
PHYSICAL REVIE% A VOLUME 8, NUMBER 2 AUGUST 1.973

Ft~i-State Effects on Thermal-Neutron Scattering at High-Energy Trattsfere

H. A. Gersch and L. J. Rodriguez~
School of Physics, Geotgta Insitittte of Technology, Atlanta, Geotgta 30392

(Received 12 April 1973)

An approximation is developed for nuclear scattering of neutrons from a target of spinless particles of
a shy' isotope. It has the correct »~it for large momentum tauxsfer, the impulse approximation, and
is calculable in practice if the single-particle momentum distribution, the off-diagonal bvo-particle
density matrix, and the two-body interaction potential of the target atoms are known. An intended

application of the theory is to neutron scattering from liqvid helium in the moderately-high momentum-
0'

transfer region (K- 15 A ) presently accessible vrith reactor neutrons.

I. INTRODUCTION

The inelastic scattering cross section for
nuclear scattering of neutrons from a target
composed of spinless particles of a single isotope
is given in the Born approximation' by

d 0 0'~kg

dQ des 4)tltht

where ATc = 8%t —8% is the momentum transferred
to the target, 5~= &, —ez is the energy transfer,
and o~ is the neutron-target-particle total cross
section. The dynamic structure factor S$, {o) is
the Fourier transform of the density-density
correlation function S$, t) for a system with N
particles,

2tts(k, ~) =j dt a-"tso, t),

NS$ i) g (&-tk rt{o)&tk. r&{t))

j, l

E{luation (3) contains the Heisenberg operator
r&(f) defined for all j and t by

r (l) =a{atter a-{Has
f

For asymytotically large values of momentum
transfer, the dynamic structure factor may be
realistically evaluated in the impulse approxima-
tion. This approximation is obtained from Eq.
(3}by replacing the Haniiltonian of the target by
a free-particle Hamiltonian in E{l. (4},

pl 2

H-H, =Q
f 2'

and by discarding coherent terms, jul, in the
double sum in E{l. (3). To evaluate this approxi-
mation for a particular target, the only informa-
tion required is the single-particle momentum
distribution n of the target.

A main deficiency of the impulse approximation
is that in general there is no rigorous method
to determine the values of k for which it is

applicable. A second potential deficiency is that
for some yhysically interesting systems it may
be impractical to perform experiments at the
large momentum transfers required for the use
of the impulse approximation. As a possible
remedy for these problems, an approximation
is developed here which should be valid at more
moderate values of the momentum transfer. This
approximation has the correct. limit for large
momentum transfer, the imyulse approximation,
and is calculable in practice if the single-particle
momentum distribution, the off-diagonal two-
particle density matrix, and the two-body inter-
action potential of the target particles are known.
This paper deals with the details of this approxi-
mation. A subsequent yayer' ayplies these results
to a detailed analysis of an experimental investiga-
tion of the scattering of high-energy (et = 200 meV)
neutrons from liquid helium, yerformed by Nook,
Scherm, and Wilkinson. '

The form of the result may be motivated by
writing the impulse approximation as

tth'
s,„Is, a ) =gn-, a (~—

and ascribing the following picture to it. The
neutron strikes a single particle in the target.
The struck particle has a momentum p initially
and the collision is elastic and conserves the
total momentum of the neutron and target yarticle.
The 5 function in E{l. (6) is the mathematical
statement that kinetic energy and momentum are
conserved in this two-body collision. This is
true only to the extent that the target-particle
interactions are negligible. At a more modest
momentum transfer the target interactions will
have some effect. Conceptually, at this lower
value of R, one could still picture the neutron
striking a single particle and replace the remaining
particles of the target by an effective potential.
The presence of this potential would remove the
requirement that the neutron-particle collision
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conserve momentum and mould allow for inelastic
processes. A momentum state p mould then con-
tribute to the scattering not only at the precise
value of the energy transfer ~ mhich satisfies
&u —haik'/2m -k.p/m =0, but for all &u for which
&u-NP/2m -k.p/m is small, i.e. , almost-
elastie collisions which approximately satisfy
conservation of the neutron-particle momentum.
In mathematical terms the 5 function in Eil. (6)
mould be replaced by a finite-width function
B(%, u —hk'/2m —k ~ p/m) which describes the
effect of final. -state interactions. The incoherent
contribution to the dynamic structure factor
would become

Ni'
s, g, s)=gn-, B(IE, u—

P

where the width of the function g mould depend
on the momentum transfer 0 and on the propex ties
of the target; for example, the interaction poten-
tial of the target particles. The width of R
should decrease as 0 increases, approaching a
5 function. Its width should also decrease if
the interactions between the target particles mere
to weaken.

In Sec. II an expression is developed for the
function g which is formally exact for all values
of momentum and energy transfer. A complete
evaluation of g is in general no more tractable
than an evaluation of a more conventional expres-
sion for S(k, ~), e.g. , Eil. (3), but the exact
form of g suggests approximations which are
potentially manageable for many-body systems
at moderate transfers. Roughly the applicability
of the final approximation for g could be checked
by comparing the width of the function g to that
of the single-particle momentum distribution n~.
If the width of g mere appreciably greater than

n~ use of the approximation mould be questionable.

H. DERIVATION OF THE EFFECT OF
FINAL-STATE INTERACTIONS

Although the discussion in the Introduction
centered on the incoherent-scattering contribution
to the dynamic structure factor [j= l terms in
Eil. (2)], the derivation of the function R will be
performed with the coherent contributions, cor-
responding to the j e l terms in Eil. (3), included.
The desired form of the structure factor, Eg. (7),
ean then be obtained from the final formulas by
discarding the coherent terms, a procedure justi-
fied when considering scattering from a liquid
at large momentum transfer.

Since the intended application of this mork is
to neutron scattering at large momentum and en-
ergy transfers, an attempt mill be made to

where

H(rlt ~ ~ ~ r» ply ' ' py +k . . . i p») i

H'=H +~~+I&,

with v, =)'i'/2m, I,
&

= k ~ p&/m, under the assumption
that the Hamiltonian contains only kinetic energy
and a velocity-independent potential. The density-
density correlation function nom has the form

HS(k f) ei~iig-&ei& «g ~,)ei(»+Li&ie i»i) (-1())

In the modified Hamiltonian, Eil. (9), the momen-
tum lost by the neutron is explicitly transferred
to the jth particle in the target. The jth particle,
carrying its modified momentum p&+fr, will move
in the medium of its neighbors and encounter
varying potential energies which mill distort its
trajectory from that of a free particle. The
varying potential energy in its environment ean
be exhibited by using the relation

ei»i%Lit —eiLgtT exp[i J H(r v fs) dip]

where

v» = k/m,

H (r, -v,t').
H( ll '''1 i v»it )»Spit ' tp»)t

H(r -v t') =e '» "i'He'i'S'"i'
k'

and 1' is the time-ordering symbol. The Hamilto-
nian H(r& —v,g'), representing the motion of the
struck particle, can be rewritten in terms of the
original target Hamiltonian, H as

H(r~ —v»t ) =H +Up(5»f ),
where

Ui(v, t') =Q [V(r~ —v, t', r ) —V(ri, r )].
m

(~g)

(14)

motivate the formal manipulations by picturing
the scattering as occurring between a neutron and

the jth target particle. The procedure begins
by noting that the Hamiltonians in Eil. (4) which
govern the time dependence of S(k, t) contain no

explicit recognition that a scattering event has
changed the momentum of the jth particle. To
incorporate the modified momentum and kinetic
energy of the jth particle, the right-hand side
of Eil. (4) is multiplied by unity in the form
e@' Ie '"'s from the left and then inserted into
Eil. (3) (putting 8=1):

NS(k t) g(elk '«i-ri e i 'r jei»feil r~e i»t)-
j, f

%e nom make use of the identity

&-& l ~
r~&~ a&« 1

~ r~ && a'~
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The operator U~(g, t) represents the change in the
potential energy between the struck jth particle,
as it travels along a straight-line trajectory with
velocity v„and the other target particles re-
presented by m.

The density-density correlation function

S(k, I) is now in the form

~Sf t) eluKtg {@lk'(rg-r~)siped'vKt

Pe&

x T exp[tat+t f U, (~,t') dt']K~K'}

(15)
The development to this point parallels our
earlier treatment. ' In the previous study we
proceeded by expanding the T product. The first
term in this expansion is the impulse ayproxima-
tion; the subsequent incoherent terms were shown
to represent corrections to the impulse approxi-
mation ordered in increasing powers of I/O.

As noted in a previous paragraph, the natural
picture to associate with the above procedure is
of the struck particle traveling in a straight line.
This suggests that difficulties may be encountered
if the interaction between the target particles is
strong for some configurations of the particles.
For example, if the interaction contains a strong
repulsive core, the second- and higher-order
terms in the expansion of Eq. (15) have contribu-
tions from configurations in which the stxuck
particle can pass arbitrarily close to anothex'
particle in the target without allowing either par-
ticle to readjust its position to avoid a close
encounter. This can be avoided by noting that the
unitary operators e "K' in Eq (15) tem. per the
contributions from these unphysical encounters
between the struck yax'ticle and its neighbors by
allowing the particle coordinates to evolve in time.
The time evolvement of the target-position
coordinates can be made more explicit by use of
the identity

T exp[iHt+i f U, (~,t') dt']

T exp[t f el 8(E t) U (+ tt)e--SK(t-t ) dt's] el Kt

(16)

which can be interyx'eted' as a resummation of
the T product in Eq. (15). Since this identity was
not obvious to us, ' we give a proof of it in Appendix
A. The exponent on the right-hand side of Eq.
(16) is the integral of the difference in the poten-
tial the struck particle would have encountered as
a typical target particle and the potential it does
encounter as the atypical struck particle

KiK(t t-)U (+ tt)e-IK(k t'-) gi U (+ tt)j~m

=Q {V[r,(t —t') —v, t', r (t —t')]

—V[r~(t-t'), r (t-t'}g,
(I'7)

where the term m =j is deleted from the sum p .
The function S(k, t) now has the form

NS(k, t) =e' &'Q e'"' 'S 'i e'"K')'S
/el

T xy' df' U ' d'
(18}

For a realistic many-body system the detailed
accounting for the time evolvement of all target
coordinates contained in U~ (g, t'} is an impossible
task. In fact it is apparent that the defining
equation for S(%, t), Eq. (8), appears very much
simpler than the result expressed by Eq. (18).
The apparent simplicity of Eq. (3) is deceptive.
This becomes clear when one inserts for r&(t) in
Eq. (3) an exact result which follows from the
Heisenberg equations of motion:

Brg(t)
[ ( ) ]

tpg(t)
m

=[p„a]=-t~,Q V(r„r,).

These yield the equation for the time dependence
of the jth target coordinate,

r~(t) =r,.(0)+ ~(

t
Ct'(t —t') g V V[r (t ) r (t )]

(19)

inserting this expression for rz(t) in Eq. (3), and
accounting for the noncommutivity of the operators
in Eq. (19}, must yield an expression equivalent
to Eq. (18). Incidentally, it is easy to see, by
expanding Eqs. (3) and (18) in powers of k and
comparing the terms linear in k, that (18}implies
that r~(t) is properly given by its exact value
expressed in Eq. (19).

In Eq. (18) the impulse approximation sti11
aypears as an additive contribution to the dynamic
structure factor. In order to obtain S(k, up) in the
form given in Eq. (7) and to identify the function
g which describes the effect of final-state inter-
actions, a cumulantlike expansion' is performed.
The appearance of the g product complicates the
standard cumulant expansion procedure somewhat,
so the details of this pxocedure are sketched in
Appendix B. Applying this expansion yields
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NS$, t) = SgA (k, t)R(k, t),
where

(20) and

R(k, t) = exp[(u, + (u, + ~ ~ .], (22)

NS,„$,f) =g (e&k'&&g-&g&e~~k&'p~)e&~k~

gi1
(21)

where

(elk '(r~ r))-elvkt' pg[1 T exp' f p (~ tr) dt's]])
1

j, l, m SiA (&, f} (23)

The form of the second term +, in the exponent
of Eq. (22) is given in Appendix B.

For systems where it is appropriate to discard
the coherent-scattering contributions j & 1, S,„(k, t)
becomes S~~ (k, t), the impulse approximation to

the density-density correlation function

NS jA (%p t) =P (e"k'»e'~k'),

and R(k, t) becomes

(24)

( e' "&'»(1 —Texp[i f,'dt'U~ (v,t')$)
R$, t) =exp

~

~

~ ~ ~
~ (25)

Equations (24) and (25) accomplish, at least
formally, the objective stated in the Introduction,
for when Eq. (20) (with je l terms discarded) is
Fourier transformed to yield the incoherent con-
tribution to the dynamic structure factor the
result is

S,$, s)} P=n R(k(u —, (uk -p ~ v,},

where the function R$, u& —&o, -p ~ v, ) is the
Fourier transform of R(k, t),

(26)

2&R(k, &u —&u -p ~ v, )=f dte "~ ~k p "&'R(k,'t}.
(27)

Equation (26) is still an exact result for the
incoherent part of S(k, ~) and it is still intractable
when applied to a realistic many-body system.
For such systems it is necessary to apply some
approximation. Our interest is in scattering at
large neutron momentum transfers, and we seek
an improvement over the impulse approximation,
which sets the exponent (u, +to, + ~ ~ ~ ) in Eq. (22)
equal to zero for all times. The first term u,
in the exponent corresponds to the picture where
the jth particle is struck by the neutron and then
the jth particle scatters off the other particles in
the target, each treated singly. The succeeding
terms sp„&o„.. . in the exponent of Eq. (22) cor-
respond to the scattering of the jth particle by
clusters of two, three, . . . , particles. One may
expect that, at large momentum transfers, a
meaningful correction to the impulse approxima-

tion results from neglecting all higher-order
cumulants and retaining only the term +, in
the exponent of the function R(R, t) in Eq. (22).
This approximation neglects scattering of the
jth particle by clusters of two or more target
par ticles.

The calculation of R(k, t) is now reduced to
an evaluation of the cumulant co,. This appears
to be a calculation of a two-body operator until
one recognizes that the appearance of r, (t —t')
and r (t —t') in Eq. (25) leaves one with a
problem of the same order of complexity as an
exact calculation of S(k, t) Further .progress is
made by noting that for large momentum trans-
fers the time evolvement of r&(t —t') —v t' is
dominated by v, t' and therefore e"@' ' ~ in
Eq. (17) may be treated cavalierly. One might,
for example, replace the time evolvement gen-
erated by the full Hamiltonian with a time evolve-
ment generated by an appropriate two-body
Hamiltonian describing the struck jth particle and
the mth particle with which it is interacting. An
even simpler, though more drastic, approxima-
tion is obtained by completely neglecting the
effect of the factors e"+' ' in giving the target-
particle locations a time dependence. This
corresponds to the struck particle traveling along
a straight line with the remaining particles frozen
in their t=0 configuration, a process reminiscent
of the eikonal approximation. Neglecting the time
evolvement generated by 0 reduces the calcula-
tion to one in which the only information required
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about the target is the one-particle off-diagonal
density matrix, the two-particle off-diagonal

density matrix, and the two-body potential. This
follows from Eq. (25), which becomes

$ )
Z'J ( ( p{f dt [Vr~l v t r ) V(rf r )l))) (28)

The expectation value (e'"o'»') involves only a
one-body operator and is thus reducible to a one-
particle density matrix. This reduction is per-
formed by averaging over a single state 4o(r"}
for the target system; generalization to a canoni-
cal average is obvious. We have

g (e 5 v o
' pi t) N( iev

a' p jf)

=N f@,*(r")e'"& P~'4 (r") dr".

(29)

The operator e'"~'»' shifts the coordinate r~
appearing in 4,(r") by the amount vent, and the
integration over the coordinates r„~ ~ ~, r„ intro-
duces the one-particle density matrix p, (r„r',)
defined by

p, (r„r',}=Nf@~o(r„r„~ ~ ~, re)

The result is
(r'„r„~ ~ ~, r„}dr, ~ ~ dT„. (30}

Q(e'"'»') = fdr, p, (r„r, +v, t) =0'p, (O, v, t), (3'i)

where 0' is the volume of the target system, and
we have used translational invariance of the wave
function 4, to obtain the last equality.

In a similar way, the expectation value in the
numerator of the exponential in Eq. (28) involves
only a sum of two-body operators and can be
written in terms of a two-particle density matrix.
The reduction is accomplished by writing the sum
over j and m as N(N 1) tim-es the expectation
value for a chosen pair, say, particles 1 and 2.
This term is then

N(N 1)f4~o(r-")e"& »'(1 —'exp{if [V(r, —v t', r, ) —V(r„r,)]dt'))4, (r") d7 (82}

=N(N-1) f4,(r")(1—exp{if [V(r, +v, (t —t'), r, ) —Vgr, +v, t, r, )]dt')) 4o(r, +v, t, r„.. . , r„)d7" . (33)

Integrating over coordinates r„.. . , r„ introduces the two-particle density matrix, defined by

p
p, (r»r» r,', ro)=N(N 1)g 4o( x~ o-~ o ~ ~ ~re}4o(r(iro~ro, . . ,r„)dr, ~ ~ dT»., (84)

and yields for this term

fp,(r„r,; r, +v, t, r, )(1 —exp{if [V(r, +v~(t —t'), r, ) —V(r, +v,t, r, )]dt'))dT, dr, . (35)

Putting r = r, —r, and again assuming translation invariance, this becomes

0' f p, (r, O; r+v, t, O)(1 —exp{if [V(r+v, (t —t'}) —V(r+v, t)]dt'))dr. (86)

Substituting Eqs. (31}and (86) into Eq. (28) yields the function R(k, t) depending on the quantities anticipat-
ed above:

fp, (r, 0—;r +v,t, 0)(1 —exp{if„[V(r+v, (t —t')) - V(r +v, t)]dt'))dT (37)

Equation (37) provides a useful approximation
to th. effect of target-atom interactions in altering
the impulse approximation results for neutron
scattering at high momentum and energy transfer.
Two main approximations have been made to get
to this result. The first consisted of the neglect

of the time evolvement of the target-particle
coordinates [induced by the operators e~@' ' ~

in Eq. (18)]while interacting with the struck
particle (moving with a velocity v~). The velocity
g, imparted to a target particle is much larger
than a typical'target-atom velocity, so that for
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relatively soft collisions of target particles, this
neglect seems relatively safe. For strong
head-on collisions of the struck particle with other
target particles, the readjustment of particle
coordinates induced by the neglected operators
e~+' ' must play a large effect in preventing
penetration into the hard-core region of the inter-
action, and here the approximation is dangerous.
However, the situation encountered here is
preferable to the one encountered in the exyansion
of the T product in E(l. (15}. For example, if
one mere dealing with a Lennard-Jones potential,
the quantity

j'U, {u,t')dt'= f +[V(r, vt', -r )-V{r„r )]dt'

in E(1. (15), and the e(luivaient quantity

f, [V(r+v, (t t'))--V{r+v,t)]dt'

of E(l. (SV), become undefined if the "trajectory"
of the struck particle passes through the singu-
larity of the potential. This divergence leads
to an undefined expression for S(k, t) if evaluated
from a finite number of terms from E(l. (15}. In
E(l. (Sv), the divergence occurs in the phase
factor of an imaginary exponential and it there-
fore yields a mell-defined result if some sensible
limiting procedure is used. A tempting specula-
tion is that the rapid oscillatory contributions from
hard collisions will be small, mimicking the more
physical picture in mhich the remaining particles
mill avoid close encounters through the action
of 8"Nt ')

The second ayyroximation contained in the final
expression for R(k, t ) is concerned with truncating
the cumulant expansion at the term &, in Eq.
(22). The neglected terms describe correlations
between two or more passive target particles
during their interaction with the struck target
particle. Thus the approximate expression for
ft(k, t) contains multiple scatterings of the struck
target particle by the remaining target particles,
with each of the passive target atoms treated
independently of each other. This approximation
clearly requires that the correlation range between
target atoms in the averaging state 40 be consid-
erably larger than the interaction range for a
yair of target particles. Although these condi-
tions are not completely satisfied for relatively
dense systems, inclusion of such "shadowing
effects" seems inordinately difficult, requiring
adding to R(%, t) terms involving three and
higher-particle-density matrices. Since me
envision experimental conditions under mhich
corrections to the impulse approximation rep-
resented by R(R, t) are relatively small, the

binary-collision ayproximation we have emyloyed
should provide a significant description of these
final-state corrections.
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In this Appendix, we outline the derivation of
the identity

T exp[iH(t —tp)+i f Ul(vpt') dt')

=T exp[if 8(a( l )U (v tr)8 la(l l )dt']ela(l lp),
t0

(Al)

which, for t, =0 is E(l. (16}of the text We. choose
to illustrate the equality by a direct iterative
solution. More sophisticated proofs of this identi-
ty are possible [for example, by differentiating
both sides of (Al) with respect to t, and rearrang-
ing].

Begin by defining the left-hand side of (Al} as
v{t-t,):

U(t —t,) = T exp[iH(t t,)+if, -U, (u, t') dt']. (AR)

Then we wish to show that U(t —t,) can be re-
written as the right-hand side of (Al). The time
derivation of U is

dv(t —t,)
„,

' =i[tf+v, ((l,t)]v(t-t, ). (AS)

By manipulating the times appearing in the exyo-
nen.'ials, one can factor out the operator e'@' '0:

U(t g ) —[1+if a(a(l l')U (& tl-)H la(t t')dgs--
+tp (i&la(l l')V (z ti}e-la(l l')dgl--

Jt f tt

&( f ' dt" el a(l l ) U ( t")
t0 tt

)& a l a(l l' )+...]el H(l lp)- (A6)

The equivalent integral equation for U is

U(t t ) &la(t-tp)+if &(H(l-l')U (& p)V(gl g }dt's
to

(A4)

The iterated solution to (A4) is

U(t g ) a((allp) +if al a(l l )U (& ti}ala(t'-lp) dt's0 t0 f

+gpf a(a(l-l')U (+ te) dgIf
l

)( (l H(a(t l )U (g tN)ala(t -lp)dtlt +. . .J t0 tt

(A5)
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The factorization of e'@' '0~ is possible in all
higher orders, and the terms in square brackets
(A6) produce the time-ordered operator on the
right-hand side of (Al):

U(t t ) —T exp[if etH(t t )It (~ te)
to

x e
—t B(t t) d-te ]e t B(t to)-

vrhich completes the demonstration.

APPENMX 8

In this Appendix an expansion is developed for
a time-ordered operator which resembles the
cumulant expansion of an exponential operator.
The expansion will be applied to S(k, t),

Nt(e(k t) —ef ttttttp (e t]t ' {tt t t) e't p 'tv ttt

dtl

+T exp[if tetH(t t)ft (& t-e)e-tH(t t')dtt])-
(Bl)

which may be rewritten

t(R t) e' "((=Pe "" ''e" 'e'")' '

&T exp 4 GV'8 V r~ —v~1 y r~
NI &1

(83)

(84)

Introduce a parameter a and two operators I" (t)
and 8 (t, )(}, such that

1 - 1' = T exp[i f, dt'8„(t')],

1-)(.I =T exp[if dt'g (t', )(.}].
Note from Eqs. {85)and (86) that the partial time
derivative of Eq. (86) is

) 8.(t)T exp[if, dt'e(t')]

{85)

(86)

= e.(t, ) )T exp[if, dt'e. (t, ) )] (BZ).
From the above three equations, the foil(+ring
properties of 8„(t,)() may be deduced:

e„{t,0) =0,
e (t, l)=e (t),

—tt(t e )]e""')e '"'} (I)
The technique will be to find E(t), such that

e '= 8, Texpi, dt' 8 t' 8,

where 8„+„8 (t'), and g, are arbitrary operators
later to be chosen so that Eq. (83}can be applied
to Eq. (82).

Taking the logarithm of Eq. (83) yields

z(t)=-t. (e,r.m ),'tt ge„(t ) e)

ee (t )(.) . t= 8 (t)Texp[if, dt'e (t')],

8'e.(t, ) ) z= 2 e (t)T exp[i f, dt' e„(t')]

etc.
Defining

x fl Te—xp[if dt'8 (t')]], (811)

(e,p.i'. (t) e, )2(gg}2'''t (814)

where the first three terms of the Taylor's series,
Eq. (813), are shown explicitly. The final result
is

8, Texp ', dt' 8 t' 8,

= (8,8,) exp((t), + (t), +. . . ), (815)

&8,1 (t) e,)
(e,e,)

])I„,(t, )
8, f, dt, f ' dt,

m ~m1 2

81.,(t, )
82 8, 82

-p 8, I' t 8~ 8,82 (816)

Identifying the 8~ operators to apply these zesults
to (82}, we get the value for ~, quoted in Eq. (23)
of the text.

E(t, )(.)=-ln g,Texy if dt'g g (t'ttt)(, ) g, ,
m (812)

one can see from Eq. (89) that E(t) =E(t, 1); and
from Eqs. (86) and (812) that E(t, 0) = -ln(8, 8,).
Assume E(t, )(.) is analytic in )(. in the unit circle.
E(t) may then be obtained by expanding E(t, A.) in
a Taylor's series about A, =0, evaluated at ~ = 1:

eE(t, )} 1 8'E(t, ))
8)(.

~
2! 8)(.

(813)

With the use of Eqs. {810)through (812), the
partial derivatives of E(t, )].) with respect to )(.,
evaluated at A, =0, may be obtained; allmving one
to rewrite Eq. (813) as

E(t) =1.(e e &-g"'-{""
I 2 (g g)

e p (e,f, ttt, f, dt. "t
'

( 't ) tt.) (e e )
1 2
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Short-pulse ampMcation in gaseous molecular amplifiers is complicated by many aspects of atomic
and molecular interactions. Among these are the various vibrational, rotational, and reorientational

relaxational processes which influence the couphng of the energy stored in the molecular radiators to
the electromagnetic field. The properties of plane-wave pulse amplification, especially in the saturated

regime, are exa~ttied numerically in order to quantitatively determine the detailed efFects of these
relaxational phenomena. As expected, the results for saturated amplification show that the amount of
extracted energy decreases significantly when the rotational relaxation time is sufficiently long in

comparison to the pulse width. %'e also observe the development of pulse-shape variations which are a
direct result of the collisional phenomena and differ qualitatively from the results obtained for
amplifying media without an energy reservior. There is a tendency for the pulse lengths to increase

owing to the energy transfer, in contrast to the strong narrowing effects which occur in the absence of
the collisional processes. The influence of reorientational collisions is found to be small, accounting for
less than a 20% effect on the over-all conclusions. Finally, we present results concerning the
development of an asymptotic pulse shape in high-gain amplifiers. In this case, the pulse shape clearly
exhibits the competition between the stimulated rate, which scales with the optical Aux, and the
collisional rates which are determined by the particle density. Calculations of this nature may be

applied directly to CO2, CO, and HF molecular amplifiers for both the electrically and chemically
driven systems.

I. INTRODUCTION

Electromagnetic pulse amplification in gaseous
molecular amplifiers is complicated by many
aspects of atomic and molecular intexactions.
Among these are the multitude of xelaxational
processes which couple the molecular systems to
one another as well as inQuence the interaction of
the molecular radiators with the electromagnetic
field. The perturbing fields which operate on the
quantum-mechanical systems generally have a
very complicated structure. There is, in addition
to the coherent electric field E{t,s) of the amy1i-
fied wave, a component due to collisions from

neighboring particles vrhich is rapidly varying in
space, time, and direction. If the possibility of
significant correlations arising from the presence
of a coherent optical field is ignored, ' then the
perturbing field due to collisions can be regarded
as a stochastic variable. ' Vfe do not take this
approach here. Instead, ere represent the relaxa-
tional processes by the appropriate phenomenolog-
ical parameters. This choice arises quite natural-
ly from the strong identification of the particular
parameters vrith the corresponding physical mech-
anisms and relaxational processes. The dynamics
of the coherent electric field E{t,z) are treated
semiclassically in the customary way. '


