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The autocorrelation function of the density of a tagged particle is studied using the Mori formalism.
The variables used are the collective conserved variables, the tagged-particle density, and bilinear
products thereof. The case of point particles is considered in two dimensions, and, in three dimensions,
self-diffusion by a particle of arbitrary size is treated. It is found that the bilinear-hydrodynamic
approach automatically separates the self-diffusion coefficient of the tagged particle into a
nonhydrodynamic part, and a hydrodynamic part which resembles the Stokes-Einstein law. In two
dimensions, it is found that the mean-square displacement of a particle increases as tint, and that
certain natural redefinitions of the diffusion and friction coefficients leave Einstein's law invariant. In
three dimensions, for a large particle, the Stokes-Einstein law is reproduced. The relation between the
well-known t ~ '" "tails" on correlation functions, and the Stokes-Einstein law, is discussed.

I. INIODUCTION

Stokes' has calculated the fox ce on a sphere in
uniform motion through a continuum which obeys
the laws of linearized Navier-Stokes hydrodynam-
ics, and which sticks to the sphere at its surface.
The result is

F = —6vs)By/m,

where y is the momentum of the sphere, m is the
mass, and B is the radius, while g is the coeffi-
cient of shear viscosity of the continuum. The fric-
tion coefficient of Brownian-motion theory $ is
defined by the relation

F = —(g/m)p; (2)
thus, we have Stokes law

Einstein's lavP relates the diffusion coefficient
D of a Brownian particle to the friction coefficient

(4)

where k~ is Boltzmann's constant and & is the ab-
solute temperature. The combination of Eqs. (3)
and (4) yields the Stokes-Einstein law

vrhich relates the diffusion coefficient of a Bxown-
1all sphel'8 to the viscosity of tile solvent~ the 1'a-
dius of the sphere, and known constants. Prom
a molecular point of view, the Brownian-motion
conditions for which Egs. (l)-(5) ought to be valid
correspond to the motion of a large heavy particle
through a dense solvent of small light molecules.
More precisely, the mass of the heavy particle
must be large compared to the mass of a solvent
particle and i.ts radius must be large compared to
the distance between solvent particles. It is indeed
true' that solutions of macromolecules in small-
molecule solvents appear to obey the Stokes-Ein-
stein law.
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Remarkably enough, ' the Stokes-Einstein law
also seems roughly correct for particles which
should not obey Brownian-motion assumptions.
For example, the law works reasonably well for
relating the self-diffusion coefficient of a constit-
uent particle of a pure liquid to the shear-viscosity
coefficient of the liquid. The wide range of useful-
ness of the Stokes-Einstein law has provoked nu-
merous attempts to derive the law using molecular
arguments. Such attempts have met with varying
degrees of success, and have utilized different
theoretical approaches. For example, ' attempts to
derive the Stokes-Einstein law have been made
utilizing the correlation-function expression for
the friction coefficient 5 = J, (EE(&})«/&eT'. In
the following, we shall present a new approach to
the problem, based upon the principles of general-
ized hydrodynamics.

In order to introduce our approach, it is neces-
sary to present a definition of the self-diffusion
coefficient. Let n'(r, t) be the density of the ith
particle in an N-particle system (we can let )i =1).
For point particles,

n'(r, t) = 6(r —r, (t)),

where r, (t) is the center-of-mass position of par-
ticle 1 at time t. Equation (6) must be modified
for large Brownian particles, but we shall defer
the discussion of this question to Sec. V. The
spatial Fourier transform of n'{r, t) is Ng(t),

ng(t) = f '"e'n'(r, t)dr =e'"'& '

Mori's identity' allows the calculation of the La-
place transform of the autocorrelation function of
n), (t),

f e "(sq;(t)n'g(0)& «—=S'(fc, e}=[e+k'D(%,e)] ',
(8)

where ( & denotes an equilibrium-ensemble aver-
age, k is the magnitude of %, and S'(fs, s) is defined
by Eq. (8). D(%, e) is given by

vector- and frequency-dependent self-dif'fusion
coefficient of particle 1. From Eqs. (7) and (8),
we ean easily see that

where d is the dimensionality. If Dis independent
of % and s, Eqs. (8) and (12) yieM the usual result

( ~ r, (t) —r, (0} ) ) = 2dD(0, 0)t. (18)

Vfe introduce the dimensionality at this point be-
cause we intend to discuss self-diffusion in both
two and three dimensions.

The theory which is to follow is based on two
ideas. The first idea is that, since the Stokes law
follows from hydrodynamics, a microscopic cal-
culation of S'( k, s) [and thus, via Eq. (8), of D(k, e)]
which correctly includes hydrodynamic effects
should also include the Stokes law. The second
idea is that it should be possible, via the Zwanzig-
Moris' theories of generalized hydrodynamics,
to correctly calculate the hydrodynamic effects
upon the autocorrelation function of any dynamical
variable (n' in our case) by using the variable of
interest, plus the hydrodynamic conserved vari-
ables, and all possible products thereof, as a
complete set of variables.

Thus, we apply the Zwanzig-Mori" formalism
to the calculation of S'(R, s) [and thus D(%,s)],
using as variables n' and the collective conserved
variables. ' Bilinear products of n' with the col-
lective conserved variables play an important role.
The resulting D(%, e), for particles of all sizes,
has a hydrodynamic part of Stokes-Einstein law
form. Since we calculate D(R, s), and not just
D(k =0, s =0), we are also able to discuss devia-
tions from Eq. (13), (dr'(),') )(x)!; this discussion
is of particular interest for two dimensions, where
we shall see that the physical meaning of the much
discussedQ infinite-diffusion coefficient [D(k =0,
s = 0) = ~] is that ( (br(t) (

' ~&t lnt for large t. Fi-
nally, we shall show how our general expression
for D{%,s) reduces to the Stokes-Einstein law for
a large Brownian particle.

where

(10)

p, is the momentum of particle 1, &~ is the Mori
projection operator onto the variable n',

(11}

for an arbitrary variable A., and L is the classical
Liouville operator We define D(.%, e) as the wave-

H. GENERALIZED HYDRODYNAMICS

Mori's identity for the set of variables Q is'

f e "(Q(t)(()&*&«=- 5 '(s) f e "(Q(t)Q+& dt,

(14)

r-'(s)=(-(Q «Q+f &e Q(( ) (Q)'+)-"(QQ*& ',
(15)

(QQQ') is the matrix whose ij element is (Q'Q*~
&,
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a set of coupled linear equations which is easily
solved.

We wish to construct the equations to calculate
S'(%,s). For small k, the hydrodynamic-con-
served variables' are the most slowly varying
variables of the system. These variables are' the
number density

E
n-= ~~ e'"'&

k j =1.

and the momentum density

(18)

(19)
j =1.

In Eqs. (18) and (19}we have left implicit the time
deyendence of the molecular properties, and we
shall continue to do so. In order to yerform the
self-diffusion calculation, we also include the
conserved tagged particle density A defined in
Eq. (V). We shall denote I-„,p-„, and sI as I-„.
We shall ignore fluctuations in the energy density;
as discussed ln an earlier paper& this should not
affect the general structure of our results. One
should note that the original derivation of the
Stokes law' also ignores temperature (energy)
fluctuations. Equations (V), (18), and (19) are
appropriate for a system in which all the particles
have essentially the same size (radius a) and for
which ka«1. In Sec. V we shall modify them for
a system in which a large, Brownian particle is
embedded in a Quid of small bath particles. The
system considered here consists of N-point par-
ticles in a volume V in the thermodynamic limit
(N, V-~, N/V fixed).

If we include the L-„, and a11 products thereof,
in our set Q~, for small k, the operator (1-P}in
Eq. (16) will remove' all the slowly varying parts
of (Q(f) Q» &, which is then rapidly decaying, and
Eq. (1V) will be valid. Thus we should be able to
use Eq. (1V), with the above-mentioned set of
variables, to perform a small-k small-s (long-
time) calculation of 9'(%,s }which includes hydro-
dynamic effects.

The set of bilinear products of the L k which are
characterized by wave vector fc, i.e., Ig, -k I
shall be denoted by Bk k . As discussed by Ka-
wasaki, "and in an earl, ier payer io the components

&~(f)~*&'-=&(1-~)~*t~'-'""'(I-~)~)&, («)
and & is the projection operator onto the set of
variables Q. If &Q(f}Q»&t decays rapidly on the
time scale of interest, we may replace f' '(s) by
its s =0 value' and inverse Laplace transform Eq.
(14) to obtain

—&Q(t)Q» &= —V' '(s =0) (Q(t)Q»),
d

of 8 are slowly varying for small 0, and for
k'&k, , where k, is the cut-off wave vector; for
pure liquids, we expect (ak, ) «1, where a is the
particle radius. In this paper, as in Ref. 10, we
shall limit our set Qk to consist of the linear
variables Lg and the biiinear variables ~
The trilinear and higher nonlinear variables
should not yield important contributions to our
results.

HI. DERIVATION OF EQUATIONS

A. General Remarks

We now derive the coupled equations necessary
for the calculation of the correlation function,
(Nk(t)n'-k&. The derivation proceeds as in Ref.
10. First note that the variable, n&k, k, n'g. , is
identical to n&k, and is hence superfluous. The
next important simplification is that the variables
~ky P% ~ ~k+ k'@-If' ~ Pk+k'P-k'~ +k+7'P-k'y
pk, k. & k. are unnecessary for the calculation of
the autocorrelation function of n&k. As discussed
in Ref. 10, the Euler equations for n' [those re-
sulting from the first term on the right-hand side
of Eq. (15}]may be schematically written

dt
&Nx(t)N'-k&= L L &Lk(t)n'-k&

&stf -k&

Z,~- ~', &ftI;.1; (t)"~&
-k, g')

» 1
&skfi-i. k& x

&sVL 1&, &skfI X.k &, &s~»"k.X &" o(1} (»a)

Ig -k& &~Bk~k k' ,& ~0 ( ) (21b)

&&k fINV & "0(&') (22)

Thus, Eq. (20) becomes

—
dt

&nk(t)s'k&~o ~&fk(t}s'k&+~p&flk, f (t)s'%&
k'

+ N2 g&&x, k (t}s'-k&
k'

(23)

It is also necessary to use the result
f.

M=—P = N(ak, )~,
k I

(20)

where B and 8 are bilinear products of single-
particle linear variables (n') with collective linear
variables, and of collective linear variables with
collective linear variables, respectively. The
order in N, the number of particles, of the various
static averages in Eq. (20), is
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since u is on the order of the interparticle spacing
for dense systems. We therefoxe see that the only
term on the right-hand side of Eq. (23), which does
not disappear in the thermodynamic limit is the
B"term. Thus, since the Euler V' ' matrix ele-
ments are the dominant off-diagonal" terms, for
small k, k', and for point particles, we need con-
sider only the variables n~&, n~&, & N g, n&+&.n'g. ,

1
p $ RIll pg+'f s p ~ This simplification

arises because we are interested only in one-par-
ticle dynamics, and does not hold for two-compo-
nent systems of arbitrary concentration.

(nk, k P k )
' =n), k. P g, (25)

j.
(nk+k n k ) =NX+k & 7-g{-k }"» {26)

g(k )=I+(N-1}(e' '»);

(pg k, pg~ k, }' and (pg~p~k is gi} al'e obtained from
the above by the substitution, k'- -k-k'. The

quantity (e'" '» ) is of order a'/V away from
the critical point, and thus g(k') = 1 (Na' = V for
dense systems).

1
We order the variables N&&, then (nk, k. p k.)',

{m.k &'-k }', (&~; &-V )', (&k.k &'k )' «»
given k', then the B ' for a different k', and so
on. The matrix (QQ*) is seen, from Eqs. (21)
and (22) to consist of a 1&1 block of order 1 in
the upper-left-hand corner, and successive 4&4
diagonal blocks which may be of order N. Of
course, there are no linear-nonlinear terms by
construction. It is easy to see that the coupling
elements between B ' of different k' are of order
1. It is now possible to expand in powers of I/&
to obtain the result that the inverse, (QQ*) ',
consists of diagonal blocks of order 1 and I/N,
and off-diagonal elements of order (1/N').

Using similar considerations, we find that the
matrix (QQ*) has a zero in the upper-left-hand
corner, 4X4 diagonal blocks which may be of

B. Kuler Equations, General Discussion

Although the derivation of the coupled equations
1

for the variables of interest (ng, Bk k ) is analo-
gous to the derivation in Ref. 10, we shall discuss
the derivation of our equations in some detail
from this point. This is done to facilitate later
comparison with the case of a Brownian particle.
In order to determine the Euler coefficients
(QQ*) (QQ~) ' we first consider the matrix (QQ*).
We define new bilinear variables" B--„,which are
orthogonal to n-„ in the sense that (s„B k k ) = 0.
These variables are

order N, off-diagonal elements between bilinear
variables of different k' of order 1, and linear-
bilinear coupling coefficients of ox'der 1. We may
now schematically write out the Euler equations

dt (Bk I ~ (t)s' k) = 1 (n&~ (t)n' k) + 1 (B};k.(t)s' k)

1 M
+ —+ —, g (Bkg-(t}n'k).

/Itsy Qt

{2eb)

In the coefficients of form I/%+M/N', the first
term 1/N arises from the diagonal blocks in the
matrices, and the second term M/N' is the only
term to which the off-diagonal elements of the
inverse (QQ') ', contribute. The smallness of
the off-diagonal coefficients is partially cancelled
by their large multiplicity M, but from Eq. (24)
we see that M/N'=(I/N)(ak, ) «I/N, and thus we

may ignore the contribution of the off-diagonal
elements of (QQ*) '. We shall see later that this
is not possible for a Brownian particle. It has al-
ready been shown in Ref. 10 that, for point parti-
cles, the coupling between bilinear variables of dif-
ferent 4' is negligible for the L~ correlation func-
tions. This coupling involves the only coefficients
to which the off-diagonal elements between dif-
ferent@'inthe matrix(QQ'k) contribute. It isthere-
fore necessary to consider only the diagonal blocks of
the matrices (QQ*) and (QQ*) ' and the linear-::
bilinear terms in (QQ*), in our treatment of the
self-diffusion Euler equations for point particles.

C. Derivation of Kuler Kquations

We now write down the Euler equations. The
necessaxy nonzero static averages are

(s-'„{s'g -k pg. )')=(gk/m}mksT, {29}

((&f, k n g )'(s'k -„.pg.)')= —(ik'/m)HmJF~T,
(30)

((&k -,p g )'(n-%-k'pg )')=Xmk T I, (81)

((&f.V &-r )'(&'-k-k'sk')') =~g(k+k'), (~2)

where I is the unit tensor. As we are considering
systems away from the critical point, with k, k'

«1/a, we may always replace g(k) by its zero-0
value, which we shall write as g. With these re-
sults, and with the well-known properties of the
equilibrium-momentum correlation functions, we

obtain
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dt
&ng(t)n'~)=

3 N g&[ng, ~.p ~. +pg, g. n'-~]'(t)n' ~),
m

(33a)

dt &[ng, g P u ]'(t)n'q)=ikksT &nq (t)n'P& —ik' &[ng, r, .n u ]'(t)n'-r),
g

(ssb)

dt &[nq,pn g ]'(t)n'&)= —ik'/m &[n&,„p g.]'(t)n'-„). (33c)

D. Dissipative Equations

We shall treat the dissipative coefficients as in Ref. 10. Off-diagonal dissipative coefficients are negli-
gible with respect to Euler coefficients for small k and k'. We assume that the equations of motion may be
expanded up to quadratic order in k and k'; this fundamental assumption of our method is discussed in Ref.
10. We define the diagonal-dissipative coefficients via the relations

(1 —P)n f, = (i k/m ) (1 —P) p q, (34)

f dt —ik ((1—P)p p[ec ~&'~'(1 P)p&]) ik= mksT( —ik D, i-k),
0

d i i(k+k') x
(1 —P) —t nk p( n g. = (1 —P) p& &, n

(35)

(35)

f dt —i(k+k') ~ &(1 —P)(p'& & n&)'[eo +'(1-P)(p-„,&
n &.}'])i(k+k')= NgmkI-T[ i(k+k-') D, i(k+k')],

d x i(k+ k')
) dt (nk+k'P-k') ( )Pk+O'P-k' (1 P)np+f('a -g&i

~ ~ik
pl= m

'~xy

(37}

(38)

(ssa)

l dt 1-&
dt ""p" 'e' ' '1 —

dt ]+a p
0

NmksT [-i(—k+k') D, i(k+k')+ik'qa —ik' —' i(k+k')'5 ik'+ik'5 —i(k+k')]. (39)

Q nt, u. p g ~ =p~7+ Q pse'"' 5(ru);
k =0 2 &1

(40)

due to the nonsuperimposability of particles, the
second term on the right-hand side of Eq. (40)
may be ignored. Thus, if we had k, &w/a, we
would expect (1 —P) pq =0, and thus D, =0, due to

1
the projections orthogonal to the ng, ], .p q. vari-
ables for all k' & k, . Since the sum over k' in our
equations is actually terminated at k' = k, «w/a, it
is not expected that (1 —P) p~ is actually zero, but
it is still possible that &p], is large enough to

The quantities, D, and D, are "bare" self-diffu-
sion tensors, and should be related to each other.
For isotropic fluids these tensors are just equal

to constants times the unit tensor, i.e., D, =D,I,
etc. It is quite possible that the "bare" diffusion
coefficients Dp and Dl are smaller than the
"ordinary" self-diffusion coefficient. The bilinear
variable, n]„],.p ]... has the property that

reduce the bare diffusion coefficients from their
ordinary values. Later, we shall see that D, is
identically zero for a Brownian particle. The dif-
fusion tetrad, D„ is more complicated than the
diffusion tensors, but similar considerations hold.

The tetrad, g„ is the bare kinematic-viscosity
tetrad, and should be similar to the usual kine-
matic-viscous tetrad; there is no particular rea-
son why the microscopic stress tensor o, which
determines the bare viscosity, should be signifi-
cantly reduced from its usual value by the new

projections which we have introduced. The tetrad
& involves the time integral of a correlation func-
tion which vanishes at zero time, and may be very
small.

We may now write down our complete set of
equations. These equations are intended to de-
scribe self-diffusion in two and three dimensions
for a pure liquid composed of point particles, in
which energy fluctuations are negligible up to
Navier-Stokes order. The equations are
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d, , gk 1 c

dt
(s1'(t)s g&= —~

2ft ([sk+k, p g, +pg+g, s -k]'(t) I'g& -k'D, ( sk(t)s'g&,
I

—([n$,g s 1; ]'(t)s'g&= —(ik'/m) ~ ([s~k,g p 1; ]'(t)s'g& —~k+k'~'D, ([ng, k n g ]'(t)s'1;&,

(41a)

(41b)

([st(+)t'p-p] (t} -t(& ikksT(sk(t} -k& (ik /g}k T([sI(+k's-k ]'(t}s'1(&

+[i(k+k')'Dk't(k+k')+ik'rto ik' —ik'5 i(k+k') —i(k+k') 5 ik'] ([nk+k ~ p g.]'(t)s'k&. (41c)

IV. SOLUTIONS

In this section we shall solve Eqs. (41) for (nk(s)s'g&, and thus obtain [see Eq. (8)] D(k, s), in two and
three dimensions. We choose k~)s, and we Laplace transform Eq. (41a), to obtain

1
(ni(s)n'() = (s+k D —~'r([n-„, (p' +()(n(' ) ()s)n )((s('(s)a'() ')

kl
(42)

D, is the nonhydrodynamic "microscopic" part of
D(k, s), and the third term on the right-hand side
of Eq. (42) contains the part of D(k, s) describable
by bilinear hydrodynamics. Equation (42) is valid
for two and three dimensions. In order to eval-
uate the hydrodynamic part of D(k, s) it is neces-
sary to express [sk, k.P'-„.J'(s) and [Pk, -k, n'g. ]'(s)
in terms of nk'(s).

A. Two Dimensions

There has been much recent discussion of the
nature of self-diffusion in two dimensions,
prompted' by Alder's computer experiments and
various theories. " These predict an infinite dif-
fusion coefficient D(k=0, s=0}. We shall now
obtain an expression for D(k, s) for point particles
in two dimensions. In order to treat the [n'P*]'
and [P*tl']' terms in Eq. (42), we introduce an
(x', y') coordinate frame in which k'~

~
x'. In the

following, we shall omit the primes on the B"',
and we shall omit k subscripts whenever our
meaning is obvious. We have

n'p'+ p*n' = (s'p" +p*'s') cos(t) —(n'p"'+ p"'n') sin(t),

(43)

where (t) is the angle between k and k'. The (x', y')
coordinate system is the natural coordinate sys-
tem for this prob)em. Since k' lies along the x'
axis, as k-0, pk+k. n'k. represents a pure "lon-
gitudinal" (P* is a function of x'} mode, whereas

yt
pk, k n'g represents a pure transverse mode.
Equations (41) are simplified in the (x', y') system
because k„'.=0. We now introduce two simple
approximations. We set 6 = 0, which clearly does
not violate any important principle. Furthermore,
we shall replace go by go' I 4 and 9;0I~4) 1n the cal-
culation for e'P', P' n' and for n'P",,P"n', respec-
tively, where q," is the bare longitutlinal viscosity,
go is the bare shear viscosity, and I ' is the unit
tetrad. This latter approximation may at most
introduce a small numerical error in our results
for D, and is of a trivial nature. We may now
solve Eqs. (41) to obtain

([sg, -k. p't; ](s)s'~&=ik" ksT(s+~k k+')' D+k"q, ) '( gs(s)sg

([pt;, -k. s'-k. ](s)s'-k&=ik" ksT[s+k"D, +~k+k'~')I, +(k', k~T/mg)(s+k"D, ) '] '(nt;(s)s'g&;

thus,

c 1
([sk.k P"-1 +Pc. k '-t l(s)s'-k&»n&

I

k

=ikksT(nk(s)n'g& sin'(p (s+ (k+k'( Dk+k"go) '+ s+ (k+k'Jkgo+k'kDk-
mg s+k D,

(44a)

(44b)

(45)

where we have used the inverse transform

(45)k„' = —k sin(t).

The sums in Eq. (45) are performed via the substitution+-k. - [V/(2v) ] J dk'. We then obtain the part of
the "hydrodynamic" diffusion coefficient (times k') due to the p" terms [see Eqs. (42} and (43}]
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of longitudinal modes (the sP* terms} to D( k, s).
Thus, we may correct our calculated hydrodynam-
ic part of D(k, s) by multiplying by a factor of a3

(two transverse modes instead of three), and by
setting p, = 'qo I ' . Equations (41) are now easy
to solve, with the result

2 0'k~T 1 1 1
(57}

Equation (57) may be combined with Eq. (8), to
obtain, for small k and s,

D =Do+ ks Tk, /3s2p(go +D2); (58)

the second term in Eq. (58) is the hydrodynamic
part of D.

D(k, s) =D, + AT 1
3 p go+D

D. Discussion of Three-Dimensional Result

Equation (58) is correct to Navier-Stokes order
(k'), which is the order in k to which our theory
may be used consistently. Thus, we see that, to
order k', the self-diffusion coefficient in three
dimensions may be considered frequency indepen-
dent, i.e., the P' autocorrelation function [see Eq.
(9)] may be considered to decay as a 5 function in

time. In order to reconcile this 6-function behav-
ior of (Pf(t)P' q) with the previously'" discussed
evidence that the hydrodynamic part of D is asso-
ciated with a t '~' decay of (p-„(t)p' g) for k = 0, we

evaluate Eq. (57) for small k and s:

Nonetheless, for s=k', as is appro~riate for self-
diffusion, and for k-0, we have s' -k, and the
s' ' term may be dropped as in Eq. (58). [Since
the second term in the bracket in Eq. (59) is a
"k"' term, while our theory is appropriate to
order k', Eq. (59) is not complete; we present
Eq. (59) for illustration, with these reservations
in mind. ] This means that, for sufficiently small
k, the hydrodynamic time scale becomes suffi-
ciently long that even a I; ' ' tail may be regarded
as a delta function. Thus there is no need to
include the B & g as variables, in three dimen-
sions, to obtain a useful expression for D up to
Navier-Stokes order. Our reward for including
the Bg I, ~ variables is the appearance of the ex-
plicit expression for the hydrodynamic part of
D(k, s) in Eq. (58).

The hydrodynamic part of D [Eq. (58)] strongly
resembles the Stokes-Einstein law Dsz = ksT/6sqR. —

Recall that we expect g =g, »D, in three dimen-
sions, that pg, gives the "usual" g„and that we

require k, =(v/a)c, where a is the particle radius
and c &1. Thus

D =Do+ 2cDsE, (62)

(59)

An inverse Laplace transform of Eq. (59) yields

m '(Pg(t)P'g}'=2D, 5(t)+ ',
3m'p g,'+D,

&Z/2

4( J. D )1/2f( )t

where
J.Df(t}=t 't'exp ~
' ~ k't, t&

(60)

(61)
f(t) =0,

4k,'(q, +D,)

The hydrodynamic part of Eq. (60) indeed decays
as t ' ' for times greater than the rather short
(k, » k) time, s/4k,'(g, +D,), and for k=0. For
finite k, the t ' ' tail is destroyed by a decaying
exponential. Note that it is not the s' ' term alone
in Eq. (59}which yields the t ' ' tail when k=0.
The s' term and the s-independent term (k,} in
the bracket in Eq. (59) combine to yield t ' '.

in three dimensions, D may be written as the sum
of a microscopic part and a hydrodynamic part of
Stokes-Einstein form. Unlike our two-dimensional
results, the microscopic and hydrodynamic parts
of D enter into Eq. (62) on an equal footing; this
is because hydrodynamics alone is not sufficient
to describe the self-diffusion of point particles in
three dimensions. Similarly, in contrast to the
two-dimensional case, the cutoff wave vector (and
hence the unknown parameter c) enters into the
hydrodynamic parts of D.

We remark that the shear-viscosity coefficient
q may also be written as in Eq. (62), with q, re-
placing D„and with trivial numerical changes.
Similar considerations probably hold for the other
transport coefficients. However, since Dsa =D,
and since the other transport coefficients tend to
be much larger than D, it appears that "long-time
tails" should be most important for self-diffusion.

We may attempt an evaluation of the relative
magnitudes of the hydrodynamic and nonhydrody-
namic parts of D. The relevant quantity for this
discussion is the ratio Z of the mean-square aver-
age of the Euler-equation [see Eq. (33a)] approxi-
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mation for i' to the mean-square average of the
exact result s-k=(ik/m) p$:

Ift;

Z sk+k'i -I' Z s-( k+k")t k" (~ksT)
k'=o %"=o

(63)

The condition for D, =o is Z= 1, for then the Euler
equation must be exact, and D must have only a
hydrodynamic (Stokes-Einstein) part. It is easy
to see that

1 X

&st. k P*-I s'-k-I-&i -& =~sT [&5k,t'-+ g(k' —k")],
(64)RIll So

Z=(I/R')M(X+Mg), (65)

V. LARGE BROWNIAN PARTICLE

Thus far, we have considered self-diffusion in
fluids composed of identical point particles. %e
shall now introduce the techniques necessary to
treat the diffusion of a particle of arbitrary radius
R through a solvent of identical small particles of
radius a (R &a). We shall show that in the limiting
ease kR «1, k, R» 1, our method yields the Stokes-
Einstein law. This limiting case, which corre-
sponds to the motion of a particle large on the
microscopic scale (k, R» 1), over distances large
compared to the particle size (kR «1), in a solvent
of relatively small particles (R» k, ' » a}, corre-
sponds to conventional ideas of Brownian motion.
The reproduction of the Stokes-Einstein law under
the above-mentioned conditions is an important
check on the validity of our approach.

It is necessary to modify the derivation of our
e(Iuations to treat the ease of arbitrary (not small)
B. %e shall assume that, despite 'he disturbing
influence of the single large particle, the cutoff
wave vector is still determined as in the point par-
ticle case. %e now introduce the appropriate ex-
pressions for the linear hydrodynamic variables
in the system of interest. The system consists of
N- 1 small particles of mass m and radius a, and

where we have set g(k' —k")= g(0), as discussed
earlier, ahd M is defined in E(I. (24). We have
already seen that g=1 for point particles; the
combination of E(ls. (24) and (65) now yields

Z= (ak, )' «1.
Thus, Z is small, and we have no way to argue
that D, should be small. For a three-dimensional
point particle, both hydrodynamic and nonhydro-
dynamic processes contribute to self-diffusion.
8 does indeed have a Stokes-Einstein-law part in
three dimensions, although that part does not
comprise the whole of D. The separation of D into
two parts occurs naturally via bilinear dynamics.

one particle, denoted particle 1, of mass Stand
radius R(R &a). Instead of E(I. (6), s'(r, t) = 6(r -r,),
we have

where }((k) is a cutoff function

X(k) = 3 [(sin kR —kR cos kR)/(kR)'] . (V2)

For k=O, }((k)=1, and for k&m/R, X(k) decays to
zero in damped oscillatory fashion. As we shall
see, if Rk, » 1, the presence of the function X(k)
removes the dependence of D on the more-or-less
arbitrary cutoff wave vector k, . If Rk, »1, }((k)
terminates all sums over k' which enter our re-
sults at about k' =m/R

According to E(ls. (VO} and (Vl),

~k %"=-&sk.k P*-k s'-k-k-t'k-&

=nAs T}((k+k')&((k+ k")

6 -1+( / )],I-+( / )X(k') (k")

+(I-5I'.g-)(N-I) &e" '-""~'
&]

~ (V3)

we define

(~-1)&e""'-""&'~o&-=k(k —k") (V4)
1

Since ng is orthogonal to n'P and Pe', we may triv-
ially obtain the inverse, &QQo& ', from the inverse

1
of Uq. g ~, Ug g- . In Sec. III 8 we saw that for
point particles & QQo&

' could be obtained by re-
garding the off-diagonal elements of (QQ*& as
small with respect to the diagonal elements, and
by writing the inverse as a convergent power
series in I/¹ The criterion for the validity of
this procedure was that M, the number of wave
vectors less than k„ times the magnitude of the
off-diagonal elements of (QQo&, was much less
than N. For point particles, this meant Mg«N,
which is indeed the case. According to E(I. (V3),

s'(r, t) = (~ mR') ' S(r r—,),
where 8 is the three-dimensional step function

S(r-r, )=1, Ir, rl-&R,

S(r —r, ) =0, Ir, —rI &R.

Similarly,

p(r, t) =p,(HR') 'S(r - r, )+ P p~5(r r~).—(69)
)v1

We shall not consider the variable s(r, t); the
p~esc~iption given in Sec. IV for correcting the
errors introduced by this omission is still valid.

The new definitiops of the hydrodynamic densi-
ties changes their spatial Fourier transforms, the
LF i viz-2

ax=a' '~X(k), (VO}

0'f=pie 'X(k}+ Q pg e (Vl)
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we require Mh(k' -k") «N for all R if we wish to
obtain the inverse (QQ*) ' for a particle of arbi-
trary radius, via a power series expansion.

We may make a reasonable estimate of h(k), via
the assumption that the only effect of particle 1

upon the static structure of the Quid is the exclu-
sion of solvent particles from. a sphere of radius
R about its center of mass. It is then easy to see
that

h(k' —k") =- (R'/a') X(k' —k"). (75)

As discussed above, the effective cutoff wave vector
is about w/R for this problem if the actual k, » w/R.

k C -1
~ ~

~U$& p(sl Uf It gltl '5/I gill ~

tI
(v6)

Equations (V3)-(76) may be combined to yield an
equation for U ',

Then Eq. (24), with k, = w/R, yields M~N(a'/R'), and
Eq. (75) yields I'I(k' —k") =-NX(K' -k"). There-
fore, for arbitrary R»a, we may not invert the
matrix (QQ*)using the technique developed for
point particles.

Our alternative method of performing the inver-
sion begins with the definition of the inverse

mksT NX'(k')Uf 1„+—X'(k')P X'(k")UI-1-+X(k') P X(k")h(k' —k")Ut;- -„~ =5g(, ,nl
k Il ~h I

I

(77)

where we have used the condition kR ~& 1, which
is true for all systems of interest, to justify ne-
glect of k wherever it appears in the argument of
the X's, and we have used the condition N»3R/m,
1, in the thermodynamic limit. Equation (77) is
difficult to solve for arbitrary h(k). However, we
shall see that, under the approximation [Eq. (75)],
an exact result for D may be obtained from Eq.
(77), in the limit Rk, »1, without an actual calcula-
tion of U '. Thus, we shall employ Eq. (75) in all
the manipulation, . of Eq. (Vv} which are to follow,
with the intention of deriving a result valid for
large particles. This approximation is the only
addition which we shall make to our previously
stated fundamental approximations in order to
treat the case of arbitrary R ~a; Eq. (VS} should
involve negligible error for R»a.

Since we do not wish to actually attempt an eval-
uation of U ', we now write down the equations
appropriate for the description of self-diffusion
by a particle of arbitrary radius R~a, proceeding
as if U ' is known. These equations (assuming
U ' is known) follow from the ideas presented for
point particles, and from the form of our redefined
I.), [Eqs. (70) and (71)]. It is easy to see that off-
diagonal dissipative matrix elements coupling
linear and bilinear variables [O(k')] are negligible
with respect to the Euler elements [O(k)] for small
k. Furthermore, off-diagonal dissipative matrix
elements coupling bilinear variables of different
k' vanish due to spatial isotropy as k-0. The off-
diagonal dissipative matrix elements are therefore
ignorable, and we obtain the equations,

~C ]C
(~)()% (&

—lf & i 'E=Qx'()'))&.,')(I~).im-i+Pi. i"--i N)4'-)&-&')&. (~i()&'-)) (VSa)

([s-„+1;p (, ](t)s'g)=ikksTX (1)(sk(t)n 1) —[k, q, k, +(k+k ) B,.(k+k ) —(k+k ) 5 k, -k, 5 ~(k+k )]

kc

~N)n)iBTX (1)Q U ([n((+% p-k ](i}n'-(() (vsb)

where we have written i instead of k, whenever possible. Note that Eq. (78b) includes coupling between
bilinear variables of different k'.

In order to solve Eqs. (78) we shall make all the approximations which we made for the case of point
particles in three dimensions, i.e., 5 = 0, D, is treated as a scalar, )70 is replaced by q, I('&, and the hydro-
dynamic part of our result for D is multiplied by + to correct for the effect of compressibility. In Sec.
IV C we saw that D was independent of k and s to Navier-Stokes order for point particles, and we shall
assume that this is also true for large particles. With these reasonable approximations in mind, we may
now perform successive substitutions of Eq. (78b) into Eq. (VSa) to obtain, for the self-diffusion coefficient
of a particle of arbitrary R~a,



~C

S ljo+ 1 2 3&1 ll

t, U -1 %~ U

1 2 3wsl 11 4ws3 33
(VQ)

%'8 now' perform certain manipulations designed
to allow the reduction of Eq. {VQ) to final form, in
the limit BA, » 1, without an actual calculation of
U '. The factor, P;y'(2)U» ', which appears in
each term of the hydrodynamic part of Eq. (VQ),

may be evaluated exactly in this limit by summing
both sides of Eq. (VV) over k, . The third term on

the left-hand side is evaluated via the transforma-
tion pI - [V/(2w}'] f dk, the convolution theorem
for Fourier transforms [Eq. (V5)], and the prop-
erty of the step functions S'(r) =8(r). The k, »I
condition is required fox the use of the convolution
theorem. The result is

the restricted sums over j may be obtained by
subtracting U~, '/U„'=1 from Eq. (83). Note that
the sum in Eq. (83}is independent of i. It fooows
that the terms in Eq. (V9) form a geometric series,
which may be summed, using the results above,
to obtain

D=D,+3 i D @AX'(f}&» '
~

2 k~T 1 c

3 m q~+g)2 N g

For the large-particle limit, for which Eq. (84)
has been derived, the p, is cut off by )t2(i) before
the cutoff wave vector is reached. , and k, may be
set to infinity; the result is

D = Do+ ksT/5w(l}0 +Dm)pR. (85)

~here M~'~, the "natural" measure of the impor-
tance of off-diagonal terms for this problem, is
defined by the relation

(81)

For Rk, » 1, X'(1) will cut off the sum in Eq. (81}
at some value of k, «k„and M~ ~ mill be indepen-
dent of k, , which may be set equal to ~. M~'~ is
then about equal to our previously defined M with

k, =w/R. Note that Q,"~ X'(1}U» ' is independent
of j, and thus me may extract a factor of
(M~'~sgkw T) ' from each term in the sum in Eq.
(VQ).

Next, me note that the diagonal elements of U '
are easily obtained. The corrections to the diag-
onal elements of U"' vrhich arise from the off-
diagonal elements of U vanish, with respect to the
[U«] ', in the thermodynamic limit; this may be
seen from an iteration of Eq. (VV). The correction
terms, &which are of the same order of magnitude
for each matrix element, suxvive in the thermo-
dynamic limit only if multiplied by a factor of M.
Thus U„'= [U„] ' and, from Eq. {V3),

U, -'= [~k,Tq'(f)]-'.

The only remaimng unknown quantities in Eq. (VQ}

are the sums of form Z~; Uq, '/Uqq '. These sums
may be evaluated by combining Eqs. (82) and (SO),
with the xesult

& U hbn
(83)

Z= mr, a,T P )t'(3)x'(4)U;,'. (SV)

The sums in Eq. (8'l) are evaluated by multiplying
both sides of Eq. (VV) by }t'(3), and summing over
1 and 3. %'8 find that Z is exactly equal to one,
if Bk, »1, and our final, result for a large Bromn-
iRn particle ls

D = %AT/5w p(qo +D~)R.

Equation (88) is almost identical to the Stokes-
Einstein law, Eq. (5). HecaLL that we expect q~
= g »D2 in three dimensions, Rnd tllat pg, viR our
definitions, is equal to the usual g. Thus, the
only difference between Eq. (88) and the Stokes-

Equation (84) also reproduces correctly the Rk, « I
form of D [Eq. (58)], which suggests that Eq. (84)
may be more general than our derivation mould
indicate. Note that Eqs. (84) and (85) are very
similar in form to Eq. (58), despite the added
complexities in their derivation. For particles of
all sizes, our method naturally divides 8 into
microscopic and Stokes-Einstein parts. Further-
more, it is easy to see that Do is identically zero
in this limit. 88CRll that the Inagnitude of Do %as
formulated, for the case of point yarticles, in
terms of the quantity, Z [see Eq. (63) and related
discussion]; if Z=l, D, =O. For particles of ar-
bitrary radius g og

Z=!3RksT Q g'{2)U,,'U„x '(4) U~,'. (88)
1,2,3,4
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Einstein law is a factor of +. To within the factor
of + we have shown that the Stokes-Einstein lam

follows naturally from a bilinear hydrodynamic
theory, in the limit of a large diffusing particle.
For such a particle, the cutoff wave vector does
not enter our final result.

VI. DISCUSSION

Let us nom summarize the major points of this
paper. We have developed a theory capable of
explicitly treating the Navier-Stokes hydrodynamic
aspects of self-diffusion, by point and Brownian
particles, in tmo and three dimensions. The theory
is based upon sets of bilinear "hydrodynamic"
equations. The variables employed are the tagged-
particle density nI-„ the usual conserved variable
densities, L,g, and all bilinear products thereof.
In the thermodynamic limit, the calculation of the
autocorrelation function of the tagged-particle
density involves only s-„ itself and the bilinear
variables of form ng+], L I,. The calculation of
(ng(&}s'g} via the solution of our equations auto-
matically divides the self-diffusion coefficient into
a Navier-Stokes hydrodynamic part plus a "mi-
croscopic" part; the Navier-Stokes hydrodynamic
part of D has a Stokes-Einstein lam form.

For the case of point particles in three dimen™
sions, the microscopic part of D is not arguably
small, and an unknomn coefficient multiplies the
Stokes-Einstein 1am in the hydrodynamic part of

Thus Navier-Stokes hydrodynamics does not

fully describe the self-diffusion of point particles
in three dimensions; our results show the actual
role of the Stokes-Einstein 1am for this case. The
hydrodynamic part of D is associated with a t '
tail on the tagged-particle momentum autocorrela-
tion function, for zero k. We have seen that, to
Navier-Stokes order, the t ' ' tail may actually
be treated as a 6 function, and in fact the word
tail may be misleading.

We have mentioned that the shear-viscosity
coefficient, and probably the other transport co-
efficients as mell, have hydrodynamic parts almost
identical to the hydrodynamic part of D. Since D
is usually the smallest of the ordinary transport
coefficients, it appears that the hydrodynamic
(f ' '} effects should be most important for diffu-
sive processes. A1.so, note that the frequency
dependence of D [see Eq. (59)] is only negligible
for small k and s, and thus the transport coeffi-
cients of non-Navier-Stokes hydrodynamics (Bur-
nett equations, etc.) may be significantly frequency
dependent. The importance of bilinear effects for
non-Navier-Stokes hydrodynamics has been noted

by other authors. "
For the case of a large Bromnian particle in

three dimensions, the microscopic part of D van-

ishes. There exist no arbitrary coefficients in
the hydrodynamic part of D, which is in fact equal
to the Stokes-Einstein 1am D, modified by a factor
of 5 instead of the usual +, and by the replacement
of the usual viscosity by a "bare" viscosity. Thus,
with minor differences, our approach "derives"
the Stokes-Einstein law for a large Brownian par-
ticle. The Stokes-Einstein lam appears as the
large-particle limiting form of an expression
[Eq. (58) or (84)], valid for particles of all sizes,
which in general is only partially described by the
Stokes-Einstein law.

It is of interest to note that the Stokes-Einstein
lam folloms naturally from the same equations
which give rise to the t ~' tails. Thus, as first
noted by Widom, "there is no contradiction be-
tween the existence of the Stokes-Einstein lam and

a nonexponential decay of the momentum autoeor-
relation function; the tmo phenomena are, in fact,
intimately related.

For two dimensions, we have obtained the usual
t ' behavior of the momentum autocorrelation
function for point particles. Due to the singular-
ities in the Navier-Stokes hydrodynamic part of
D as k, s-0 resulting from the t ' tails, the mi-
croscopic part of D is negligible in two dimensions.
Furthermore, the unknown cutoff wave vector k,
does not enter our small k, s results in tmo dimen-
sions, and thus Navier-Stokes hydrodynamics
completely describes self diffusion in two dimen-
sions at long times and small wave vectors. Since
our results are complete even for point particles
in two dimensions, it has been unnecessary to
consider the limiting ease of a Brownian particle.

Our equations predict that the mean-square
displacement of a particle increases at tint for
large t in tmo dimensions. We have seen that if
me redefine D so as to be finite and time indepen-
dent [Eq. (54)], and if we redefine the two-dimen-
sional friction coefficient so as to be finite and
velocity independent, then the redefined quantities
obey the Einstein law (to within a factor of —,').

There has been some speculation of late" con-
cerning the transport coefficients which belong in
the hydrodynamic part of the momentum autocor-
relation function in tmo dimensions. It has been
suggested that equations such as our Eq. (49),
which contains the "bare" transport coefficients
(g, and D,}, should actually contain the "dressed"
viscosity, g (k, s), which is calculated in Hef. 10.
The t ' behavior of the tmo dimensional "tails"
would then be changed to [t(lnt}' ] '." Our re.-
sults do not incorporate the above-mentioned idea.
Although the theory presented here encompasses
all the processes which give rise to the "dressed"
q(k, s) (see Hef. 10), the dressed viscosity enters
nowhere into the self-diffusion results. However,
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it appears possible that the inclusion of triple
products of hydrodynamic variables in our for-
malism converts q~ into a dressed g.
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The ground-state energies of solid He and H, at various densities are calculated using a

self-consistent method in the t -matrix formulation. The two-body equation of motion is solved by
expanding the two-body wave function in terms of partial waves. The partial-wave expansion gives rise
to a set of coupled differential equations which are solved numerically for the ground-state
eigenfunctions. The calculations for He are done using three different two-body potentials, the
Lennard-Jones potential, the Beck potential, and the Frost-Musulin potential. The calculations for H~
are done using the Mason-Rice two-body potential. A bcc structure is assumed for solid He', while an
fcc structure is assumed for solid H, . Exchange effects are neglected. Figures and tables are given
which compare the present results with those of other authors.

I. INTRODUCI'ION

The ground-state properties of solid helium,
which is well known to be the most characteris-
tic quantum crystal, have been the subject of quite
intensive theoretical and experimental activities
in recent years. There exist a number of excel-
lent expositions dealing with the behavior of solid
He' among which one may mention the papers of

Werthamer' and Guyer. ' Here one can find a
series of convincing arguments and figures exhib-
iting the rather unique character of He isotopes
when compared with other solid rare-gas elements
such as Ar, Ne, etc. The helium solid is more
"quantum" than solid H, or D, even though the
masses of the molecules of the latter solids are
smaller than that of He, the kinetic energies
larger, and consequently the excursions around


