0) + V(~),

Shell N&, No. of
No. A' particles

8
6

12
24

24
24

3.564
4.116
5.820
6.824
7.129
8.232
8.969
9.203

-1.400
-1.766
-0.296
-0.110
-0.086
-0.039
-0.024
-0.021

-5.598
-5.299
-1.774
-1.322
-0.345
-0.117
-0.286
-0.247

&&, shell
energy yN&e&

-27.981
-14.611
-1.752
-0.650
-0.139
-0.023
-0.046
-0.023

and satisfies the eigenvalue equation

H(H}y{%)= —,
' a&op(%}. (18)

~3/2
4(%}=, „,exp(-a'[8- —'(8, +R)]') (18)

—,v

10
11
12
13
14
15

24
12
12
48
3Q

24
24

10.080
10.693
11.640
12.175
12.348
13.015
13.496

-0.012
-0.008
-0.005
-0.004
-0.004
-0.003
-0.002

-0.145
-0.061
-0.031
-0.093
—O.Q54
-0.031
-0.026

-0.010
-0.003
-0.002
-0.004
-0.002
-0.001
-0.001
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both sides by &»(cosi}), and integrating over S, one
obtains the following system of coupled differential
equations for the various partial waves:

H,"(s)+ (0 - E»)H»(s)+
E(s)(-)»

x[(i+1)H„,(x)- iH, ,(x)]=0,

l=0, 1, 2, 3, ...
with the following notation:

x=r/r„d = A/r„

p =my/ro (y =4, fcc; y=2, bcc),

where p is the density, &=o.~„
H, (x) = s»}»,(s), E(x) = —,'a'sd,

mr '. . . f(i+1)Eg=gu g + ~~O V(x)+
g

mr2 2m' 2

, 'E»-, ' U(0) --,'a'-+a'd'.

After Eq. (21) has been solved for the H, 's, the
energy per particle can be obtained from Eq. (5)
in the form

E, 1
J&(i)g'(j}L»»ksdr»dr»

= gSQP+—

jV (i)m(i)k»»dr»dr,

(22}

The first term on the right-hand side is just the
kinetic energy per particle for a simple-harmon-
ic-oscillator (SHO) potential. &, is the number
of particles in the 0th shell and &, is the shell en-
ergy, i.e., the potential energy of an atom owing
to its interaction with another atom in the 4th
sheLL. e, may be written in the form (Appendix A)

g se '*'~' V(x)[j(iy, ) H,(s)+Sj,(iy, )H, (s)+Sj(iy,)H,(s)+" ]ds

f xe ' ~'[j~(iy~)H, (s)+2j»(iy, )H»(s)+5j, (iy~)H, (s)+ "]dx

TABLE H. Contributions per particle to the potential
energy for solM Hel gec) from the Srst 15 shells using
the Lennard-Jones potential 0=23 cm3/mole, 0,~ =1.12

Kinetic energy=13. 43 'K; potential energy=-14 38.
'K; E/N =-0.93 'K. Energies are in 'K.

Shell N&, No. of
No, k particles

~~, shell
energy

9
10
11
12
13

15

24
12
12
48
30
24
24

3.672
4.242
5.998
7.033
7.347
8.484
9.243
9.485

10.389
11.021
11.996
12.548
12.726
13.413
13.910

-1.140
-1.620
-0.255
-0.091
-0.071
-0.032
-0.020
-0.017

-0.010
-0.007
-Q.QQ4

-0.003
-0.003
-0.002
-Q.OQ2

-5.640
-4.860
-1.527
-1.098
-0.286
-Q.Q97
-0.239
-0.206

-0.121
-0.043
-0.026
-Q.079
-0.046
-0.027
-0.022

-26.228
-12.998
-1.613
-0.597
-0.125
-0.021
-0.036
-0.028

-0.012
-0.004
-0.002
-0.005
-0.003
-0.001
-0.001

The various quantities are defined as follows:

gC

/dyed

+g, =Pod(, .1

4~ is the distance from the atom under considera-
tion to the 4th shell and j„(is)=j„(is) is the spheri-

cal Bessel function if »t is even and j„(ix}= ij „(is)
if n is odd. V(x) has been assumed to be the same
for all waves. For a quantum mechanical system
whose potentials depend on spin and angular mo-
mentum we must use a more general expansion
than Eq. (20) by including a spin wave function g,"'
on the right-hand side.

IV. SELF-CONSISTENT APPROACH

f e ' »' &~ ~'&(r)g(~)dr
U(0) = 2l2+N~

f 0!»» BP) /4y(~) d»
(24a)

(24b)U(0) =Q H»,e~ - ag}L»»» .

Equation (24a) is obtained by putting r» = It» in the
exact definition of U(i), Eq. (9}. Equation (241)

Equations (21)-(22) could, in principle, be solved
to give the ground-state energy per particle of a
quantum solid with a given structure at a given
density p if a [-=(m»u/}I)' '] is known at that den-
sity. In this paper we propose to determine e at
a given density self-consistently, making full use
of U(0), the one-body potential at the lattice site.
The method is as follows. We obtain an equation
for»r by eliminating U(0) between the two following
expressions:
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is obtained from Eqs. (22} and (23} (see Appendix
B). At the same time the knowledge of P(r) allows
one to evaluate z~ from Eq. (22) and, consequently,
U(0) from Eq. (24b). The process is repeated for
different a ' s until the two U's coincide to within 1%.

This method has been used previously by Sar-
kissian, ' and the e' versus molar volume in the
paper of Guyer and Zane' is obtained with this
method.

V. RESULTS AND DISCUSSIONS

method is to be at all practical, there must exist
an integer / such that the sum from l =0 to ~
in Eq. (20) is well represented by the sum from
l=0 to l . This reduces the number of differen-
tial equations to (I~+1}.

A. Solid He

We began with the study of solid He' with a bcc
structure and a specific two-body potential V( r ).
Three different two-body potentials were used .
(a) Lennard- Jones potential

In order to solve for g( r) exactly, we would
have to solve a set of infinite coupled differential
equations for the H, 's. However, if the present

V(r) =40.8 [(2.556/r)" —(2.556/r)'];

(b) Frost-Musulin potential"

(25}

V(r) =
—12.54 1+8.01 1 — '

exp 8.01 1—,r&3.5 A
2.98

—7250, + ~, r&3.5 j[;1.41 3.82
r' (26)

(c) Beck potential"

V(r)=V ~e «&~ — + 1+ 2 709+3p.
0 (Q +p2)3 ++p2

where

Vo 10 371 K A 44 62+ 10 y
Q 4 39 A

D = 972.5, P = 3.746 x 10 A ', P = 0.675 A. [(2s+ 1)/z] j„(z)=j„„(z)+j„,(z) (28)

The above potentials are in 'K, with r measured
in A. Several increasing values of l were
chosen, and the resulting system of (I + 1)-cou-
pled differential equations solved numerically for
the ground-state eige&unctions. These solutions
were then used in Eq. (23) to compute the shell
energy &~ for various shells at a fixed density.
The recursion relation

TABLE III. Contributions per particle to the potential
energy for solid He3 (bcc) from the first 15 shells using
the Lennard-Jones potential at 0=23.94 cm3/mole, 0.2

=1.05 k t. Kinetic energy=12. 63 'K; potential energy
=-13.73 'K; E/N =-1.10 K. Energies are in 'K.

TABLE IV. Contributions per particle to the potential
energy for solid He3 (bcc) from the erst 15 shells using
the Frost-Musulin potential at A=21 cm3/mole, a~ =1.33

Kinetio".energy =16.05 'K; potential energy = -14.88
'K; E/%=1.67 K. Energies are in K.

Shell N&, No. of
No. 4' particles

ez, shell
energy )N~tr,

Shell N&, No. of
No. 4 particles

e~, shell
energy $Ã~za

9
10
11
12
13
14
15

8
6

12
24

8
6

24
24

24
12
12
48
30
24
24

3.724
4.300
6.080
7.129
7.448
8.600
9.370
9.615

10.531
11.171
12.160
12.719
12.900
13.597
14.100

-1.376
-1.544
—0.242
-0.084
-0.065
-0.029
-0.018
-0.016

-0.009
-0.007
-0.004
-0.003
-0.003
-0.002
-0.002

-5.503
-4.631
-1.450
-1.010
-0.262
-0.088
-0.218
-0.188

-0.111
-0.039
-0.024
-0.072
-0.041
-0.024
-0.020

-25.114
-12.418
-1.603
-1.010
-0.126
-0.021
-0.032
-0.029

-0.012
-0.004
-0.002
-0.005
-0.003
-0.001
-0.001

9
10
11
12
13
14
15

8
6

12
24

8
6

24
24

24
12
12
48
30
24
24

3.564
4.116
5.820
6.824
7.129
8.232
8.969
9.203

10.080
10.693
11.640
12.175
12.348
13.015
13.496

-1.346
-1.683
-0.240
-0.095
-0.074
-0.034
-0.021
-0.018
-0.011
-0.008
-0.005
-0.003
-0.003
-0.002
-0.002

-5.386
-5,050
-1.439
-1.146
-0.296
-0.102
-0.254
-0.216
-0.128
-0.045
-0.028
-0.083
-0.048
-0.028
-0.023

-29.246
-13.578
-1.230
-0.471
-0.098
-0.018
-0.031
-0.024

-0.010
-0.OO3

-0.002
-0.004
-0.002
-0.001
-0.001
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for the spherical Bessel functions mas used. It
mas found that the shell energy in general in-
creased mith increasing l . and saturated at L ~
=20. The value I =25 mas finally chosen for
the computation. Several tests mere made to en-
sure that the computer solutions generated the
ground-state eigenfunctions for the set of equations
(2I). For example, the eigenfunctions were plot-
ted to demonstrate that they mere indeed nodeless.
Another test is described in Appendix C.

Wrath this problem out of the way, me proceeded
as described in Sec. IV to determine the ground-
state energy per particle for He' at several den-
sities. The results are summarized in Tables I-
VII. In each table, only the contributions of the
first 15 shells are shomn, although it mas found

that the first 20 shells mere needed to make the
sum in Eq. (22) converge, i.e., the contribution
of the higher shells to the potential energy mas
much less than 0.1%. The columns labeled IJ, give
'tile shell contributions io U(0), l.e.,

II(0) =Z ~1

The self-consistency requirement is that

Q U~ =Q N„e, —,'trat, —
k

which we tried to fulfill to within 1% or so, In Fig.
I we show the results of our E/f1'using the Len-
nard-Jones potential along with the results of

Shell N&, No. of
No. 0 particles

ek, shell
+It ener' &~k~k

1
2
3
4

8
9

10
11
12
13
14
15

8
6

12
24

6
24
24
24
12
12
48
30
24
24

3.564
4.116
5.820
6.824
7.129
8.232
8.969
9.203

10.080
10.693
11.640
12.175
12.348
13.015
13.496

-1.494
-1.886
-0.287
-0.108
-0.083
-0.037
-0.023
-0.019
-0.011
-0.008
-0.005
-0.004
-0.003
-0.002
-0.002

-5.974
-5.658

10722
-1.299
-0.331
-0.110
-0.271
-0.229
-0.134
-0.047
-0.028
-0.085
-0.049
-0.028
-0.023

-29.710
-15.435
-1.532
-0.552
-0.113
-0.019
-0.034
-0.026
-0.0ll
-0.003
-0.002
-0.004
-0.002
-0.001
-0.001

Pandharipande, "Hansen and Levesque, "Ebner
and Sung, "and the experimental result. " 0 is
the molar volume and is related to the density p
through the equation

where +& is the Avogadro number. In Fig. 2 me

show our 8/N using the Frost-Musulin and Beck
potentials. In Fig. 3 the self-consistent values of
o.' in the present work are compared mith those

TABLE VI. Contributions pex particle to the potential
energy for solid Hes (bcc) from the Qrst 15 shells using
the Beck potential at 9=21 oman /mole, at =1.30 L 1. Ki-
netic energy =15.73 'K; potential energy =-16.04 'K;
E/N =-0.32 'K. Energies are in 'K.

TABLE V. Contributions per particle to the potential
energy for solid Hes (bcc) from the first 15 shells using
the Frost-Musulin potential at 0 =23 cme/mole, +2=1.22
A 1. Kinetic energy=14. 07 'K; potential energy=-13. 43
K E/X=0.65 'K. Energies are in K.

TABLE VII. Contributions per particle to the potential
energy for solid He3 (bcc) from the first 15 shells using
the Beck potential at 0=33 oman/mole, ct =1.16 A 1. Ki-
netic energy =13.94 K; potential energy=-14. 88 'K;
E/A' =-0.94 'K. Energies are in 'K.

Shell N&, No. of
No. k particles

ck, shell
energy

Shell Nk, No, of
No. 4 particles

~» shell
ener gy

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

8
6

12
24

24
24
24
12
12
48
30
24
24

3.672
4.242
5.998
7.033
7.347
8.484
9.243
9.485

10.389
11.021
11.996
12.548
12.726
13.413
13.910

-1.357
-1.544
-0.208
-0.079
—0.062
-0.031
-0.020
-0.015
-0.010
—0.006
-0.004
-0.003
-0.003
-Q.002
-0.002

-5.428
-4.629
-1.250
-0.953
-0.246
-0.092
-0.240
-0.185
-0.124
-0.038
-0.024
-0.070
-0.040
-0.023
-0.019

-27.157
-12.302
-1.207
-0.468
-0.087
-0.002
-0.003
-0.022
-0.001
—0.003
-0.001
-0.004
-0.002
-0.001
-0.001

1
2

5
6
7
8
9

10
11
12
13
14
15

6

24
8
6

24
24
24
12
12
48
30
24
24

3.672
4.242
5.998
7.033
7.347
8.484
9.243
9.485

10.389
11.021
11.996
12.548
12.726
13.413
13.910

-1.487
-l.716
-0.247
-0.090
-0.068
-0.038
-0.019
-0.016
-0.008
-0.007
-0.004
-0.003
-0.003
-0.002
-0,002

-5.947
-5.149
-1.481
-1.075
-0.272
-0.113
-0.225
-0.196
-0.111
-0.039
-0.023
-0.071
-0.039
-0.022
-Q.019

27' 737
-13.810
-1.451
-0.532
-0.108
-0.024
-0.032
-0.025
-0.010
-0.003
-0.001
-0.004
-0.002
-0.001
-0.001
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He bcc

E/Nvs Q (cm'/mole)

method we will define

g, (r) = 4, (r)/q, (r), (33)

5.0—

40—

LENNARD- JONES POTENTIAL

(34)

where y, (r) is the Lth component in the partial-
wave expansion of y(r), i.e.,

(((((r) = P (2l+1) y, (r)P, (cose).

5.0

—2.0

ILJ

1.0

21M 2IQ 253 230

The specific form of rp, (r) is given in E(l. (A.9).
g, (r) has been evaluated for l=0, 1, 2, . . . , 20 for
different shells mith the Lennard- Jones potential
at 0=23.94 cm'/mole. The results for the first
and fourth shells for I,=O to 7 are shown in Tables
VGI and IX.

We can define an average correlation function

-I.O— g=(&+1) 'Q g, (r)
E =0

(35)

-2.0

FIG. 1. Ground-state energy per particle of solid Hes

vs molar volume obtained from the present work com-
pared with the results of Pandharipande (PP), Hansen
and Levesque (H-L), Ebner and Sung (E-S), and the ex-
perimental results. All calculations used the Lennard-
Jones potential.

computed in different ways by Guyer" and the
previously mentioned authors.

The correlation function g( r } defined by the
equation

Figure 4 shows plots of g for the first and fourth
shells with L taken to be 20 again using the Len-.
nard-Jones potential at a volume D = 23.94 cm'/
mole. In Fig. 5 we show the corresponding cor-
relation functions for the first shell obtained by
Pandharipande, Ebner and Sung, and Hansen and
Levesque.

An exact correlation function should almays
overshoot unity between r = 0 and r = ~ whatever
the normalization of the wave functions. The
normalization condition

y(r) =g(r)y(r) (32) fy(r)g(r) dr=1 (3&)

should be zero at r = 0 and should be mell behaved
as r-~. For a more detailed discussion of g(r},
we refer the reader to Sarkissian's thesis, Sec.
VIII of Ref. 8 and Appendix D. In the partial-wave

leads to

44+ f g(r)d,'(r)r'dr=1.
g 0

(37)

3.0—

2.0—

He' bcc

E/N vs Q (cm'/mole)

DIF FERENT POTENTIALS

I.O—

Q SO

hJ
-I.O—

-2.0—

20.0
4 I

30 24.0
0 (cm'/mole)

I: FROST-MUSULIN POTEN'TIAL

II: BECK POTENTIAL

FIG. 2. Ground-state en-
ergy per particle of solid
He3 vs molar volume ob-
tained using the Frost-Mu-
sulin (I) and Beck (II) po-
tentials.

-4.0—
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He'bcc

plot of o*(k ')vs 0 (cm'/mole)

1.8

1.6

1.4
o~
+ 1.2

FIQ. 3. &2(A ) vs Q ob-
tained by different authors
with the Lennard- Jones
potential.

1.0

0.8—

0.6—

18.0
I

19.0
I

200
I

21.0

Q (cm'/mole)

I

22.0
l

23.0

Since cp itself is normalized to unity and g obeys
the condition g= 0 at & =0 and g-0 as r- ~ (see
Appendix D},g must be greater than unity at some
finite r. The correlation functions of Pandhari-
pande and Hansen and Levesque do not overshoot
unity but approach it asymptotically. This means
that their corresponding two-body wave functions
will pick up less attractive energy than they should.
(However, this could be compensated for by an
increase in the kinetic energy. )

Another interesting quantity is the "wound inte-
gral" z defined by Brandow':

~2 1/2 2re ~" j~ +br dr, 38
2m'

0

especially with the Lennard-Jones and Beck po-
tentials. If the three-body energy were incorpo-
rated in the self-consistency condition for e, this
should also increase the values of e somewhat. '

B. Solid H2

The above method was applied to study the
ground-state energy per particle for solid molec-

TABLE VIII. Correlation functions for the first eight
partial waves at Q =23.94 cm3/mole using the Lennard-
Jones potential for the first shell. He3(bcc); Lennard-
Jones potential: 0 =23.94 cm /mole, k =1; g„correla-
tion functions for different partial waves.

where

h(r) -=[I -g(r)]'. (39)
0 1 2 3 4 5 6 7

z gives an indication of how good the two-body
approximation is in this problem. The two-body
approximation should be good if ~«1. We have
estimated tc to be 0.24 at & = 23.94 cm'/mole.
Brandow' gets ~ =0.16, the difference being due
to our smaller a'. This small value of z indicates
that the three-body effects should be fairly small.
One effect of the three-body energy (which we have
not calculated} would probably be to increase the
interaction energy, especially at the smaller
molar volumes. This would result in a higher E/N
and a steeper dependence of E/N on the molar
volume. These effects would act in the right di-
rection to improve the agreement with experiment"-,

1.72
2.06
2.41
2.75
3.27
3.61
3.96
4.13
4.47
4.82
5.16
5.50
5.68
5.85
6.02
6.19

0.01 0.01 0.01
0.15 0.16 0.19
0.50 0.52 0.57
0.79 0.82 0.86
1.00 1.01 1.03
1.04 1.05 1.06
1.05 1.06 1,07
1.05 1.06 1.06
1.05 1.05 1.05
1.04 1.04 1.04
1.03 1.03 1.03
1.02 1.02 1.02
1.01 1.01 1.01
1.01 1.01 1.01
1.00 1.00 1.00
1.00 1.00 1.00

0.01 0.01
0.22 0.27
0.64 0.71
0.91 0.97
1.06 1.09
1.08 1.10
1.08 2.09
1.07 1.08
1.06 1.06
1.04 1.05
1.03 1.03
1,02 1.02
1.01 1.01
1.01 1.01
1.00 1.00
1,00 1.00

0.02 0.02 0.03
0.32 0.38 0.44
0.79 0.86 0.93
1.03 1.08 1.12
1.12 1.13 1.15
1.11 1.12 1.12
1.09 1.10 1.10
1.08 1.09 1.08
1.06 1.06 1.06
1.05 1.05 1.04
1.03 1.03 1.03
1.02 1.02 1.01
1.01 1.01 1.01
1.00 1.00 1.00
1.00 1.00 1.00
0.99 0.99 0,99
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He'bcc
LENNARD- JONES

Q = 23 94cm'/mole

V( K)

l.2— 30D

I.O—

0.8— 20.0

0.6—

0.4—

0.2—

IOD

5.0

FIG. 4. Average correla-
tion function g for the first
and fourth shells using the
Lennard- Jones potential at
0 =23.94 cms/mole.

-5.0

-IO.O

AVERAGE CORRELATION FUNCTIONS FOR

SHELLS I 8 4
I I I I I I l I I I I

I.O I.5 2.0 2.5 3.0 3.5 40 4.5 5.0 55 6Q

r (A)

-200

ular hydrogen in the fcc structure. The two-body
potential used was the Mason-Rice potential since
that facilitated the comparison with the results of
@stgaard":

V(r) = 37.3 [901953 exp(-4. 195/r) —2416/r '].

TABLE IX. Correlation functions for the first eight
partial waves at 0 =23.94 cm3/mole using the Lennard-
Jones potential for the fourth shell. He~(bcc); Lennard-
Jones potential: 0 =23.94 cm /mole, k =4 g„correla-
tion functions for different partial waves.

E/N for solid H, was computed at Q = 20 and 22
cm'/mole and the results shown in Tables X and
XI. The resulting E/N were found to be fairly
insensitive to o since solid molecular hydrogen
is not too quantum a solid. However, approxi-
mately 29 shells were required to ensure conver-
gence of the potential energy. The experimental
E/N for solid H, at 9= 22 cm'/mole is —92 K
while the theoretical result is —85.1 K. q)stgaard"
gets a corresponding value of —82 'K.

The results for solid He' show that E/N is rather
sensitive to the two-body potential used. This is
especially true since there is a very sensitive
balance between the kinetic and potential energies.
However, in the case of solid H„ this problem is
not as critical since the potential energy is quite
different in magnitude from the kinetic energy.
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1.72
2.06

2.41
2.75

3.27
3.61

3,96
4.13

4.47
4.82

5.16
5.50

5.68
6.02

6.36
6.71

0 1 2 3 4 5 6 7

0.03 0.03 0.03 0.04 0.04 0.05 0.05 0.06
0.48 0.49 0.51 0.53 0.56 0.59 0.63 0.67

1.07 1.08 1.09 1.10 1.12 1.14 1.16 1.17
1.26 1.27 1.27 1.27 1.27 1.27 1.27 1.27

1.24 1.24 1.24 1.24 1.23 1.23 1.23 1.22
1.20 1.20 1.20 1.20 1.19 1.19 1.19 1.18

1.17 1.17 1.17 1.16 1.16 1.16 1.16 1.15
1.16 1.15 1.15 1.15 1.15 1.15 1.15 1.14

1.14 1.14 1.14 1.13 1.13 1.13 1.13 1.13
1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12

1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11
1.11 1.11 1.11 1.11 1.11 1.11 1.10 1.10

1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10
1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10

1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10
1.09 1.09 1.09 1.09 1.09 1.09 1.09 1.09
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I.2—

He bcc
Lennard - Jones

Present work

H-L 0~ 25.55cm /mole t
P P 9~23.94cm /mole

ES Q *24cm /mole —30.0

I.O—

0.8— -20.0

0.6—

0.4—

0.2—

—10.0

FIG. 5. Correlation func-
tion for the first shell com-
pared with those of Pandha-
ripande, Ebner and Sung,
and Hansen and Levesque.

0

CORRELATION FUNCTIONS

—-IO.O

I I I I I I I I I I I

I.O l.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 55 60
r (A)

-20.0

TABLE X. Contributions per particle to the potential
energy for solid H2 (fcc) from the first 15 shells using
the Mason-Rice potential at Q =20 cm~/mole, n2 =3.42
A t. Kinetic energy=61. 08 'K; potential energy =-144.0
'K; E/N =-82.9 'K. Energies are in K.

TABLE XI. Contributions per particle to the potential
energy for solid H2 (fcc) from the first 15 shells using
the Mason-Rice potential at 0=22 cm3/mole, 0.2 =3.44

Kinetic energy =60.88 'K; potential energy=-146. 0
'K; E/N =-85.1 'K. Energies are in 'K.

Shell N» No. of
No. k particles

e» shell
energy

Shell N» No. of
No. k particles b

ez, shell
energy ~Nzez

12
6

24

12
24

8

3.613 -14.61 -87.67 -272.0
5.110 -6.13 -18.38 -26.10
6.260 -1.73 -20.76 -27.50

7.226 —0.71 -4.25 -5.43
8.079 -0.36 -4.28 -5.33
8.851 -0.20 -0.82 -1.00

12
6

24

12
24

8

3,719 -16.48 -98.86 -267,0
5.260 -5.14 -15.41 -21,6
6.444 -1.45 -17.34 -22.8

7.438 -0.59 -3.56 -4.52
8.369 -0.30 -3.58 -4.44
9.110 -0.17 -0.68 -0.83

48
6

36

9.561 -0.13
10.220 -0.08
10.838 -0.06

-3.06
-0.25
-1.07

-3.69
-0.30
-1.26

48
6

36

9.841 -0.11 -2.56 -3.08
10.520 -0.07 -0.21 -0.25
11.156 -0.04 -0.89 -2.50

10
11
12

24
24
24

11.426 -0.04 -0.51 -0.61
11.983 -0.03 -0,39 -0.45
12.514 -0.02 -0.30 -0.35

10
11
12

24
24
24

11.761 -0.04 -0.43
12.335 -0.03 -0.32
12.882 -0.02 -0.25

13
14
15

72
48
12

13.031 -0.02
13.996 -0.01
14.451 -0.01

-0.70 -0.81
-0.34
-0,06

13
14
15

72
48
12

13.413 -0.02 -0.58
14.407 -0.11 -0,25
14.875 -0.01 -0.05
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APPENDIX A

In this Appendix, we sketch the derivation of
Eq. (23). The potential-energy term in Eq. (5)
when written out explicitly takes the form

Eq. (A5) reduces to

(A6)

Jfcp(i)(p(j)V(/(pc/dr&dr& fcp(r)V(r)(}1(r)dr

ffcP(i)(P(j ) (j)c/ d r& d r& frP ( r )g( r ) d r

Furthermore, because of the normalization con-
dition

1 Q ff(P(i)cP(7')Vc/circ, d r, dr&

ffcp(i)cp(j)(Ir„d r, d r~

(A1)
(AV)

We can expand cp( r ) in terms of partial waves
similar to the expansion of g(r) in Eq. (20):

q (i)y( j)= C(-R)y(r), ,

where the normalized expressions for 4r(R) and

rp.(r) are given by
~3/2

%,))2
(r w)3/4

g3 /2
-crr( r -Cr&)~/c

(2w)"4

(A2)

(A3}

In terms of relative and center-of-mass coordinates
r and R, we can write ~3/2

q)( r ) e-ap( r -Ar, )~/4

(2w) "4

~3/2

(2w)"4

~3/2

(2w)"4

2(g2+ +2k) /4 cf2P+k ~~ 6

-cp(R+ al) /4

x Q i'(2l +1)j,(i y)r& (rcos)e,
1 =0

(A8)

Similarly, from Eqs. (14), (15), and (A3),

(t„=y(r)y(R) =(t(r)4'(R).

Therefore,

(A4)
where yk = —

& e're. We have used the well-
known expression

ffcp(i)(p(j )Vog, &
d r, d r&

ffcp(i)cp(j) p, / d r, d r,

A5
ffcp(R)cp(r)V(r)4r(R)g(r) dRdr

Ocp( R)cp( r )Cr( R)P( r ) d R d r

e"" * = g i'(2l+1)jr(kr)&r(cose}.
l =0

(A9)

If we substitute Eqs. (A8) and (20) into (AV), and
integrate over solid angles using the orthogonality
properties of the Legendre polynomials, we get

oo oo

xe */' V(x) g (2l+1)7'r(iy„)Hr(x)dx xe * ' Q (2l+1)7'r(iy~)Hr(x)dx

ff(P(i)(P(j)(I)c/ d r, d r& (A10}

in dimensionless variables. In terms of j, and H, , Eq. (Al) becomes

1P= —QN~
k 4 Q

xe ' ' V(x) P (2l+1)jr(iy~)H((x) dx xe ' ' P (2l+1)j,(iy, )H, (x) dx
L=0 0 E=O

so that we obtain the expression for e~ given in Eq. (23).

APPENDIX B

We write Eq. (9) in the form

N

cp(i) U(i)cp(i) = Q —r

g jB
where the numerator A. is

A =fcp(i)cp(j)Vc&gc& dr~

and the denominator B is

B= ffcp(i)cp(j )pc& d rc d r& .

Again, we write rp(i) p(j) c= 4( R)cp(r) and

(S2)

(a3)
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(I),&
= 4(R)g(r). A can then. be written

~9/2
a2(2pj+ r 6)2/2

(2s}3/4(2 )3/P

xe ' i 'V(r)dr, (B4)

where pj —= r —Rj. Similarly, B can be written

B=f C)(R)g(R)dR f (a /2s) / e " ' p / g(r)dr

since Eq. (A6) holds.
Since U(0) is the value of U(i) evaluated at r, = R, ,

i.e., p, =0, Eqs. (Bl), (84), and (B5) give

U(D) = 2&2 Q N

f '""'-~"'V( )C( )d.
f -(2 ( 2 Z, -)p/p ~(»)d»

=(ap/2w)'/p f e ' ' p'/'()p(r) dr (B5)
This expression can be written in terms of the
H, 's and j,'s as follows:

U(0)=2d2 rN»e» * Pey(») L (2)+1)j(2(y )ll(»)d»/ »e 1' ' 1)' r (2)+1)j ( y)ll(»)'d»
k f %0 f= 0

To obtain another equation for U(0), we note that
Eq. (5) can be written

N

E= pau+ —P y(i)U(i)(j)(i) dr.
2 j

Using the expansion given by Eq. (10}we get

(Bs)

E/N= ,'au+-pP -N, sp, (B10)

we can combine Eqs. (89}and (B10}to obtain

U(0) =QNpsp —p Ru.
k

APPENDIX C

(Bl1)

If we take V(r ) =0, the INGZ equation becomes
[cf. Eq. (8)]

E/N = ,'au—'+U(0} p+f (I)(i)[~f(u'( rp —R,)'] 4)(i) d rp,

E/N = p Ru + s U(0) + —,'(-, au), (B9)

E/N = ap )ku + p U(0).

Since by definition

units)

(C5)

Although g is not used directly in calculating
the ground-state energies in this paper, Eq. (C5)
does provide an independent check on the accuracy
of the numerical solution of Eqs. (21) with V(x) =0,
and should also demonstrate the improved accu-
racy that is expected from using larger values of
I in the partial-wave expansion of Eq. (20).
Accordingly, Eqs. (21) have been solved for t}p

with different values of lm~. In Fig. 6 we have
plotted Iog2p ~ (p}p - t}p)/i}p~ vs I max for the first,
tenth, and fifteenth shell in abcc lattice with a =4.4.
i}p is given by Eq. (C5) and p}p is the corresponding
numerical value. From these graphs we can con-
clude that (i) higher values of I are required to
obtain a given accuracy as the shell numbers in-

V=O

(T2+ T, + 2U(0) + ~p(up [(r, —R,)'+ ( r, —Rp)p] }(i)(1, 2) 5 lO l5 20 25

=E„4(1,2),

where E» is a sum of SHO energies, i.e.,
E» = E, +E, = 2[2) )f(u + U(0) ] .

(Cl}

(C2)
-2.0

q, = E„2U(0)—s )I(u ——~ PPP(uPAP. (C4)

If we use Eq. (C2), p)p becomes (in dimensionless

In terms of relative coordinates, Eq. (CI) is [cf.
Eq. (17))

[- (iIP/PPP) VP+ pPPP(uP(r —2 r Z)] (j)(r) =)Ip(j2(r ),
(C2)

where

I

F~ -4.0

-3.0

-5.0

FIG. 6. Log(p((pip 27p)/pip[ vs I for the first, tenth,
and fifteenth shell of a bcc structure.
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crease and, (ii) &m~=25 gives an go that has a very
small percentage difference compared to g, up to
the fifteenth shell. In fact, we have found that l
=25 is sufficient in the present work, as mentioned
in Sec. V. Limits to the aeeuracy of the computer
solution seem to depend only on the mesh size
used in numerical integrations.

We present here a summary of the numerical
method for the solution of the set of coupled equa-
tions in (21). We intend to obtain both the lowest
eigenvalue and the corresponding eigenfunction.
The approach is in two steps: first we reduce the
problem to finding the solution to a set of linear
equations which is also an eigenvalue problem for
a matrix and second, we use numerical methods
for finding the lowest eigenvalue of the matrix and
the corresponding eigenvector.

For purposes of illustration, we consider the
first three coupled equations in (21}. If we apply
central differences to the set of equations we have
at the ith point

Hnw
0

0 0

0 I 0

0 0 1

:2-0Eo
2 /2~4

-2-k E2

. (C11)

H + —2H'+H' -k E H + sk g H' ——k +'H'3 0 3 2

= —k'2gH, ', (C6)

where 1 ~ i ~ (s -2) and n is the number of points
in the mesh used. 4 =x,.„-x,. is constant and H',

~H, (x,.), etc. i =1 is the point on the next-to-the-
left endpoint and i = (n-2) is the point on the next-
to-the-right endpoint. At i =1, H,' ' =0 and at i
=(n-2), Hf" =0 because of the boundary condition
that each function vanishes at the endpoint.

Let us consider a vector U made up of blocks
of elements where the ~th block consists of the set
(H,', H,', H,'). Then Eq. (C6) may be written as a
matrix equation for all allowed values of i in the
form

The formulation above ean be generalized to any
number of equations.

The solution of Eq. (CV) for the lowest eigenvalue
and corresponding eigenvector is based on the
power method. We assume that an m bitruvy n-di-
mensional vector ean be expanded in terms of the
eigenvectors of a matrix, in this ease the matrix
A:

n

X= QCg~j.

If we subtract a constant A., times the identity
matrix from A., take the inverse and multiply X on
the left 4 times by 4- ~,I, we get the series

(A-XOI} 'X = g
A.

~
—A.o

(C12)

Ã, ][I]
P] (H. ] lI]

fI] [Z,] [S]

lI] [H.]

(CS}

(A-X,I) 'y = Q
(xq —A )'

(C14)

For sufficiently large values of A', the term with
the eigenvalue closest to ~, will dominate the series
in Eq. (C18) if we compare the absolute magnitudes
of the terms. Ao is known as the shift. If X& is the
smallest eigenvalue and X,& ~, , the series con-
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verges to

(A —X I) ' (C15)

TABLE XII. Log&k[ (ik —tkk}/tk(va lmak for Hekbcc at
0=23.94 cm3/mole, using the Lennard-Jones potential:
See Appendix D for details.

~,. is then given by

(A-. X,I) 'X
i 0 (A y l)-. (k+1)

}I
(C16)

U,. - (A —X,I) '
y . (C17)

APPENDIX D

In this Appendix, we will discuss some of the
properties of the correlation function g(r) defined
in Eq. (32). If Eq. (32) is substituted into (17}we

get the following equation of motion for g( r ):

}I', k'u
~

——Vv+ (r-Z) V„'+ V(r) g(r) =E*g(r},
m m

(D1)
where

We know we have attained a sufficiently large val-
ue of k when Eq. (C16) gives a reasonably constant
value of ~,. when k is increased further.

We have thus arrived at a method of obtaining
the lowest eigenvalue and corresponding eigenfunc-
tion, which is: assume shifts Xo of decreasing
sizes to find X, through Eq. (C16) in each case. If
it yields the same eigenvalue each time, we may
reasonably conclude that we have found the
smallest eigenvalue.

In the present work, Eq. (C6) was replaced by a
set of 26 equations, n was chosen to be 101, and

}I, which has 26 X (n-2) =2574 components, was
chosen such that the first 26X26=676 elements
were each equal to zero and each of the remaining
elements equal to 1.

Shell no.

1
2
3
4
5
6
7
8
9

10

-8.0x 10~
-9.6x 10
-1.9x 10~
-7.6x10 3

-6.0x 10~
-2.6x 10~
-1.7x 10~
-1.5x 10~
-8.0x 10~
-3.0x 10~

5 =Ek/(E'o'/m). (DS)

In terms of dimensionless parameters, 6 reduces
to

1 2 3+44d 2a 0 90
2a a (D6)

Table XII shows shell numbers along with corre-
sponding values of 5 for He' at 0 =23.94 cm'/mole
using the Lennard-Jones potential. We observe
that 5 is always negative and ~6~ «1. These pro-
perties of 6 are expected to hold for the other
volumes.

If we insert (D4) into Eq. (D3) we obtain, for the
second-derivative term,

If we neglect the second-derivative term in Eq.
(D3) for the moment and solve for g(r), we obtain

g(&) -&', (D4)

where

E*~E„—3kic —2 U(0).

Equation (19) has been used for y(r). In the limit
r-~, V(r )-0 and Eq. (D1) reduces to

&g(~) I6I( I61 + 1) .
a r' ~le+2 (D7}

s'g(r) k'o' sg(r)
m e~ ' ' s~ =E*g" (D3)

Since ~6~ «1, we can indeed neglect the second-
derivative term as r-~.
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A self-consistent, microscopic theory of scattering of light by molecular aggregates is evolved from the
standpoints of random-phase-modulation theory and stochastic theory. Contemporary theory is founded

on the premise that the scattered light spectrum is proportional to a four-dimensional Fourier transform
of the molecular density-correlation function. This premise is justified only in a continuum

representation of density, but it breaks down when the motion of discrete molecules is taken into
account. The Rayleigh spectrum is shown to be a manifestation of translational degrees of freedom of
molecules, much as the Raman spectrum is of internal degrees. Both the central and shifted
components are attributed to propagating waves representing probability densities. Theoretical spectra
are in agreement with experimental data in both the kinetic and hydrodynamic regimes, and the shifted

frequencies are simply related to the rms speed of typical molecules. This theory also provides a
mechanism which could account for deviations of total integrated intensity from that predicted by
incoherent scattering. Such deviations are simply related to the ratio of intensities of the shifted and
central components of the spectrum. Success of this theory, however, is not achieved without complete
departure from conventional approaches of kinetic theory. By necessity, statistical aspects of the
problem are approached through the use of a set of partial differential equations for the probability
densities of continuous, differentiable stochastic processes. Statistical trajectories of molecules are
characterized by a single function h (v) defined as the logarithmic derivative of the conditional
expectation value of velocity. Solutions based on the asymptotic behavior of h (v) suggest the possibility
for existence of other lines at the high-frequency end of the Rayleigh spectrum.

I. INTRODUCTION

The resurgence of interest in Rayleigh scatter-
ing of light in liquids and gases resulted to a large
measure from invention of the laser and the ana-
lytical work of Komarov and Fisher, ' who related
the spectrum of scattered light to the function
S(K, ~}, often called the structure factor, which
is interpreted as a four-dimensional space-time
Fourier transform of the molecular density-cor-
relation function G(p, v}. It appeared possible,
therefore, to infer some information on the dy-
namic structure of molecular aggregates through
analysis of Rayleigh spectra.

In a aeries of papers, Yip and his co-workers'
proposed a kinetic calculation of Rayleigh spectra
by extension of developments in transport theory
and neutron scattering. Almost concurrently,
Mountainv' developed a number of hydrodynamic
calculations for the density-correlation function.
It appears, however, that no attempt has been
made at evolving a theory of light scattering from
a unified set of principles. Although recent kinetic

calculations of the spectra by Sugawara, Yip, and
Sirovich" —based on approximate solutions of
the Boltzmann transport equation for two specific
interaction potentials —are in agreement with the
observed spectra of Xe and CO, at a large viewing
angle of 169.4, they are not conclusive evidence
that kinetic theory provides a truly microscopic
theory of light scattering. Instead, these solutions
essentially provide methods of calculation for the
density-correlation function which, no doubt, are
useful. As a theory of light scattering, however,
composed of a self-consistent body of principles
as a framework for interpreting observed phenom-
ena, kinetic theory has neither explained the very
existence of a Brillouin doublet as a manifestation
of microscopic molecular events, nor predicted
an analytical relation between the doublet frequen-
cies and molecular quantities. In contrast, hydro-
dynamic theory interprets the doublet as a conse-
quence of propagating density fluctuations and pre-
dicts the doublet frequencies in terms of acoustic
velocity. To the extent that it attributes the ob-
served phenomena to strictly collective or con-


