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The probability distribution of electric fields, P(E), in stable and unstable plasmas is investigated by
numerical simulation techniques. The usefulness of this approach is demonstrated by comparing the

present results with both new and previously published analytic calculations. The results have

implications for experiments which use spectral line shapes governed by P(E)] as a diagonostic tool to
determine the plasma density and temperature.

I. INTRODUCTION

A number of plasma effects are related to the
probability distribution P(E) of electric fields in
the plasma. For example, the shape and width of
spectral lines produced by atomic radiators (a
useful diagnostic tool since it can be employed
as a remote and noninterfering density and tem-
perature probe over a wide range of these param-
eters) is in many cases dominated by Stark
broadening, which is directly related to P(E).

Many theories have been pxoposed to deduce the
probability distribution of electric fields in a
thermal plasma. Holtsmark' simplified the prob-
lem by neglecting all interactions between parti-
cles. Baranger and Mozer'3 have included par-
ticle-particle correlations to various orders and
have expressed the distribution as a series ex-
pansion vrhich reduces to the Holtsmark result
in the infinite temperature limit.

Baranger and Mozer also distinguished between
two components of the electric field, a high-fre-
quency and a low-frequency component. The total
field is given as a sum of these two components.
The high-frequency component is produced by the
electrons, and its time variation is governed by
the motion of the electrons. The low-frequency
variation is governed by the motion of ions and
their attendant shield clouds. This component
is obtained by averaging the total field at a point
in space over times which &&ere long compared to
electron relaxation times. Hooper4' has also
obtained an expansion of the distribution function
for a higher -density lower -temperature plasma.
Other attemptse "at improving the Holtsmark
result neglected correlations but modified the
force between particles to include shielding effects.

All of these calculations assume that most of
the electric fields come from nearest-neighbor
particles, and that long-range collective oscilla-

tions can be neglected.
Ecker and Fischer have calculated the effect of

plasma oscillations on the high-frequency proba-
bility distribution and have shown that these col-
lective fields have little effect on the distribution
P(E).

Ecker and Fischer's result does not imply that
collective fields can never have a great effect on
the total distribution function. Nonthermal situa-
tions can lead to an enhancement of @rave energy
such that the distribution of fields is altered. This,
in fact, has been seen experimentally. "'s There
is some discrepancy between these various anal-
yses. In addition, the problem of P(E) in a non-
thermal or unstable plasma has been virtually
tions along with various analytic calculations to
resolve the discrepancies in previous thermal cal-
culations of P(E), to establish that computer sim-
ulation is a valid tool for determining the probabil-
ity distribution, and to show how departure of the
plasma from thermal equilibrium will alter the
probability distribution. These results indicate
to what extent the indiscriminate application of
any of the existing calculations to nonthermal or
unstable plasmas may lead to erroneous results
in the calculation of line shapes and plasma param-
eters which depend on line shapes.

In Sec. II we describe the method of applying
simulation technique to the study of P(E); in Sec.
III we summarize our results for low-frequency
fields; in Sec. IV me present a calculation of wave
field distributions, and in Sec. V compare our
results vdth existing calculations.

H. FIELD DISTRIBUTIONS PRODUCED BY
SIMULATION PARTICLES

In order to test some of the existing theories,
we have carried out various computer simulations
to determine the electric field distribution P(E).
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Owing to the size limitations of present-day
computers, far fewer particles can be treated in
the simulation than in the laboratory plasma.
Consequently, fluctuations due to collisions are
orders of magnitude greater in the simulation
plasma.

In order to reduce these collisional Quctuations the
force law between particles is smoothed at close
range while keeping the long-range force unaltered,
as suggested by Dawson. '~

In particular, we spread the particles in x space
by giving them a Gaussian charge density,
I/(2'')" fE e *'f', where o is the size of the
cloud and s is the dimensionality of the system
This has the effect of spreading the particles in

0 space by e +~'. Therefore, amplitudes of aQ
modes such that Aa» 1 are exponentially small.
Since the short-wavelength modes produce coQi-
sions, the collisional effects are greatly reduced.

In order to compare the simulation results with

the theoretical yredictions, the probability distri-
butions must be reevaluated for finite-size parti-
cles moving in a two-dimensional ylasma, to
separate effects likely to be found in the laboratory
from effects due to the size of the simulated parti-
cles. To do this we use the electric field produced

by a test particle in this plasma, as derived by
Langdon, 'E

8 ~-Htg /g~f K' r

E(r)= -~~ dksr 2m

P(E) = [I/(2s)*] J e' &(a) {fa,

F(g) [(1/A) 1'e-{E{~ E(r ) d~r]Ã

For isotropic plasmas E(r) = rE(r). Letting a be
in the direction of the s axis and integrating over
angles gives

E(a) =[(2v/A) J Z, (uE(r})rdr]".

Letting N, A-~ but keeping N/A = constant= sa
and using the relation

lim(1-z/&) = e '

gives for +

y(a) axy(-x =}{I[xE —Xr f"d {a}X(r)lrdr])
g~e 0

The electric field of the shielded ion is

E(r) = Eg(r),
where &0 is 2q/Xe and p(r) is given in K{I.(1).
Letting o, '= O.EO, & becomes

y(a } axy(-a, rX'' [=}™(E')'

—If d (a'd(r'))r' dr']),

where E'= E/Xe and r' = r/Xn
For a thermal plasma with no magnetic fields,

I' is isotroyic, i.e.,where q& is the charge of the test particle, Eo
= 2qr/X~, s is the cloud shape, and &{}is the Debye
length.

Since shielding is a statistical effect, and the
low-frequency component of the field is obtained

by a short-time average over the total field, ions
do not have time to shield other ions. Therefore
~~ is employed in the calculation of low-frequency
fields, not Xd}/)t2.

Using the results of Baranger and Mozer" to
neglect two-body correlations, we mill assume
that the shielded particles are statistically inde-
pendent, and include correlations only through
shielding of the ions. Using this approximation
the probability distribution reduces to

P(E) dE = 2vEP( E) dE .

This gives

P(E) dE = da'e' "~feoF(n')

If P = E/E, then P becomes for these dimensionless
units

where &(a') is given by K{I.(2}. These integrals
were evaluated numerically and the results for
various values of cloud size and density ayyear in
Fig. 1. If ions take part in the shielding then the
denominator of K{I.(1) becomes I]E+ I/X', + I/]{E.
Since ][,= X, for thermal plasmas, the denominator
becomes k + 2/&E'. The results of this substitution
are also indicated in Fig. 1. In a real situation
the time scale of the measurement will mahe it
obvious whether shielding due to all particles
(or electrons only} is appropriate.

where E,(r r, ) is the field -produced at r by
particle i, and 1/A. is the configurational distri-
bution. A is the area of the system and N the
total number of particles in the system. Express-
ing the 6 function as an integral gives

y(E)= f f dr, dr 5(E-ZE,{r r, }), -
1
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III. LOW-FREQUENCY SIMULATION RESULTS

The simulations were performed on Maryland's
Univac 1108 and the code employed is similar to
that described in Ref. 16. All runs were made
on a system of 64x64 cells.

At each time step the electric field at each space
point was averaged over a period of time, to obtain
the low-frequency field. The distribution was cal-
culated by forming a histogram of the time-aver-
aged fields. The statistics were improved by
repeating the time average over succeeding time
intervals.

Although the theoretical analysis neglected ion
motions and correlations between ions, a simula-
tion must retain ion motions to reliably measure
the low-frequency microfield probability. This is
demonstrated in Figs. 2 and 3. Figure 2 shows a
simulation with evenly spaced infinitely heavy ions.
A short-time average removes the high-frequency

fields, and gives probability distributions com-
parable to the theory. But even a relatively
small increase in averaging time makes the com-
parison mith theory morse t It is clear that this
result is to be expected, since with fixed ions the
electron microfields averaged over many plasma
periods will vanish, and the distributions tend
toward a 6 function. A proper simulation of the
lorn-frequency field must include ion motion, as
shomn in Fig. 3. Now after a few plasma periods
the high-frequency fields are averaged out, and
the simulation results compare more and more
favorably with theory as an increasingly long
averaging time is taken. Note that Fig. 3 gives
good agreement with a time average of over a
hundred electron plasma periods, while "fixed
ion" simulation already disagreed with theory
after six electron plasma periods. The horizontal
error bars indicate the variance of an amount &E
about E due to the histogramming, and the vertical
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FIG. 1. Analytic calculations of the low-frequency
microfield t'P =—E/Eo) probability distribution in plasmas
of finite-size particles moving on a two-dimensional
grid, for various values of particle size u, and density
np (in relative units). The solid curves correspond to
shielding of ions by electrons only; the dashed curves
include electron and ion shielding.
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FIG. 2. Simulation results for the low-frequency mi-
crofield probability of a plasma with fixed ions, com-
pared with analytic calculations. The microfields have
been averaged over various periods of time, as would
be appropriate in estimating the effect of the micro-
fields on various line-emission problems [&~ = (m/4me ) ].
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error bars indicate the statistical fluctuations
arising from the finite number of data points
obtained in the simulation. This result shows that
fields averaged over this amount of time are little
affected by the ion shielding of other ions.

Thus it is seen that for low-frequency fields, a
moving-ion simulation agrees well with theoretical
results.

We emphasize that in previous analytic calcula-
tions the same time averages are implicit in the
approximations used, while in simulation the
effects of time averaging must be dealt with di-
rectly.

IV. WAVE FIELD DISTRIBUTIONS

For the calculation of the contribution of plasma
waves to the f'ield distribution we use an alternate
approach to the calculation of Ecker and Fischer"
and also include the finite-size-particle effects.
The present approach is more general in that it
allows for a calculation of collective field distri-
butions in nonthermal quasi-steady-state plasmas
as well as thermal plasmas.

Consider a one-dimensional system with only a
single wave given by

E~ = E~ sink@.

The wave exists at all points in the system, and
therefore has equal probability of being at any
one point. The probability of finding E within dE
is given by

P(E~) dEd, = W(8) d8 = c d8,

where ~= ks and c is a constant. Therefore

C C
( 0) dg /d8 (EE EE)1/E

Normalizing to unity gives

1
P(&a) = —,(@E @E)X/E ~

If there are many waves in the system, the
probability of measuring a particular electric
field value E, is given by the sums of the prob-
abilities of all possible combinations which give
E ~ Eo. Generalizing to more than one dimension
gives

P(E)= fd(E — EE)PE(E„)dEE,
~1 =1

where there are M modes in the system, the amplitude
of mode k being Eog .

If E is a traveling wave,

E), = E,g, cos(k x+ Q,)+E» sin(k x+yg),
Eg- E~ + E~

k~ k2

(where Q and y are random phases), then by con-
sidering the two terms in the sum as independent
the probability becomes

P(E) =U f il(E -)EE)P(EE )P(EE ) dEE dEE

For a two-dimensional system, after expressing
the 5 function as an integral, I' is given by

P(E) = [1/(2v)E] f dqe'~' P(q),
where

exp(iq .E,g, c os8

v(EE~ EE )I/E
X,t

P(P) no=I
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FIG. 3. Simulation ofP(P) including

shielding by thermal ions, showing
that an average over a few T& is suf-
ficient to accurately measure p(P)
from a plasma including thermal iona.
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and where we have used the fact that the integrals
over dEQ and dEg are identical.

The work required to create the fluctuation E k,
is E', k /8v, and therefore the probability of find-
ing its amplitude Eog, in dEDQ, about Eog is

exp(-Eo ~,/(EB,))P(E,T„)=

f dE, g, epx(-E', g /(E', g ))

This probability must be included in the integrals
comprising P( q)

&(t((=p f& TE& (, .Et((:). ,

~m(-E'. t, /& E'.X,& )

f dEDX, exp(Eok, /(E'g, ) )
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The calculation of P(E) would involve a large
amount of numerical integration. A simple quan-
tity to calculate is P(E,) defined by

P(E.) = f dE, P(E).
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Using the fact that

(1/2v) f dE, e"~s~ = 8(q„)

gives

P(E,) = (1/2v) f dq, e"*s*P(q,),
where

2

P(q, ) = Q exp(- —,'q', ( E',g))I,(-,' q„(E',g))
k

where Io is the Bessel function of imaginary
argument.

For our simulation plasma (E~og) is given by'4

4m
J2 I + y2/2 exp(y2gI)

FIG. 4. Simulation and analytic calculations of the
high-frequency value of the microfield probability dis-
tribution (no time averaging) in a plasma of finite-size
particles, for two values of particle size.

Figure 4 gives the results of theoretical calcula-
tions for two cases of cloud radius obtained by
numerical integration of Eq. (3). 'Ihe number of
modes employed in the calculation was such that
the inclusion of additional short-wavelength modes
had little effect on the result.

The above result for the wave field distribution
is similar to cker and Fischer's. They have a
termexp(e' ') in their collective field distri-
bution which they set equal to ef)T. 'Ibis is equiv-
alent to evaluating the probability for wave ampli-
tudes only and does not consider the spatial
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FIG. 5. Time history of
the microfield probability
distribution in a two-beam
unstable plasma.

2 4 6 8
I I I

IO I2 I4

Iex E X/(2q/k )

I I

l6 I8 20 22



H. H. KLEIN AND N. A. KRALL

variation of the %Rve. Ecker RIll Fkscher s cal-
culation involves a cutoff between long-wavelength
and short-vravelength modes and also an expansion
in powers of kV'/&o~. Our procedure is superior
in that it includes all modes of the electric field
fluctuations, i.e., the electron plasma oseillations.
(lon waves are heavily damped in thermal equilib-
rium. ) Also, if the plasma is in a nonthermal
steady state, our method allows calculation of the
wave field distribution for any known energy spec-
trum.

Such a spectrum might be known from an inde-
pendent calculation of the asymptotic state of an
unstable plasma. Since the wave fields for the
thermal plasma consist for the most part of the
electron plasma waves, the distribution of these
fi.elds was obtained by simulation of a gas of elec-
trons with a neutralizing background. Since these
are high-frequency fields, no time averaging was
yerformed on the fields. The results of these
simulations appear in Fig. 4 and are compared to
the theoretical results.

For an unstable ylasma there are modes that do

grow to levels far in excess of their equilibrium
values. Figure 5 gives the wave field distribution
of electric fields in a particular unstable ylasma
as determined from plasma simulation. The in-
stability is the two-beam instability and the fig-
ure shows the distributions before the onset of the
instability, when the instability is fully developed,

and after the fields and particles have come to an
equilibrium after saturation. In the third ease
the plasma is in a stable, nonthermal state and
the probability of measuring the large fields is
larger at this stage than in a thermal plasma of
the same density. .

V. CONCLUSIONS

By comparing analytic calculations and simula-
tion results for thermal plasmas, we have estab-
lished simulation as a tool for the calculation of
probability distribution of electric fields, and
used it to calculate I'(E) for an unstable plasma.
In addition, we have shown that, after suitable
time averaging of the fieMs, theoretical predic-
tions of the distribution of the fields due to shielded
ions is borne out. This shows the real effect of
the averaging procedure implied in the usual treat-
ments (Baranger and Mozer) of the microfield
distribution in warm ylasmas.
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