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Short-pulse amplification in gaseous molecular amplifiers is complicated by many aspects of atomic
and molecular interactions. Among these are the various vibrational, rotational, and reorientational
relaxational processes which influence the coupling of the energy stored in the molecular radiators to
the electromagnetic field. The properties of plane-wave pulse amplification, especially in the saturated
regime, are examined numerically in order to quantitatively determine the detailed effects of these
relaxational phenomena. As expected, the results for saturated amplification show that the amount of
extracted energy decreases significantly when the rotational relaxation time is sufficiently long in
comparison to the pulse width. We also observe the development of pulse-shape variations which are a
direct result of the collisional phenomena and differ qualitatively from the results obtained for
amplifying media without an energy reservior. There is a tendency for the pulse lengths to increase

owing to the energy transfer, in contrast to the strong narrowing effects which occur in the absence of
the collisional processes. The influence of reorientational collisions is found to be small, accounting for
less than a 20% effect on the over-all conclusions. Finally, we present results concerning the

development of an asymptotic pulse shape in high-gain amplifiers. In this case, the pulse shape clearly

exhibits the competition between the stimulated rate, which scales with the optical flux, and the
collisional rates which are determined by the particle density. Calculations of this nature may be
applied directly to CO,, CO, and HF molecular amplifiers for both the electrically and chemically

driven systems.

I. INTRODUCTION

Electromagnetic pulse amplification in gaseous
molecular amplifiers is complicated by many
aspects of atomic and molecular interactions.
Among these are the multitude of relaxational
processes which couple the molecular systems to
one another as well as influence the interaction of
the molecular radiators with the electromagnetic
field. The perturbing fields which operate on the
quantum-mechanical systems generally have a
very complicated structure. There is, in addition
to the coherent electric field E(¢ , 2) of the ampli-
fied wave, a component due to collisions from

neighboring particles which is rapidly varying in
space, time, and direction. If the possibility of
significant correlations arising from the presence
of a coherent optical field is ignored,! then the
perturbing field due to collisions can be regarded
as a stochastic variable.? We do not take this
approach here. Instead, we represent the relaxa-
tional processes by the appropriate phenomenolog-
ical parameters. This choice arises quite natural-
ly from the strong identification of the particular
parameters with the corresponding physical mech-
anisms and relaxational processes. The dynamics
of the coherent electric field E(¢,z) are treated
semiclassically in the customary way.?
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In this work we appraise the effect of molecular
relaxational processes on electromagnetic pulse
amplification. Specifically, we examine the roles
played by vibrational relaxation, rotational relaxa-
tion, and reorientational relaxation. A vibrational-
energy~translational-energy exchange (VT) pro-
cess for species A is denoted by

A(v) +M—-A(V')+M +AE,, 1)

where M in this example represents a structure-
less collision partner, v and v’ designate the
quantum number(s) of the molecular vibration(s),
and AE; corresponds to the required change in
the kinetic energy of the colliding systems as a
result of over-all energy conservation. Processes
in which a fraction of the internal energy appears
as radiation are entirely negligible®* for the class
of systems being considered. Rotational and
reorientational relaxational processes involve
transitions among molecular-rotational states.
For a linear T molecule® the rotational state is
completely described by the state |j, m), where

j designates the total® molecular angular momen-
tum and m denotes the projection of j along an
arbitrary” space-fixed axis. Thus, we represent
collisions involving a change in rotational and
kinetic energies (RT) as

A(f,m)+M~A(',m')+M +AE, . 2)

Rotational relaxation refers to processes in which
Jj = Jj’#0, while reorientational relaxation pertains
specifically to j=j' and m —m’+0. Since the
m states are degenerate,® AE, =0 in the reorienta-
tional case, although in general the distribution
of the total kinetic energy between the colliding
particles changes during the collision.

Clearly the most general collision is appropri-
ately designated by

A(v,j,m)+M~AW',j',m') +M +Ey, 3)

in which all three indices (v,j, m) are simulta-
neously affected. In our model we neglect an
independent description of these mixed processes
and effectively assume that the probability of these
processes is adequately expressed by the products
of the probabilities for the corresponding unmixed
events.

In addition to the time scales governing the ki-
netic behavior, we include the contributions of
inhomogeneous broadening® (described by the
parameter Tj) and phase-changing collisions
(represented by the time T,) in a manner similar
to previous studies.!® The complicating effects of
velocity changes due to collisions relevant to
gaseous media are modeled in a simple manner
which is described in Sec. III.

Of particular interest are the properties of pulse

amplification in the saturated regime where the
stimulated rates are comparable to the density-
dependent relaxational rates. It is found that the
molecular relaxational processes exercise a strong
influence on the resulting pulse shape, the energy
extraction efficiency, and the saturation energy
density. We present results concerning these
quantities studied over a wide range of the relevant
parameters. With appropriate numerical values
for the relaxation rates, these calculations may

be applied directly to CO,, CO, and HF molecular
amplifiers for electrically and, with minor modi-
fications, chemically driven systems.

Finally, we observe that for a sufficiently short
pulse under the conditions in which the stimulated
rate greatly exceeds all the relaxational rates,
coherence effects dominate and we make contact
with previous studies of attenuating and ampli-
fying media.® In this situation severe pulse-shape
distortions appear as a result of the nonlinear
coherent interaction of the radiation field and the
molecular systems.

The outline of this paper is as follows. In Sec.

II we provide a brief discussion of the mecha-
nisms governing the relaxational processes of
interest, indicating the typical rates characteristic
of a wide class of systems. Section III deals with
the method of computation containing explicit state~
ments of the approximations used in our approach.
The numerical results are presented in Sec. IV,
which is followed by a concluding summary, Sec.
V. The Appendix explores the details of the phe-
nomenological density matrix equations.

II. DESCRIPTION OF BASIC RELAXATIONAL
PROCESSES

In this section we briefly review the nature of
the various collisional processes governing the
molecular relaxations. Although specific numeri-
cal values of collisional rates naturally depend
upon the detailed molecular properties of the
collision partners, it is possible to make some
general statements concerning the properties of
the molecular interactions causing the relaxation.

A. Molecular Reorientation

A free molecular system is characterized by a
total angular momentum!! vector § which is natu-
rally a constant of the motion both classically and
quantum mechanically.!? Pure molecular reorien-
tation corresponds to a change in the direction of
j without a change in its magnitude; the transition
|7, m)~|j, m"), m'+m represents a transition
between two degenerate eigenstates so that no
transfer of internal energy occurs. Such a transi-
tion can only occur through a torque applied to the
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molecular frame with a nonvanishing component
perpendicular to the original direction of the an-
gular momentum j. This collisionally induced
torque is a measure of the strength of the aniso-
tropic component of the molecular interaction.
As a rough approximation to the actual dynamical
picture, we use the classical equation of motion
governing the rate of change of the molecular an-
gular momentum"j,

d -+

Et—:':T’ (4)

where T represents the torque applied during a
collision. The torque generated by a force F is
given by

T=rxF, 5)

where T is the effective radius of interaction.
Equivalently, this force may be expressed as the
gradient of the appropriate potential-energy func-
tion!3 V(T) so that

T=FxvV (7). ®)
Simple integration of Eq. (4) gives
B85 = [ peon TXVV(T) at, (7

where the integration is over the duration of the
collision. If we now approximate the integral by a
properly selected product of average values, Eq.
(7) becomes

Aj=a(VV)uT, ®)

where the quantity a represents the effective force
range of the potential, (VV). is the mean force,
and 7 is the duration of the collision. Further-
more, if we approximate (VV ). as an interaction
strength V, divided by the scale length (V,/a) and
the time of collision 7 as a/v, where v is the mean
relative molecular speed, we obtain
in, Yo 8 _, 4

A) = P =V, prall 9)
This simple picture shows the elementary and
anticipated result that long-range intermolecular
forces are the most effective in transferring an-
gular momentum.

Experimentally, the rate of molecular reorien-
tation can be determined through measurements of
the pressure-broadened linewidth of depolarized
Rayleigh scattering. It has been shown by Gordon!*
and Hess'® that a measurement of this component
determines the rate of reorientation of the molec-
ular angular momentum by collisions. Such mea-
surements have recently been reported® for self-
broadening of CO,, OCS, and CS, having the re-
spective values for the cross sections of 65x10718
cm?, 94X107'® ¢m?, and 117X107'% cm?.

|

B. Rotational Relaxation

Rotational transitions and reorientational pro-
cesses are related in that they both result from
the torque generated by the anisotropic component
of the intermolecular interaction. They differ in
that the rotational transitions necessarily involve
a change in the magnitude of the angular momen-
tum vector j and thus require an exchange of in-
ternal energy. Since molecular-rotational ener-
gies scale according to Bj(j +1) where B is the
rotational constant'” and j equals the magnitude of
angular momentumj, the transferred internal
energy will tend to increase with j and the inverse
of the molecular moment of inertia. For the ma-
jority of molecular systems at temperatures
~300°K, the exchanged internal energy is sub-
stantially less than k6, where © represents the
kinetic temperature of the gas.'®* However, for
the light hydrides rotational energies are com-
parable to vibrational energies for j~10. Al-
though we will not address such possibilities in
this work, this can lead to interesting processes
involving near-resonant exchanges of rotational
and vibrational energy (RV) processes. Measure-
ments®® of the quenching of CO infrared fluores-
cence by H, show that para-H, quenches vibra-
tionally excited CO more readily than normal-H,.
Calculations?® indicate that a selective rotational-
vibrational exchange reasonably accounts for this
observation. Sharma?' has also discussed the role
of RV couplings in connection with the CO,-H, and
CO,-D, systems.

From the previous simplified discussion of
reorientation, we expect that rotational relaxation
will be strongly influenced by the presence of
long-range anisotropic molecular forces. Since
we are primarily interested in the longer-range
components, it is reasonable to approximate the
interaction by a model based upon a multipole
expansion of the charge distributions representing
the two molecules. Of course, the van der Waals
interaction involving a tensor polarizability should
also be included. Such a treatment ignores, for
example, short-range exchange forces which are
operative when the molecular charge clouds over-
lap.2?

Consider a polar molecule such as CO and HF
which have, by their lack of symmetry, permanent
electric dipole moments. At sufficiently long
range, the principal interaction producing the
required torque will be due to the coupling of the
collisionally induced electric field with the static
electric moment. In this case the interaction is
similar to that involved in the pure rotational
microwave spectrum of these molecules in that
both derive their coupling through the permanent
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electric dipole moment.?® Symmetric systems

like CO,, however, have a vanishing static electric
dipole moment owing to considerations of symme-
try, and therefore, must depend upon coupling to a
higher multipole moment. In this case, the first
nonvanishing electric moment is the quadrupole.

The validity of the picture founded on the multi-
pole expansion rests largely on the assumption
that the bulk of the interactions of interest occur
at intermolecular distances sufficiently large in
comparison to the molecular dimensions of the
free system. Pressure-broadening data of infrared
transitions can be used to establish the scale of
the interaction range to test this premise. For the
example of CO,, the full pressure-broadened line-
width?? of the 10.6-u P(20) transition is ~7.5
MHz Torr~!, which corresponds to a 7 A interaction
radius for CO,-CO, collisions. This is to be com-
pared with a C-O distance of 1.16 A and leads one
to conclude that the multipolar representation of
the molecular interactions is a reasonable starting
point. Finally, we emphasize that these remarks
are only approximate and are designed mainly to
present a simple model with which one can visual-
ize these complicated® interactions.

Rotational relaxation rates are generally rapid
processes with characteristic cross sections
usually not much less?® than the gas kinetic value,
Experimentally established values for several
gases are compiled in Ref. 25. The rotational
relaxation of CO, has been measured on the 00°1-
10°0 10.6-p. transition with laser techniques.*” The
value obtained is on the order of 10? sec™*Torr~!,

C. Vibrational Relaxation

Vibrational transitions are induced in collisions
by forces generated along the coordinates of the
normal modes of the molecule. Since an exchange
of angular momentum is not usually involved,?®
short-range as well as longer-range interactions
can both play important roles. However, since the
interaction should be diabatic for the transition
probability to be appreciable,® the rapidly varying
short-range contributions will exert a strong in-
fluence in a wide class of situations. Nevertheless,
the longer-range components appear to be influ-
ential and there is recent experimental evidence®®
indicating their participation in vibrational-energy
transfer processes.

Calculations of vibrational deactivation proba-~
bilities assuming a short-range repulsion of ex-
ponential form have been presented by several
authors.3! For a rather broad range of circum-
stances it is found that the transition probability
is exponentially dependent on a factor proportional
to (AE?>m/a®T)M?, where AE is the energy trans-
ferred, m is the reduced mass of the colliding

molecules, a~! is the range of the exponential
force, and T is the kinetic temperature.® The
role of diabaticity is clearly seen in an examina-
tion of this term; high velocity (low » and high T)
and short range (large a) all conspire collectively
to decrease the exponential factor and lead to an
increased transition probability.3

Vibrational relaxation rates are experimentally
observed to have a large variation. However, it
is generally true that resonant VV processes tend
to be significantly faster than VT deactivation
calling for large®® energy transfer into the kinetic
degree of freedom. Rates for VT processes,
nevertheless, vary strongly from one system to
another. For example, the p7 value for CO at
~300°K is approximately 1 sec atm while the cor-
responding parameter for HF is ~14 nsec atm.*

IIl. METHOD OF COMPUTATION

We are generally concerned with the response
of a pair of degenerate eigenlevels under the si-
multaneous influence of a resonant optical field
and collisional coupling to an energy reservoir of
adjacent states. The energy reservoir may con-
sist of nearby rotational levels, vibrational levels,
or a combination of both. The over-all effect of
rotational or vibrational levels is essentially the
same (they both serve as a pool of stored energy
which can be coupled to the radiation field), al-
though the communication rates for the two gener-
ally differ substantially. In these calculations this
merely influences the magnitude of the collisional
rate governing the transfer of population from the
energy reservior to the radiating states. With this
in mind, we do not explicitly examine the vibra-
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FIG. 1. Schematic of the level diagram indicating the
radiating states designated by their angular momenta
J (lower) and J’ (upper) along with the reservoirs of
rotational levels. Linearly polarized light polarized
along the £ axis is assumed so that the selection rule
Am =0 holds. T, and T,” represent relaxation times
defined in the text.
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tional case, but rather use the example of rota-
tional transfer to illustrate the general behavior.
A schematic of the relevant energy levels is
shown in Fig. 1. In terms of the radiating levels
J and J’, we consider the radiation field to be
exactly on resonance and linearly polarized along
the z axis, as in previous treatments of degenerate
transitions.®'%® This choice of polarization leads
to the selection rule Am =0. The self-consistent
solution of the Maxwell and Schrodinger equations,
which governs the behavior of the electromagnetic
field and the active radiating levels (J,J’), is
achieved in the manner described in earlier pub-
lications.®®'3” In order to incorporate the influ-
ence of the energy content of the adjacent levels,
we modify the calculation as follows: Since it is
assumed that the levels that comprise the reser-
voir do not interact directly with the radiation
field, it is sufficient to describe these states by
population densities®® alone. These population
densities are related to one another and to the
population of the radiating states through a kinetic
model representing the collisional coupling of
reservoir states to the levels in direct interaction
with the radiation field. In the absence of a stim-
ulating field, the levels J and J’ are assumed to be
in equilibrium with the reservior states at the
gas kinetic temperature. The presence of stim-
ulated emission, however, will perturb the equi-
librium situation and will consequently cause an
energy exchange between the reservior states,
which tends to restore the appropriate equilibrium
condition. The communication between the individ-
ual energy states is characterized by a single
inelastic relaxation time T;. The significance of
this parameter and the conditions under which one
may meaningfully describe the process by a single
relaxation time are discussed in the Appendix. In
addition to the relaxation time 7y, the other im-
portant property of the reservior is the ratio of
its energy content to the energy stored in the
active level. As we show later, it is appropriate
to define this quantity as 77/T;, the value® of
which in any specific case is determined by the
rotational partition function, the gas kinetic tem-
perature, and the angular momentum of the ra-
diating state.® We also account for the role of
molecular reorientation, since this will modulate
the coupling of the active levels to the radiation
field because of the m dependence of the dipole
matrix elements.3®'%® The time constant of molec-
ular reorientation is characterized by the param-
eter T{”. Inour model we assume that the prob-
ability of reorientation is independent of the pro-
jection change (Am), a premise which presumably
fails at sufficiently high angular momentum owing
to the finite range of molecular interaction. How-

ever, since the results show that the influence or
reorientation is relatively weak, we do not believe
that this is a serious limitation. For the purpose
of completeness we retain an inhomogeneous width
described by the parameter T, although it is
clear that the behavior of high-pressure®® ampli-
fiers will be independent of this quantity.

As stated earlier, these calculations involve a
simultaneous and self-consistent solution of both
Maxwell’s and Schrodinger’s equations. In this
section we wish to discuss the particular differen-
tial equations that are solved numerically to de-
scribe the process of pulse amplification in molec-
ular systems. It will be seen that the results are
in contrast to those obtained with the two-level
atom models. There are two reasons for this
outcome. The first point relates to the fact that
the coupling constant between the molecule and
field is dependent on the angle between the angu-
lar-momentum vector and the electric vector.
This is expressed as an m dependence of the ma-
trix elements. This turns out to have only rela-
tively minor consequences. The second more
important factor is that the active level is closely
coupled to nearby vibrational and rotational levels
through collisional mechanisms. These act to
repopulate the active level when it is depleted by
radiative saturation. Previous amplifier treat-
ments have not dealt with this situation. Further-
more, this adjacent set of molecular states rep-
resents a saturable reservoir of energy. This is
another aspect of the theory which is absent in a
two-level treatment. As a direct consequence of
these energy-transfer processes the qualitative
aspects of molecular amplification differ dras-
tically from a two-level treatment. Although the
model we use here is very simple, generalization
to more complicated situations is straightforward.

The basic equations governing the dynamical
response of the electromagnetic field and the
medium are given below. These expressions rep-
resent the direct generalizations of those used in
previous studies®'? appropriately modified to
incorporate the influence of the relevant colli-
sional processes. For the condition of exact reso-
nance, and with both the rotating-wave and slowly-
varying-envelope approximation (SVEA), the elec-
tromagnetic field E(¢,z) may be completely de-
scribed by a real amplitude §(¢, z) in the form

E(t,z)=e8(t,z)cos(kz - vt), (10)

where € is a unit polarization vector and the rapid
optical variation is given by the cosine factor.
The active level is generalized to include the fact
that it is degenerate with respect to the magnetic
quantum number m. We describe this situation
with a set of density matrices® p, =p,(w, ¢,2,®)
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where the matrix elements @, take on the set of
values appropriate for the transition. We label
the matrices i =1,2,..., according to the magni-
tude of the matrix element with the largest first
and then in descending order, i.e., ®>@, for
i<j. We reserve the unsubscripted symbol ® to
refer to the largest of the dipole matrix elements.
We then define the ratio », =®,/®. These ratios
are evaluated differently according to whether one
is amplifying with a @-branch transition, in which
case r;=(J—i+1)/J, i=1,J, where J is the an-
gular-momentum quantum number, or with a P-
or R-branch transition, in which case 7,
{2~ (i -1P]V%j, i=1,jand j=dJ, J+1, re-
spectively. In addition, we use an index N, that
specifies the state to indicate whether there are
one or two magnetic quantum states with the same
dipoles. N, is different from unity only in the case
of a P or R branch, in which case N, =0.5. One
notes that we have ignored the existence of the
uncoupled levels. We do this since we intend to
apply the theory for high-angular-momentum
states (/>>1), where the problem is very nearly
classical. In this limit, the approximation in-
volves a very small error.

Under the stated circumstances, Maxwell’s and
Schrodinger’s equations reduce to the following
set of expressions. Maxwell’s equation reads

88 1 88 2 b ol
ki ‘a..EY*N*f_,,dt 8(t',z)

xe'“‘"’/rz Xi(t -t 2),
(11)

where T, is the phase-memory time and the gain
coefficient a is given by

J

a=C*uNro(v)/2fce, . (12)

Here NXN; is the excitation density of the mole-
cules in the ith state, €, is the dielectric constant,
and o(v) is the frequency distribution of the mole-
cules owing to the Doppler effect. The generalized
susceptibility y; is defined to be

(T, t,z)=2m0(v)™* f_: dwo(w)p,(w,t,z, ®,)
- pop(@,t,2,®)] cos(w=v) T,
(3)

where a and b refer to the upper and lower states,
respectively. The equation of motion x,(T,¢,z)
written below is based on two major approxima-
tions. The first is that the upper and lower levels
can be regarded as being entirely equivalent ki-
netically and with respect to degeneracy. This
latter point means that the rotational temperatures
of the two levels are identical and that the angular
momenta of the molecular states are sufficiently
large so that one can ignore the uncoupled levels
in either the upper or lower active states. This
approximation allows us to write all variables
as differences between the upper and lower states.
The second approximation is essentially a state-
ment that we treat all the rotational states in the
upper and lower levels as a single reservoir that
repopulates (depopulates) the upper (lower) active
levels. We define as N the inversion represented
by the reservoir (normalized to unity in the ab-
sence of the field), that is, the inversion of the
entire ensemble of states excluding the active
levels.

The equations of motion for the active medium
are then

mTyt’z) - D(T)—Xi(T)t’z) + ND(T)—XI(TJt,z)

i
+< Ei=1xi(T’ t’Z)N‘ —x‘(T,t,Z)>/T],.”

at T, T; 1N
®2y 2 .
—T;l_’-g— f' dat’ 8(t,z) 8(t',z) et Ta[y (T +t =1t 2) +x,(T =t +t', ¢, 2)], (14)

and the equation for the reservoir is

_3_]2_ 1-N E X(O’t’Z)N ”
T *< SN0 0) "N>/T1' s)

The function D(T) is given by the Fourier trans-
form, normalized to unity, of the function o(w) and
is given by

D(T) = (a2 T e r2/r}? ) (16)

for Doppler broadening where the time Tz* is the
dephasing time due to molecular motion.

r

The first term in the right-hand side of Eqgs.
(14) and (15) is the ordinary pump term that has
been discussed in other cases. We include con-
ceptually VV collisions in this part of the equa-
tion. However, for the purpose of these calcula-
tions, we ignore the VV term by setting T, ~ = in
all calculations, and taking as our initial condition

xi(T,t4,2)=D(T) amn

N=1, (18)
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where ¢, is the time at which the pulse arrives at
the position z. These vibrational interactions are
not included, since they differ from the rotational
interaction only in the characteristic times of
interaction and not in their qualitative effect on the
development of pulses. If the VV collisions need
to be added, it is a simple matter to include an-
other reservoir variable incorporating the cor-
responding T, terms in a manner similar to the
rotational reservoir.

The third term in Eq. (14) represents the effect
of collisions which reorient the angular momentum
of the molecule without changing its magnitude.
This term has been the subject of recent contro-
versy over the hypothesis that T{” could be very
short without affecting the phase-memory time
T,. Although T)” is treated as a free parameter
(as, of course, are T; and T7), it is always im-
plicit that we intend, in any real application, for
T{" to contribute to T,. For reasons of simplicity
only, we have assumed that the velocities are
unchanged by these collisions. Since reorienta-
tion is shown to have a relatively weak influence,
the error introduced by this assumption is negli-
gible. In this case, as for inelastic collisions,
the influence of velocity changes is unimportant
provided that the momentum transfer is accom-
panied by a destruction of the phase memory
(i.e., represents a contribution to T,). Under
these circumstances, the details that arise from
the Doppler effect are minor in comparison to
the large-scale changes in pulse waveform that
are generated through repopulation from the res-
ervoir. The final term in Eq. (14) is the inter-
action of the active level with the radiation field.
This term has been discussed in detail else-
where,10:3

The second terms in both Eqs. (14) and (15)
represent the inelastic interrotational collisions,
that is, collisions which transfer energy from the
active level to the reservoir. In order to avoid
complications arising from the velocity-changing
effects of collisions, we have effectively assumed
a hard-collision model in which the velocity of a
molecule is completely randomized as the result
of a transition from an active level to the reser-
voir. This appears reasonable as long as it is
much more probable that the molecule will reside
in the reservoir rather than the active level.
Since Xi(0, ¢, z) is just the total inversion in the
ith level, and since D(0) is included to normalize
this inversion in the same fashion as N, the com-
plicated term in expression (15) can be seen to
have a simple interpretation. 7T is the average
time required for an atom in the active level to
make a transition to the reservoir, and 7y is the
time required for an atom in the reservoir to

migrate to an active level. Since T and T rep-
resent the same basic collision process, it follows
that

T{/T{=N,/N,, (19)

where N, is the number of atoms in the reservoir
in the absence of the optical field, N, is the number
of atoms in the active level in the absence of the
optical field, and

1/17+1/T7 =1/1,, (20)

where T, is the inelastic collision time. This will
be discussed in greater detail in the Appendix.
Under normal circumstances, T >>T; in which
case T{=T,. Thus, we can usually refer to T} as
the inelastic-collision time. In this limit, 7} is
the time needed to bring the entire rotational set
into equilibrium with itself. Consequently, it is
referred to as the reservoir-equilibration time.

The most fundamental differences between the
two-level atom and molecular models lie in the
complicated terms which mutually link the reser-
voir and active level. There is, nevertheless, a
relatively simple analysis that helps motivate both
the significance and use of the time constant T}
and which also illustrates why the molecular and
the two-level-atom models result in different
behavior for the amplification of pulses. To ex-
amine this point we rewrite the equations of mo-
tion for the medium in the case of constant elec-
tric field in the limit 7,<<Tj (i.e., pressure
broadened). We eliminate the effects of degeneracy
by letting T;” - 0 so that each level behaves iden-
tically. The inversion is then represented in terms
of the variable n where nD(0)=x,(0, f,z). Note that
n is the total (integrated) inversion which is the
proper variable to use in this limit. The equa-
tions then reduce to

e (21)
and

%ﬁ— = NT—{n =T, (r®)ay In, (22)
where

(r®)ar = ‘EN‘ r.z/Zi)N;
and

I(u,2)=C8(u,2)/Ek. (23)

For convenience in later discussions we have
written the equation in terms of the retarded time
p=¢t—z/c. In these expressions note that the
equations for a two-level atom relate to these by
setting T/, Ty - < and (7%)s =1. In the limit in
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which the field varies slowly compared to an
atomic-coherence time, the equation of motion
for the electromagnetic field becomes insensitive
to the phase of the field, and can be rewritten in
terms of the intensity I(u,z) such that
-%-ZI— =2glIn. (24)

The constant g is the small-signal amplitude-
gain constant which will be discussed in more
detail at the end of this section. The statement
of conservation of energy for this system can be
found simply by substituting expression (22) into
Eq. (21) and then substituting that result into the
equation of motion for the field, thus obtaining

I 2 a TII
3 (auz,z) =_T_2(.1%): -B—M—(n(uh—f‘er(u)). (25)

It is observed from this equation that the ratio
T}/T{ amplifies the contribution from the reser-
voir, and therefore, represents the ratio of the
energy stored in the reservoir to the energy con-
tained in the active level as stated in expression
(19). The energy extracted from the molecules
as a function of time can be found by integrating
both sides of this equation with respect to the
retarded time pu, so that

D (Paw 1w
azfodul(u,Z)

-t (-l + B -n),

(26)

with both N and » set to unity at the point u=0
according to the appropriate initial conditions
stemming from the definitions of these variables.
Note that in the limit yu— « both N and » tend to
zero, indicating an equality between the upper-
and lower-state populations. This point will be
examined explicitly again in Sec. IV. Thus, the
total available energy that can be extracted from
the levels by the field is half of the energy stored
in the system [the stored energy can be found by
setting n, N— =1 for the limit p—< in Eq. (26)].
At this point we discuss certain characteristic
parameters related to the performance and inter-
pretation of these calculations. It is assumed that
we are dealing with a plane-wave amplifier whose
input and output planes are located at z =0 and
z =L, respectively. The given input data consist
of an input pulse-amplitude function §(¢,0), the
relaxation rates and linewidths characteristic of
the medium, a parameter related to the low-signal
gain coefficient, and the angular momenta of the
upper (J') and lower (J) levels. For convenience
we use the retarded time u=¢-2z/c, since it allows

us to locate the leading edge of the pulse at 1=0.
The output amplitude waveform then appears as
8(,L). Since one does not directly measure the
pulse envelope 8(u, z), it is often convenient to
deal with certain functionals of this envelope which
have a clearer physical significance. For our
purposes these are the pulse area 6(z), the pulse
energy 7 (z), the full width at half-maximum of the
amplitude 7,(z) or intensity £,(z), and the peak
intensity Imax(z). The area 6(z) is defined through
the relation involving the dipole moment*! ®

0(z)=(@/ﬁ)fpuheg(t,z)dt1 (27)

and is used primarily as a parameter of the input
pulse. For a fixed functional form of the envelope
function §(¢,z), the area clearly scales directly
with the peak amplitude. The energy is defined
through

7(2) = @712 [puse 83(t, 2) dt. (28)

With the choice of units, the energy 7 (z) has the
dimensions of inverse time. The actual energy
can then be determined by application of the appro-
priate scale factor c#Z?/8r®2, where c represents
the speed of light. In all calculations the unit of
time is taken as T} and the medium is then char-
acterized by the time scales previously discussed.
We have found, however, that it is somewhat in-
convenient to describe the gain parameter in terms
of the customary a usually rendered in em™. As
an alternative we introduce the small-signal co-
efficient g, defined through the expression

7(z)= 7(0)e%*. (29)

It is easily shown, that in the limit of small-pulse
energy and area for a pulse whose width 7, (z) is
much greater than the inverse bandwidth of the
amplifier, that x,(7,¢,z)=D(T). Under these
circumstances Eq. (11) leads directly to expres-
sion (29) above, with the coefficient g given by

g=X7,"N,a ["D(T)e~ */T24dT. (30)
i=1

The small-signal enhancement of the amplified
pulse is given by the factor ¢?*%, which we then use
as a characteristic of the medium.

IV. NUMERICAL RESULTS

In this section we present and explore various
aspects of the numerical results derived from
these calculations. Basically, the issues that are
examined concern (a) in the role of the parameter
T, on the efficiency of energy extraction from the
amplifier, (b) the effect of the energy-transfer
processes on the output pulse shape, (c) the influ-
ence of the reorientational parameter 7;”, and
(d) the development of an asymptotic pulse shape



920 F. A. HOPF AND C. K. RHODES 8

for very-high gain systems. Experimental data
relevant to this latter point have been observed
in a hydrogen fluoride (HF) amplifier system.

A. T, Dependence of Energy Extraction

An important determinant of amplifier perfor-
mance is the efficiency with which the stored ener-
gy can be extracted in the form of coherent radia-
tion. In this connection it is of substantial interest
to determine the relationship, for fixed amplifier
input conditions,*? between the output pulse energy
and the relaxation time T|. In order to isolate
the influence of this factor, we regard the other
relevant parameters describing the amplifying
medium as fixed.*®

Figure 2 illustrates the influence of the rota-
tional relaxation parameter T, on the extracted
energy* Tou. In all four curves (a)-(d) the incident
pulses had identical waveforms with a width given
by £,(0)=21.6. Curves (a) and (b) correspond to
input areas 6 (0)=w, while those for (c) and (d) have
the value 6(0)=27. The effect of saturation causes
curves (c) and (d) to lie below (a) and (b). T!/7]
=10 for cases (a) and (c), while for (b) and (d) the
corresponding value is unity. This accounts for
the fact that the curves (a) and (c) lie above their
respective counterparts (b) and (d) at small values
of T{. An essential point illustrated by Fig. 2 is
that the pairs of curves coincide for T >f,(0) and
increase significantly only if 7| is considerably
less than £,(0). This is clearly due to the increased
effectiveness of the rotational energy transfer for
small T{. The splitting of the curve pairs arises

1oo§ Pl mman ey
< i “(’c) ]
E ]
3 top @ 3
O I -
& - ]
'l ol bl Lo
107! 10° 10! f 102
T ?I (0) =21.6

Time in units of T2*

FIG. 2. Ratio of the pulse energy out to the pulse ener-
gy in (Tou/T;) v8 Ty for pulses with an initial width
given by #r (0)= 21.6. In all cases T,” = 10%, with the
remaining parameters given as follows: (a) 8 (0)
=7, T[" /T1' =10; () 6(0)=m, T1' /T1'= 1; (c) 6(0)
=2om, T,/ /T,'=10; (d) 6 (0)= 2r, T,"/T,’ = 1. Complete
extraction only occurs for T,’ significantly less than
7 (0). All times are in units of T%.

from the differences in the reservoir energy con-
tent for the two values of 7]/T].

The magnitude of the over-all influence of the
rotational relaxation is most clearly shown in an
examination of curve (¢). This case corresponds
to a strongly saturating input pulse propagating
through an amplifier whose energy is stored mainly
in the reservoir states (T}/7T;=10). This is essen-
tially the situation for the 10.6-p transition of CO,
at ~300°K. The extracted energy is considerably
less than optimal unless T} is of the same order
as the pulse width f,(O). The behavior of the am-
plifier efficiency exhibits several differences in
the comparison of the present case to the two-
level-atom model. In the latter, either of two
situations generally occurs; the efficiency is in-
dependent of the pulse width,* as in the case where
the width is much shorter that 7,, or the efficiency
increases®® with decreasing pulse width, as ob-
served in the example of a Doppler broadened
transition.'® In contrast to the above, the inclu-
sion of a collisionally coupled energy reservoir
leads to an efficiency which grows with increasing
pulse width.

There is a fairly simple exercise that illustrates
why the molecular and two-level-atom models re-
sult in different behavior for the amplification of
pulses. For an examination of this point we use
the simplified forms of the equations of motion
for the field and the medium equations (21), (22),
and (24), which are valid under the assumptions
that the field amplitude varies negligibly in the
time 7, and that medium degeneracy is unimpor-
tant, enabling 7" to be set to zero. We then con-
sider the response of the molecular system to an
incident constant-intensity monochromatic wave
which is introduced at time p=0. Since the power
is a constant, expressions (21) and (22) are simple
differential equations with initial conditions N =1
and n=1. These equations are then solved to give

a1 +A+T£')e)‘+“ =0 (1 +A_T)er-*

n(u) = o on ,
(31)
AerH o ek
NG = S ee—, (32)
with

1y /1.1 2
A= 2 {- (T{ + 77 +Ty(r ),,I)

1 1 . 2 4T 1/2)
i[(T{+ T{,+T2(r ),,VI) _—LT{’:, .

(33)
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FIG. 3. Extracted energy from a molecular system
vs retarded time p. The higher curves represent
greater optical intensities interacting with the active
levels. The top curve represents limiting behavior and
illustrates the time delay due to the finite rate of molec-
ular relaxation. The time scale of the transfer is given
essentially by T".

The interaction of the field with the molecule
causes energy to be extracted from the system
until eventually both n and N tend to zero. Because
of our approximations, only half of the energy
stored in the molecule can be extracted. We then
look at the fraction of energy that has been ex-~
tracted from the atom at a time p after the field
has been energized. This fraction, which is given
by

_,_ T TING)
FW=t = ~ T

(34)

is appropriately defined to account for the fact
that only half of the stored energy can be ex-
tracted.

In Fig. 3 we display the function f(u) vs u for
various values of the intensity I. The higher
curves represent greater values of intensity. For
low intensity the extraction is relatively gradual.
It is observed that at the higher intensities, al-
though some of the energy is extracted essentially
instantaneously, there is a fraction of the energy
that comes out at a rate determined by the colli-
sion time and is independent of the optical flux.

In the limit of very large intensity the fraction
of energy left in the molecular reservoir becomes

TII

~ul/T?
e 1.
T +T/

fw=1- 'ITI_;"";T e T2k
1 1

(35)

It is only the energy that is stored in the active
level at 4=0 which is extracted rapidly. The
energy stored in the reservoir must wait for a
time T, the reservoir-equilibration time, until
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collisions transfer the molecules to the state in
resonance with the field. This, of course, is in
contrast with the two-level-atom model for which
all of the energy can be extracted rapidly. It is
essentially the confluence of two effects that leads
to the continual narrowing seen in the two-level-
atom case; first, that the energy is extracted ever
more rapidly with increasing intensity, and sec-
ond, that this energy adds to the intensity. How-
ever, in the molecular situation only the (usually
small) percentage of the energy in the active level
can contribute to the narrowing. The bulk of the
energy must feed into the trailing edge of the pulse
and results in a tendency to increase the pulse
width. As we show later, it is also this division
of the available energy into rapid and slow ex-~
traction that leads to a two-time-scale effect in
the development of an asymptotic pulse waveform.

B. Influence on Output Pulse Shape

The energy-transfer processes exert an influ-
ence on the output-pulse waveforms. The resulting
pulse-shape variations are a direct consequence of
the collisional phenomena and differ qualitatively
from the results obtained for amplifying media
without an energy reservoir. As discussed ear-
lier, the two-level model generally leads to a
strong pulse narrowing,'®*” as a result of the
bootstrapping effect of the extracted energy on the
stimulated rate. However, in the molecular case
the finite relaxation rate introduces a delay in the

0 25 50

Retarded time, p =t - L/c
in units of T2*

FIG. 4. Output-pulse amplitude waveforms in units of
®8 (1)/h vs retarded time p=¢t -L /c: (a) T, = 100,
T /Ty =1; ®) T,'=10, T{ /T, =1; () T, = 2,
T" /T,'=1; @ T =2, T"/Ty'=10. The correspond-
ing input pulse, for which ®(0)= 2r and & (0)= 10.8, is
shown as the lowest curve. In all cases T,"= 108, so
that the reorientational processes are inoperative. The
effects of energy transfer from the reservoir generate
a substantial energy content in the tail of the pulse. All
times are in units of 7.
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FIG. 5. Output-pulse width #; (L) vs relaxation time
T,’. The fixed parameters for the curves are as fol-
lows: (@) 0 (0)=3%7, T/ /T,"=1; ()6 (0)=3m, T{"/T,’
=1; (c) 6 (0)=2m, T, /Ty = 10; (@ ¢ (0)= 2w, T," /T’
=1. Inall cases T,” = 10°and# (0)= 10.8. Notice
that curves (a) and (c) actually correspond to a pulse
broadening as a result of the influence of the reservoir.
All times are in units of T'%.

stimulated energy extraction process which coun-
teracts the effectiveness of the mechanisms gen-
erating the pulse narrowing.

Examples of the influence of the energy transfer
on the output pulse shape are illustrated in Fig. 4.
Although some sharpening of the leading edge does
occur, there is a clear tendency for a considerable
fraction of the energy to appear in the trailing
portion of the pulse. As the results show, for a
fixed initial pulse width #,(0) of 10.8, the effect is
more prominent as T; is reduced and the ratio
T{/T; is increased. This is essentially just a
statement that the total pulse energy scales with
both the relaxational rate coupling the reservoir
states to the radiating levels and the energy con-
tent of the reservoir. As a consequence of this
dynamical picture, we observe that the pulse
evolution develops such that the initial peak con-
tains only a relatively small fraction of the total
energy. The tail of the pulse accounts for the
remaining larger amount coming from the reser-
voir and the pulse actually broadens to greater
values of f,(z) during amplification. Under the
conditions of strong saturation, the energy par-
titions itself approximately so that the ratio of
the energy in the tail to the energy in the peak is
given roughly by T//T;.

Quantitative data concerning the influence of the
collisional relaxation on the output pulse widths
£,(L) are shown in Fig. 5. For suificiently long
relaxation times T;, the output pulse width 7,(L)
is independent of the relaxation rate. This occurs
approximately for T{>7,(0) and results directly
from the negligible energy transfer that takes

|

place in this regime. For the shorter values of

T; the magnitude of the pulse distortion depends
upon the optical flux and the amount of energy
available for transfer into the trailing edge of the
pulse. Weakly saturating pulses will clearly be
affected in a minimal way by the relaxation. Since
such pulses are not effective in disturbing the
equilibrium population densities of the states, they
are not sensitive to the rate of energy transfer
among the states.*® On this basis we anticipate
that the influence of T should be larger for more
strongly saturating pulses. The results illustrated
in Fig. 5 confirm this conclusion. Curves (a) and
(b) correspond to 6(0) =37, while the corresponding
value for curves (c) and (d) is 6(0)=27. For the
same ratio of T//T], the total variation of (L) is
greater for the (c)-(d) curves than for the (a)-(b)
pair. In addition, the curves for which T;/T{=10
[i.e., (a)and (c)] show a stronger effect than their
counterparts [i.e., (b)and (d)] for which T//T!=1
because of the greater energy available in the
reservoir. Indeed, for a sufficiently small value
of T! the curves (a) and (c) indicate that the output
pulse length f, (L) is greater than the input value
£,(0).

In conclusion we note that the over-all influence
of the relaxational processes is to introduce a
general tendency for pulses whose widths f, are
in the range T;, T,% [, <<T{ to broaden upon am-
plification. Moreover, the trend is for maximum
broadening to be associated with greater efficien-
cies. As observed earlier, this feature is dis-
tinguished from the result for the two-level-atom
models in which increased efficiency is usually
accompanied by some degree of pulse narrow-
ing.10,45

C. Influence of Reorientational Processes

The rate of molecular reorientation in these
calculations is given by the parameter (T;")™%.
Since the transition dipole matrix elements have
an m dependence,?® reorientation effectively mod-
ulates the coupling strength of the radiating en-
semble with the electromagnetic field. We recall
that in the absence of reorientation and phase-
destructive processes, the polarizations of the
independent coherently excited ensembles interfere
and produce modulation of the pulse envelope. The
effects have previously been examined for attenu-
ators in both unbroadened®® and inhomogeneously
broadened® media.

These studies indicate that reorientational pro-
cesses play a small role in the dynamics of pulse
amplification. Figure 6 illustrates the typical
effect of T under saturated conditions*® on the
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FIG. 6. Ratio of energy out to energy in T(L)/T(0) vs
the reorientational relaxation parameter 7T,*.

energy ratio 7 (L)/ (0) which is seen to be quite
weak. The slight increase in the extracted energy
for short values of T;” arises from the fact that
influence of the larger matrix elements, which
produce a greater stimulated rate, is distributed
over all magnetic sublevels and not restricted to
a few. The effect of 77" on the output pulse width
f,(L) is also small, as Fig. 7 shows. The results
also show that the role of T,” entirely negligible if
T{">>T,, since in that case the excitation funnels
into the more-strongly-coupled levels through
collisional transfer in the reservoir.

D. Development of Asymptotic Pulse Shape
in High-Gain Systems

It was observed in our calculations that the pulse
had a tendency to develop a characteristic envelope
largely insensitive to initial conditions (e.g., gain
and amplifier bandwidth) after undergoing a suffi-
ciently large degree of amplification. The general
features of these pulses are shown in Fig. 8. These
resulting pulse envelopes exhibit the presence of
two phenomena, one radiative and the other col-
lisional. The salient characteristics of the pulse
illustrated in Fig. 8 are the intense and sharp
initial peak and the broad trailing edge which
contains the major fraction of the total energy.

The over-all behavior of the pulses is character-
ized by phenomena having two widely different
time scales. The narrow initial peak is generated
essentially by a coherent interaction of the radia-
tion field with the resonant active levels. This
type of response is directly related to the pulse
narrowing effects normally associated with am-
plification in a two-level system.!°'%” However,
the collisional processes act to stabilize the width
of this component approximately to the value T, .
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FIG. 7. Output-pulse widths i‘} (L) vs the reorienta-
tional relaxation parameter T,”.

In the limit T} <<T,, the coherent pulse is not
stabilized at the value of T and continues to nar-
row indefinitely as in the two-level model. On the
other hand, the broad pulse tail is produced by
energy transfer through collisional relaxation
from the reservoir states. As shown earlier,

the characteristic time scale for this process is
given roughly by T;. These two phenomena are
able to evolve essentially as independent entities,
since the rate for the radiative process scales
with the optical intensity, while the rate of the

T

I Small single ]
enhancement

Intensity (arbitrary units)

Retarded time, w =t - L/c
in units of T2*

FIG. 8. Intensity I{) vs retarded time p for the
characteristic pulse envelope developed in a high-gain
amplifier is given by the solid line. The dashed contour
is the integrated energy of the pulse as a function of re-
tarded time u. The parameters corresponding to the
calculation are: small signal enhancement = 10, T',*
=1,T,=1,T'=2, T =10, and T" =105,
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collisional mechanism scales with the particle
density. While the latter is fixed, the former in-
creases due to amplification enabling the radiative
process to largely decouple itself from the effects
of collisional relaxation. Thus, it is the competi-
tion between the collisional and radiative processes
which is largely responsible for the two-time
scale behavior of the pulse envelope. Effects of
this nature have recently been observed experi-
mentally in a high-gain high-frequency amplifier.*
We note that this feature of the asymptotic pulse is
only weakly influenced in the limit 75 < T,. How-
ever, in the extreme inhomogeneously broadened
limit, this effect will be significantly modified.

Having seen that the trailing edge effect of the
asymptotic wave function is a slowly varying func-
tion of time, we can return to the previously
stated working equations and derive this behavior
as an analytic result.’® We use Egs. (21) and (22)
for the medium and expression (24) for the in-
tensity, a procedure which is valid in the limit
that the field changes negligibly in the time T, .

We also note that in this limit, the degeneracy
will no longer be important, so that we accordingly
discuss the case of short T}" as well.

In the asymptotic limit, the intensity is so high
that the active level is always nearly completely
bleached; that is, n is nearly zero. This means
that we can neglect » relative to N in Eq. (22), or
rather

N =e */T0, (36)

If we again neglect # and » compared to N in
Eq. (21) it follows that

n2[ T, T,(r?)al (1, 2)] te~ /71, (37)

Upon substitution into Eq. (24), we observe that
the right-hand side no longer depends on either
the field or the medium variables. It is therefore
a straightforward matter to integrate this equa-
tion. The result is most conveniently written in
terms of the retarded time u, in which case

I(p,2)=1(u, 0) +[282 /T, T, (r*)wle™*/T{.  (38)

The initial condition I(u, 0) here is fixed, so
that ultimately the second term will dominate.
This is precisely what happens in the development
of the asymptotic waveform; the trailing edge very
closely follows the exponential term e B/T, In
this process the field adiabatically follows the
level population.

In this asymptotic limit we expect that the model
will have serious flaws if it incorrectly describes
the kinetics of the medium. Nevertheless, the
model shows one important fact; namely, that a
full solution of the wave equation is unnecessary
in order to determine the trailing edge. One can

|

always follow the much simpler procedure out-
lined above. Even if the result cannot be obtained
in closed form, it will still be much easier to
determine the behavior of the solution in this
manner than by a solution of the full set of non-
linear equations.

V. SUMMARY AND CONCLUSIONS

The properties of saturated plane-wave short-
pulse amplification in gaseous molecular ampli-
fiers have been studied by numerical methods.
Specifically, the influence of collisional phenomena
on the amplification process has been examined.
These calculations have been made within the
framework of the slowly-varying-envelope assump-
tion (SVEA) in conjunction with a description of an
exactly resonant optical field in terms of a single
real variable §(¢,z). This procedure rigidly fixes
the phase of the field and explicitly rules out an
appraisal of dispersive effects. This issue will
be addressed in a future publication.

One of the most important effects of molecular
relaxation concerns the efficiency of energy ex-
traction during pulse amplification. These re-
sults show that unless the pulse width is compara-
ble to or greater than the total kinetic response
time of the relaxing system, the extracted energy
will be far less than the energy stored. In order
to increase the collisional rate, one must increase
the density. However, it may be possible to in-
crease the effective rotational relaxation rate in
polar systems through the use of stimulated ra-
diative processes, since pure rotational transi-
tions are strongly allowed in these molecules.5!
This possibility, of course, does not arise for
symmetric systems like CO,.

Another important influence of molecular re-
laxation on pulse amplification concerns modifica-
tion of the pulse envelope. There is a general
tendency for the development of substantial pulse
tails due to the transfer of energy from the reser-
voir states. This is due entirely to the finite
collisional communication time between the ra-
diating levels and the reservoir states.

In spite of the many complications entering into
this analysis, it was satisfying to observe that
reorientational effects were typically sufficiently
small to presumably justify the neglect of these
processes for most applications.

The generation of an asymptotic pulse envelope
in high-gain systems appears as a generic phe-
nomenon in molecular amplifiers. The two ob-
served time scales characterizing the pulse shape
are due separately to a radiative process forming
a narrow peak and a collisional process deter-
mining the formation of the relatively broad pulse
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tail. These two effects can become largely de-
coupled as a result of their different dynamical
structure.
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APPENDIX

In this appendix, we show how the working equa-
tions are derived from a more complete phenom-
enological description of the interrotational col-
lision processes. The primary purpose of these
equations is to show the sort of approximations
that must be made in order to arrive at the phe-
nomenological equations shown in the text. We
will ignore the Doppler effect throughout, since
it only serves to make the derivation more com-
plicated. Also, for convenience, we will deal
with the medium in the limit that the pulse width
is much larger than T,. We then define p,,(J, M),
pyJ, M) as the density matrix element for the
upper or lower vibrational state with angular mo-
mentum J and magnetic quantum number M where
M=-J,-J+1,...,J. We will define a collision
time T%,, e, TSy, as the collision times between
the J, M and the J'M’ state for the upper and lower
vibrational levels, respectively.

For each equation for the upper state, there is a
similar equation for the lower state. We will, as
long as feasible, write the equations for the upper
level only, with the understanding that the equa-
tions for the lower level are identical with an
interchange of the indices a and b.

The generalized phenomenological density-ma-
trix equations can then be written

bl M) =[N, () = pe (T, M) /T,
+ 25 [0, M (TS0 )™
= e, M) (TS 1)
=743 (T D, M) - Py, M1 6, 4,
(A1)

where J, is the active upper state, J, is the active
lower state, and I is the instantaneous intensity
defined in Eq. (23). For convenience we have
restricted ourselves to the case of plane-polarized
light for which the selection rules are AM =0 (we
have chosen the axis of quantization to be along

the direction of polarization of the light). The
value of v, is the ratio between the matrix ele-
ment of the M th state and the maximum among the
set M. However, the indexing is different for the
moment, from the convention used in the text in
that the M =1 level is not necessarily the maxi-
mum. We use throughout this paper the index M
to refer to the magnetic sublevel, and the index

¢ to refer to the special convention that is used in
the text. From Eq. (Al), we obtain the equation
for the active level as

AT,) =y, M)

boa(dy, M) = T,
o3 (B i) )
a \ Ty, Tusus
. B <p.m(Ja M) gy, M) >
M'==7, Ty "7, M7, Tgu,u'.r,,
- Gry) T,I [paa(']a » M) = pypJy, M) ’

(A2)

where we use the summation convention )’ to refer
to the case where the active level is excluded from
the sum. We are trying to arrive at a formula in
which all of the levels other than the active one is
lumped into a single reservoir term. From the
second collision term on the right-hand side of

Eq. (A2) one sees that this comes about from the
assumption

(TG urmu)™t = (T (A3)

That is, we assume that the collision from J’'M’
to JM is independent of J’M’ and is independent
of M as well, since otherwise it would lead to a
M dependent excitation in the absence of a field.
We simplify the reorientation term in (A2) by
setting

(TSrym) ™ = (TS, (A4)

Equations (A3) and (A4) together mean that we
are assuming that there are no selection rules to
the collisions. The J dependence in Eq. (A3) is
needed in order to fulfill the considerations of
detailed balance. With these assumptions, the
equation for the active level becomes

) = A’JJG) —&d(Jﬂ b M)

baa(Ja ) M Tl
1 + 2J +1
+< a E pau(J;M,)nﬂm(Ja’M)z; 1:: >
T.ra IM’ 7 J
1 & , 2J, +1
(T B Al M) -, )
Jody M==U, Tad,

- Gr3 ToIp, 0, , M) -p,,(J,, M)].  (A5)
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The equation for the sum over all the inactive
levels comes from summing over Eq. (Al). This
gives

> Bl M) = (E' @I+ DA - 2 M))/Tl
IM J JM

br 3 (a0

M T'M TJ

p.,.,(;fé M)) ,

(A6)

where we have substituted the assumed form for
the collision term. One sees that no further as-
sumptions are needed in order that the collision
term in (A6) can be written as a product of the

sum over p,, and the sum over (T9~'. This term
is further simplified by writing the sum over all

-

oo

levels as the active level plus the sum over the
inactive levels. Then the double sum X7, >3; o
vanishes identically. This reduces Eq. (A6) to

5 b, M) = (2’ @7 +1)00) = T Al M>)/T,
IM J JM

12J+1

(3 bl 40T

2J +1
7 § 0, M)> (A7)

Equations (A5) and (A7) are then combined with
the corresponding equations for the lower level in
order to write equations of motion for the popula-
tion differences. These equations are

Pppy, M)

7‘? (00, M) = pyy , M) =2,(T,) = 2, (J,) - By, M)T_‘1

[ 2 a0~

M

—(a( T

L G
+ a a a?’
[TJ,Ja P

=
M'==J,

,2J+1

M) -

T. Z‘Z, pn(J, M)

0oy, M) ?l 2J+1>:\

T}

)

T 2 pbb(Jp;M )
Jb’b ‘—-Jb

(Bt e 0= ZHE 00, 0) | AT (a0, 30 =P, 30,
(A8)
for the active level, and for the reservoir one has
= (E Bl M) = 2 01y )= [ZJ>'<2J+1)A,,(J) - T @I+ N0 —(%)' A, M0 - 2 oy, m) /1]
J
"y PR o N
M==T u'=-1b
2J +1 _24+1 v
-((EZ A S me )], (a9)

It is observed from an inspection of these equa-
tions what approximations need to be made in
order to write each pair as a population differ-
ence. First, we note that in the case of a P- or
R-branch transition, J, and J, will be different.
Thus we note that we must approximate

J,=d,. (A10)

Since J, and J, differ, at most by a factor of one,
this will be reasonable provided that J,>>1,

J,>>1. In practice, we set the two equal t0 Jmin,
which is defined to be the smaller of the two. We

discard the levels which are not dipole coupled

(i.e., for which », =0) to another level. For the
time constants, we note that we must have

(T3,) = (1) (Alla)
» 2J +1 r2J +1
~ , (A11Db)
2T *L
and
(Ta )- —(TJbe)- . (Allc)

There are a few subtle points contained in these
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approximations. The various time constants must
be related to each other through detailed-balance
considerations. Thus, where it is fairly reason-
able to suppose Eq. (Alla) is true for J, and J,
equal, it is a somewhat different matter to make
the approximation for J,=J,+1. The assumption
implies also that the probability of being in the
J,, M state (in the absence of an electromagnetic
field) is approximately the same as being in the
J,+1, M state. If one assigns a rotational tem-
perature © ., to the levels (equal to the transla-
tional temperature), this is equivalent to the
assumption that the energy separation between
the levels is much smaller than kO .

The various approximations that are made to
write the equations as population differences are,
in the final analysis, nowhere near as severe as
the assumptions made in Eq. (A3), where it was
necessary to assume that there were no selection
rules. On the other hand, the approximations in
Eq. (A11) only serve to decrease the number of
equations by a factor of 2, whereas unless Eq.
(A3), or some similar approximation, is made,
the number of equations becomes infinite. As
long as one wishes to deal with a noninfinite set
of equations, one might as well make use of the
extra saving of a factor of 2. The only occasion
where this would not be suitable would be if one
wanted to include the effect of a highly asymmet-
rical VV interaction, as is, for example, the
case in CO,.

There is a further assumption that must be
included in order to use this model. This can
be stated as

(T';a)-l [)\a(Ja) - )\D(Jb)] -t

=y (2"—“:1)_ /Z;' 27 +1)[2, () = 2, (D]
J T,r J

(A12)
That is, the pump and the interrotational colli-
sions tend to maintain the same population dis-
tributions. This is the same as demanding that
A,(J) T§ is the same for every level. It is not
necessary to make this assumption in the limit
that T, is much longer than the pulse width. How-
ever, the normalization is awkward if one doesn’t
take Eq. (A12) to be valid.

With these approximations, we can define

= pm(Jn ) M) -pbb(Jb 3 M)

W WEARSWAA , (A13)
N= E, paq(J, M) - E, pbb(J, M)
IM JM ,
27 @I +1) A, ¢) = 2, @) (A14)
J

where N is the same inversion as appears in the
text. W differs from the »,; only in that the special
convention for labeling the states has not yet been
used. As noted before, we use Jmin, the smaller

of the J, or J,, as the new index for the active
level. Then defining

@) t=% (27+1)/14, (A15)
J
@) = @i +1)/T5 5 (A16)
and
ny=1 _ .
(T7)™" = @Jmn +1)/T5 ., (A17)
we find
. 1-w, N =W,
===y
Wy T, + Ti
1 Imin
- [——— - m o _ .2
(ZJmin +1 ylzz_;,minW”’ WM)/T1 ru T, IWy
(A18)
and
. 1-N 1 Jmin ,
N=—F +<2Jmi,. 1 M,=Z_7,mm War 'N>/ T
(A19)

These equations are identical to the ones that
appear in the text except for the inclusion of the
coherence effects, which involve the last term on
the right-hand side Eq. (A19), and the Doppler
effect, which involves the use of the suscepti-
bilities y,(7,t,z) rather than W,(¢,z). The con-
vention used in the text is motivated by the fact
that »% =72, so that half of the equations in the
set of W, equations are redundant (i.e., Wy,=W_,)
under any circumstances when the initial condi-
tions are independent of M. The interrelations
between the JM subscripts and j,: used in the text
are as follows: For a P or R branch, every state
within the set M = ~Jmin, Jmin has a nonzero dipole
matrix element. Furthermore, the M =0 is the
largest. Thus the index i -1 corresponds to M =0
and j=Jmin +1. Furthermore, the ordering will be
determined by the fact that v, >, for |M|<|Mm’|.
Since the M =0 state has no corresponding state-
at -M, we have N, =1 for i>1.

For a @ branch, the element 7, =0 for M=0. In
most circumstances it is a minor approximation
to ignore the M =0 state altogether, and it does
make for a much simpler numerical code. There-
fore, we have j=Jmin. In this case the maximum
dipole occurs for M =+dJmin. Thus, ¢ =1 corre-
sponds to the largest value of M. In this case, we
have 7, <7, for |M|<|M’'|, so that the states appear
in decreasing order in terms of the magnetic quan-
tum numbers. Since the M =0 case does not appear
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explicitly in the set, all of the states are doubled.
For that reason, we have N, =1 for all 7.

With the convention established above, we note
that the equations (without coherence or Doppler
effect) are found by replacing W, by the appro-
priate n; in Eqs. (A18) and (A19), which correspond
to Eqs. (14) and (15) in the text.

The collision times defined in Eqs. (A14)-(A16)
are the same as are used in the text. Equation
(A15) directly defined T/” as the total reorienta-
tional collision time, i.e., the time it takes a mol-
.ecule in the state (J, M) to go to any member of the
set J,M’; M’'e(~J, J)]. Similarly, the total inelastic
collision time, which takes a molecule from the
state J, M to any member of the rotational state
is then

(Tr)*=2 @I +1)/T4%, (A20)
J
where we note, of course, that T and T} are the

same via earlier approximations. Thus from the
definitions of T| and Ty, we have

(T,)t=(T) +(T]), (A21)
and, using Eq. (A12), one sees that
r @I+1)2 ) =2, ()]
T” ’ = _
I/Tl ;(ZJmin +1 )[Aa (Imin) - Ab(Jmin)] (A22)

which is the relationship stated in Eq. (19). In the
case where Eq. (A12) is not taken to be true (i.e.,
in the limit T, >> pulse width), then Eq. (A22) can
be restated in terms of the detailed balance con-

ditions within the rotational set. In that case, Eq.

(19) must be understood as applying to the relative
populations of the active levels and the rest of the
rotational set as it is established by the rotational
kinetics alone.

In summary, the equations used in the text are
derived from a more complete description of the
interrotational kinetics through many approxima-
tions. Most of these approximations are minor in
nature, and are needed to allow one to write the
equations in terms of the population difference.
These approximations will be reasonable so long
as the matrix elements for the collisions are the
same for both upper and lower state. Further-
more, they demand that the angular momenta be
sufficiently large, and that the rotational tem-
perature be high. These conditions are reasonable
for most amplifier applications. The other approx-
imation—namely that there be no selection rules
to the collisions—is much more severe, since
there is clear evidence that this is not true under
many circumstances.’® However, unless this
approximation iz made at some state, one is con-
fronted with the necessity of an infinite set of
reservoir equations to describe the rotational
set. This would be very awkward to work with in
practice, and would only serve to complicate the
present discussion. Under conditions where ro-
tational selection rules are important, this anal-
ysis must be modified in the obvious manner.
Nevertheless, we anticipate that with a judicious
choice of the ratio of T to T/, one will be able
to do a satisfactory job of matching experiment
and theory in many practical situations.

*Work performed under the auspices of the U. S. Atomic
Energy Commission.

*Work supported in part by the U.S. Air Force, Kirtland
AFWL.
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