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Using semiclassical theory, we investigate the shot- and thermal-noise effects on the behavior of a
laser. The Fokker-Planck equations for the probability distribution of the laser field are derived. These
equations are approximately solved, using a Gaussian function, from which we calculate the spectral
profile of the laser field. The width constant for the thermal noise is related to the temperature of the
cavity.

I. INTRODUCTION

The basic paper on laser theory' was semiclassi-
cal, in that quantum-mechanical atoms were cou-
pled to a classical electromagnetic field. It gave
a satisfactory discussion of phenomena such as the
threshold condition, power output, frequency pull-
ing and pushing, mode competition, frequency
locking, etc. , but omitted any consideration of
fluctuation phenomena of the laser. Later, one of
us' extended the semiclassical method to consider
the phase diffusion caused by thermal fluctuations
and found the corresponding width of the Lorentz-
ian spectral profile of the laser radiation. The
development of a fully quantum-mechanical laser
theory by Scully and Lamb' made possible' a cal-
culation of both thermal and spontaneous emission
contributions to the spectral profile. With this as
a guide, a simple change in the noise polarization
of Ref. 2 leads to the correct linewidth.

Many other papers have been written on laser
noise phenomena. Very complete bibliographies

have been given by Lax' and by Haken. ' With few
exceptions, the emphasis of these papers has been
on noise phenomena, and the underlying laser the-
ory has been rather schematic and not as well
adapted for a discussion of the actual operating
characteristics of a laser, somewhat above thresh-
old, as the semiclassical theory of Ref. 1. The
present work applies a simple version of the semi-
classical theory to shot effect, and also extends
the previous consideration' of thermal noise to
allow for amplitude fluctuations.

As in Ref. 1, the laser is considered to be a
lossy cavity of the Fabry-Perot type in single-
mode operation with circular frequency v driven
by an inverted population of active atoms. The
electric field is taken to be transverse to the
cavity axis:

E(z, t) = E(t) cos[vt+ cp(t) ] sinKz, (I)
where z is the distance measured along the cavity
axis and K is the wave number K= nw/L, with L
being the length of the cavity and the mode number
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e being a large integer.
The amplitude E(t) and phase ((v(t) are assumed

to be slowly varying functions and can be shown'

to satisfy the following self-consistency equations:

(v -0+jo)E= =,'(v/e, )C(t),

E +k(v/@E = -k(v/&. )S(&)

(3)

(3)

where & is the cavity eigenfrequency, Q is the
cavity quality factor, S(t) and C(f) are the sine
and cosine components of the polarization function

P(f} defined by

&(&) =(3/L, ) J) ds J'(~, t) sinzz,

and P(s, f) is the macroscopic polarization.
The active atoms are taken to have two excited

energy levels W, and W& separated by a resonant
frequency e, between which the laser action takes
place. The levels a and b are assumed phenome-
nologically to decay to lower levels at rates y,
and y&, respectively. Considering only the elec-
tric dipole interaction between the field and the
atoms, the functions S(t) and C(t) are calculated
in Ref. 1 by a perturbation technique, and Eq. (3)
is shown to be in the form

where e and P are constants determined by the
various parameters of the laser. %e shall con-
sider the effect of shot noise in Sec. II using
the above semiclassical model of the laser. In
Sec. III, we shall apply the same method to the
thermal noise, and finally, a numerical example
is given in Sec. IV.

II. SHOT-NOISE EFFECTS

A. Fokker-Planck Equation

For simplicity, we consider a laser in single-
mode operation and neglect atomic motion. The
active atoms are assumed to be excited only to the
upper energy level at random times with average
rate ~.

In third-order perturbation theory, the amplitude
E(&) of (3) satisfies an equation

E(&)= -~(v/Q)E(&) 3(v/ea} [S '(f)—+S"'(t)], (6)

where S('~(t) and S('~(t) are the first- and third-
order terms-in the out-of-phase part of the macro-
scopic polarization, respectively.

Consider one active atom excited at time tk. The
polarization contributed by this atom can be writ-
ten as

s(f, f,) = s"&(t, f,)+se'(t, f,) (7}

Here, again s('~(t, f~) and s~'~(t, f,) are the first-

d(E')/dt v E'
E'+(&age, )E' q E'+(c,/~, )E'

— " ' (+5(f-f,).
&O k

Introducing a new variable x such that

dx = [E'+ (e,/e, )E'] 'd(E')

(13)

or

s = ln[E'[1+ (o,/o, )E') '),
Eq. (13) becomes

—= -(v/Q)G(x) + (vo, /~, )P 5(t —f,),dx

k
(15)

G(s) = 1 —(ohio, )e*.

Let 4t be an interval of time which is short com-
pared to the time scale of E(t), but long enough
for many active atoms to be excited. The exis-
tence of this 4t is equivalent to the assumption
that Eq. (15}is a Markoffian stochastic equation. '
The number of atoms excited in the lasex between
t and t+ht is

and third-order terms. Since the total polariza-
tion is equal to the sum of polarizations contrib-
uted by each atom, we have

E(f) = =,'(v/Q)E(t) —2(v/e—o)g[s "(t, f,}+s"(t, f,)],
k

(3)
where the sum is taken over all the active atoms.

The atoms in the laser have lifetimes y,
' aid yI,

'
typically of the order of 10~ sec, which are very
short compared to the time in which E(t) changes
significantly (~10 ' sec). Hence, we may treat
s"'(f, t,}and se~{t, f,) as similar to 5 functions
5{f—f(,}. Since 8 {f,f(,) is proportional to E(t),
we may write

s"&(f, f,) =o,E(f)5(f- f,). (&)

Similarly

se'(t, f,}=e,E(f}'5(t-f,) .
The constants o, and e, can be found by carrying
out detailed calculations of s" (f, t,) and s"'(f, t,).
In terms of e, and o„we have

E= -g{v/Q)E - g(v/Eo)(v(E+osE }+5(t-f~) .

To solve the stochastic differential equation (11),
we multiply by 2E on both sides:

&
(E'&=-(—)z'-(—)(vs'+vE')P(((t t} ((l)-

or
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N(t, bt) =

(18}

t t+Dt
dt Q 5(t —t~) . (16)

~t

The probability distribution r(N) of N(t, dt) will be
a Poisson distribution which in the limit of large
N goes to a Gaussian distribution:

7 (N) = (2x](.b,t) "'exp—(N- ~t t)'

where ~ is the average rate of excitation at t.
From Eq. (11) it can be shown, using random-

variable analysis, ' that the probability distribu-
tion i[)(x, t) of the variable x of Eq. (15) satisfies
the Fokker-Planck equation

(d(E, t)dE=P(x, t)dx. (19)

2 82
+ ~]]. , [(e,z+ o,z ')'&o]

260 8E

—[(o,z+ o,z')((7, + So, E')(d] (20)

which is the Fokker-Planck equation describing
shot noise in a laser.

From (20), it is easy to obtain the equation for
the average amplitude of the field (E) defined by

Using (14) and (19), we can transform (18) into an
equation for &u(E, t):

To obtain the equation for the probability distribu-
tion a&(E, t} of finding for the field amplitude E(t)
a value E at time t, we note that

()))= f dzzw(z, t).

Differentiating (21) with respect to t, we have

(21)

d(E) "„&(d(E,t)
dt

"
Bt

8dzz —[2(v/Q)E(d —(Xv/2e, )(o,z+ o,z')(o]

8 8
+ ]z( jma.)', [(u,E+ rr.E')'~] — [(u,z+(r.z')((r, + 3(rE)~])*

Integrating by parts we have

,'(v/Q)(E) -+-(Xv/2e, }[o,(E) + o,(E') ]

+ —,'A(v/2e, )' [o',(E) +4oo (E')+So'(E'&]. (22)

Equation (22) generalizes the amplitude equation
(5) to allow for shot effect. We can reduce (22)
to (5) by neglecting the shot noise, i.e., letting

, o„o,-0 such that Xo, and ~o', remain finite,
then (E), (~ reduce to E(t) and E(t)' in (5), re-

I

spectively, and (22) becomes

dz(t}
„, = --,'(v/Q)z(t) + (~v/2~, ) [&r,z(t)+ o,z(t)'].

Hence we can relate the coefficients a and P of
Eq. (5) to o, and o, by

a = --', (v/Q) + (Xv/2~, )o„
(23}

P = -(Xv/2e, )o, .

The Fokker-Planck equation can then be written
in the form

8 V Va+—E —PE a+——SPEBE, 2Q 2Q

The first two field amplitude averages satisfy the following equations:

(24)

d(z) = a(E) —P(E') —(1/2X) [(a + v/2Q)'(E) —4P(a + v/2Q)(~ + SP'(E') ], (25}

= 2o((~ —2t](E )+(1/]].)[(2[(a+v/2Q)'E —pz ] [(a+v/2Q)E —2t]E ])). (26)
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8. Simple Solutions of Fokker- Planck Equation

Let us consider some approximate solutions of
this Fokker-Planck equation for an initial condi-
tion

(u(E, O)=5(E-E,) at t=o,

where E, is the electric field amplitude at I;=0.
If & is very large, and we can neglect the second

term on the right-hand side of the Fokker-Planck
equation (24), then

%e note that

{E&-(a/P)"' a«--
as t-O.

The steady-state value of o(t) can be found from
(34}by putting dc'/dt =0, giving

o ' = (1/15%)(v/Q)' a«- ".
C. Spectral ProNe

e(d 8—= ——[(aE—PE')(u].8E

The solution in this case is trivially

~(E, t) =5(E-$(t)j,

(28)

(29}

%e may apply this approximate solution to cal-
culate the laser spectral profile due to shot noise
at steady state for a perfectly tuned laser. Con-
sider a laser cavity with a transverse electric
field given by

where 8(t) is the average field satisfying

8(t) = a8(t) PS(t)'—, 8(0) = E, . (3o)

(2v)-'~' [E—g(t)]'
(u(E, t) =

(t)
exp —

2 (t)g

where c(t)' «$(t}'. The amplitude averages «r
this (u(E, t) are

(E& =h,

{~=8'+a',

{~= 8'+38o*, etc.

Putting (82} into (25} and (26), we have

—(8) = ag —Pg'+O(Pa'g),

The physical meaning of this solution is the
following. For At»t-~, ~(N) of Eq. (1V) behaves
like a 5 function 5(N- Ab t), and the shot fluctua-
tions are neglected. The probability distribution
function (u(E, t) in this case will also be a 5 func-
tion.

To consider shot noise, we must keep the second
term on the right-hand side of (24). As Xt»t » 1 is
our basic assumption, we expect that (u(E, t) should
be a sharply peaked function, and try a normalized
Gaussian function for (u(E, t):

E(e, t) A(t) sinKs.

In the Appendix, we find that the spectral function
f((u), i.e., the average energy of the electromag-
netic field per unit volume per unit frequency
range, is

&/2 &/2
1((u) =~ lim — dt dt'{A(t)A(t')&e ' " ' ',

2~ r ~ &/2
(3V)

where the brackets denote an ensemble average
and only positive frequencies ~ are considered.

For a perfectly tuned laser, we have 0= v= ~;
hence'

c"&(t)= o, c"'(t)= o.

The phase equation becomes

q=0 or tItj=const

and for the choice y=0, the steady-state field
becomes

E(», t) = E(t) cosvt sinKs .
The spectral function is then

1'/g
t(~)= »I " 0 ate

x(E(t)E(t')& cosvt cosvt'e '+' ' . (88)

—(a') = 2(a -3P8')o'
df

+ (1/X)[(a+v/2Q) 8 P8'] *+O(Pe—') .
(34)

As we assume o' «b', we can neglect O(po'(g) in
(83) and O(Pa ) in (34). The solution of (83) is then

g(t)'=«(t)&'= (a/pj[1+ [(a/p~d 1]e '"l—'

The correlation function (E(t)E(t')& can be ob-
tained from (u(E, t):

(tt(tltt(t )) = J dtt f ut't'tttt'tt(tt, ) (tt lt - t li, tt'',
(89)

where (u(E',
~
t t')) is sub-ject to the condition

that at t = t', (u(E', ) t - t'
) ) = 5(E' -E). Using (31)

and (35), we have
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(2„)-v2 - E'exp[-(E- v a/Wp)'/2o']
R(t I ) (E(t)E(t')& =(a/P)

&
dE

[(1 -2al~ [}E2 ( / )
-2air i] x12 1 (40)

with

o'= (1/16P&)(v/Q)', r = t - t'. W=ttv[(e"" ' —1) '+-', ], (46)

To integrate (38), we change variables form t,
t' to o, w, where Y=t-t' and (r=t+t', and have

&/ 2 & / 2

dt dt' - g do'dr ~ ~ ~

-T/2 -T /2 D
(41)

where D is the domain in the ew plane shown in
Fig. 1. Hence

I(a&)= lim ' dvd2R(7)e '~ "'.Eo

T~ ~ 16WT D
(42)

Carrying out the e integration, and letting T-~,
we have

I(&o)=~ dvR(r)e '.
8m

I((o)= lim ' dod2R(2)e '~Eo
4mT

gL[elvo+ e Iv6+ e lUT + e'IvT]

Only the last term in the above expression contrib-
utes to I(e) as T-~. Therefore

where v is the circular laser frequency. A semi-
classical treatment of the effect of this radiation
on the laser medium can be obtained by putting a
stochastic polarization &t2~(z, t) into Maxwell's
equations:

(z t) =(C" (t) cos[vt+rp(t)]

+ S"'(t) sin[vt+ y(t) ]}sinKz, (46)

where Ce (t) and Se (t) are assumed to be random
functions fluctuating rather slowly compared with

1Pt

We have seen that for a perfectly tuned laser
shot noise influenced only the amplitude E(t) of
the field. This is not the case for thermal fluctua-
tions. The amplitude and phase equations for a
perfectly tuned laser satisfy

0 E= 2(v/e-2)C(t) = 2(v/e2)-C" (t), (4't)

E = aE —P E' ——2'(v/&2)S@~(t) . (48)

We will consider the coupled stochastic equa-
tions (4V) and (48) later. Let us now approximate
E(t) in (4V) by its average value (E(t)) so that

x dEl E ' exp[-(E —Wa/WP}2/2o' —i(ru —v}7]
[E2(1 e 2(I I T I) y (a/P)e 2%IT'1]l/2

(43)

The integrand in (43) is significant only for E near
v a/WP; hence we may expand the integrand into a
power series in (E —Wa/WP). The integral (43}
can then be carried out easily to yield

I(a)) = (e+8w)(a/P)(2w5((o —v) + (1/8X)(v/q)2

&(6[16a2+(&o —v)'] '

i=--.( / .(E))C "(I). (49)

Again we assume that C"~(t) is a Markovian
random function with an average zero and, there-
fore, that there exists an interval of time &t short
compared to the time for appreciable change of
y(t) but long compared to that for C"~(t). If we
denote C(t, I2t) by

t+ bt
C(t, &t)= dtC ~(t},

t

—[4a2+(&u —v}2] '}+0(A. ')),

which describes the spectral profile of the laser
field. This consists of a monochromatic compo-
nent superposed on a broad two-peaked distribu-
tion of full-width at half-height (FWHH) -15.6a.
The energy of the diffuse part of the spectrum is
(1/16Aa)(v/Q)' of that monochromatic component.

III. THERMAL NOISE

A passive laser cavity contains blackbody radia-
tion emitted by the walls of the cavity. The aver-
age energy of the radiation is given by Planck's FIG. 1. Domain of integration for Eq. (41).
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the probability distribution 7'(C) of C is a Gaussian

~(C) = (2wdt t)-'~'exp(-C'/2u t), (50)

where d is a constant to be determined later.
The Fokker-Planck equation for the probability

distribution (d(cp, t) for the phase of Eq. (49) is

with

S=e8-PS',

d
((r') =d(v/2e, )'+2(a -3P8')(r'.

In particular, at steady state,

(61)

s&o(cp, t), s'ro

gg
2

g 2p

with

(51) h =(a/p)"',
(r ' = (d/16a) (v/e(s)'.

(63a)

(63b)

D = v'd/4~', (E&'. (52)

&o((((r, 0) =5((tr —rpg at t=0 (53)

At steady state, D is a constant and the solution
of Eq. (51) with the initial condition that

We shall now calculate the spectral function I(&)
of a perfectly tuned laser at steady state due to
thermal noise. The spectral function in the ap-
proximation used in (49), where the amplitude
E(t) and the phase y(t) are uncorrelated, is

T12 T/2
I((sr) =~ lim — dt dt'(E(t)E(t')&

8mT „T
a)(y, t) =(2r(Dt) "'expl—

It is easy to find the following averages:

&9'& =40+Dl tl,

(o'& -(0&'=Dl tl.

(54) x(exp[i[q (t) —q (t') ]]&exp[-t((d —v)(t - t') ).
(64)

The amplitude-correlation function (E(t)E(t')& can
be found as before, while the phase-correlation
function can be evaluated by using (55):

(exp[i[97(t) —y(t')])& =(exp{i[(((((0)—q(l t - t'
I )]]&

$2
(S) = (Sed )"eesxep(' (56)

Note that the constant d in (56) is the same as that
in (50) since Se~(t) and C(0~(t) are merely the am-
plitude for the sine and cosine components of the
random polarization &0~(z, t). The Fokker-Planck
equation for &(E, t), i.e., the probability distribu-
tion for the amplitude E(t), is

8~ 8 3, V 82~
[(aE PEs)-(o—]+,'d 2-- (5V)

The field averages satisfy the following equations:

„, =WE&-P«'&,

d(E'& = d(v/2e, )'+ 2a(E'& —2P(E'& .

(58)

(59)

The approximate solution for &o(E, t) with a 5-func-
tion initial condition can be found as before:

(2v}-'~' [E-$(t)]'
o(t) ~ 2(r(t)'

The amplitude equation (48) can be solved sim-
ilarly by assuming the probability distribution of
S(t, rM) defined by

t+ b~

s(e, eS = j se s ~'(e(

to be a Gaussian

=1+i((ts(0) —y(l t' —tl)&

-H[v(0) —e(l t - t'l}l'&

+ ~ ~ ~

=1--,'Dl t - t'I+ ~ ~ ~

=exp(--'DI t - t'I ). (65)

Carrying out the integration of (64), in the ap-
proximation D «e, we find

I((d) = d(e/8v)(v/2e, )'([D'/4+ ((o —v)'] '

+-,'[6[16~ +((d —v)'] '

—[4a'+((d —v)'] ') )+0(d') . (66}

a--(v/2e), (6V)

Hence the Fokker-Planck equation for the thermal
radiation becomes

Thus the spectral profile of the laser field due to
thermal noise consists of a very sharp Lorentzian
FNHH D and a broad two-peaked structure of
FVfHH -15.6~. The energy content of the broad
distribution is D/4a of that for the sharp one.

We shall now express the width constant d in
terms of the temperature of the cavity. If we turn
the laser action off, the field remaining in the
cavity is then due to the blackbody radiation from
the walls only. This requires the following
changes in Eq. (5V):
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ESP +d

The steady-state solution can be found exactly to
be

The excitation rate ~ can be obtained from

Ave. =power=1 p.%

or (V4)

(2z)-"' E'
~(E, ~) = exp—

where O'= Qvd/4e', . The electric field in the
cavity ls

(69)

&-10"atoms/sec.

At steady state the shot effect gives a distribution

(o(E, ) ~ exp[-(E —8)'/2a'],

with

E(z~ t) = E(t) Gos[vt+ p(t)] sinKz,

which contributes to an average energy of

where the factor 2 in the integrand comes from
magnetic energy, and the subscript av means time
average. Evaluating the integral in (VO), we have

W=-,'~, d7.2 S t' —2sin'«

=-', a,(E(t)*)Jdrsia'Ks

I /~ I =(I/4~0~&)( /Q)(~P/~) 10-'
The FWHH of the broad spectral profile is 15.6
X 106 sec ', and it shares about 10 ' of the total
energy.

The thermal noise is determined by the tempera-
ture T. At room temperature, T-300 'K, there-
fore,

4e gj 8""~' -1 4z k
(V5)

The steady-state distribution for amplitude fluctua-
tion is

= &(Qv/«. )(&/2), (Vl)
~(E, ~) ~exp[-(E-8)'/2a'],

where V is the volume of the cavity. Equating this
average energy with the right-hand side of (45),
we have

46 A~ 8' ~ +1
qy II v/AT

Our results are in complete agreement with a
previous calculation where the stochastic phase
equation w'as solved by a Fourier-transform
method.

The above argument follows the approximation
(49) in which E(t) is replaced by its average value
(E(t)). In general, we should consider the proba-
bility distribution v(E, y, t) that the amplitude and
the phase will be E and p at t. By a similar argu-
ment we obtain the Fokker-Planck equation for
co(E, y, t):

with

I o/&I =&(v/2e. )(II«)(tile)"' 10 '-
The width constant D of the spectral function is in
the order of

D=(v/2c, )'(d/8')--(kv/&, VS')-10 ' sec '.

V. CONCLUSION

Vfe have shown, using relatively simyle mathe-
matics, two effects of noise on the behaviox of a
laser. The shot-noise effect influences mainly
the amplitude of the laser field, and gives a spec-
tral profile consisting of a monochromatic compo-
nent superposed on a broad background. The ther-
mal noise is characterized by a temperature-de-
yendent d. It cmtributes to the spectral profile
as a very sharp Lorentzian on a broad background.

(VS)

but we will not consider the solution in the present
paper

IV. NUMERICAL EXAMPLE

For a typical laser, the various parameters may
be given the following values: v-10 ' sec ', Q-10',
a-10 sec ', ~P-10' m'V' ' sec ', volume of the
cavity V- 10 'm', and power generated -1p%'.
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APPENDIX: SPECTRAL FUNCTION

The spectral function given in (SV) can be de-
rived as follows. Consider a laser cavity with a
transverse electric field

E(z, t) =A(t) sinKz.

Expanding A(t) into a Fourier series with period-
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icity T, we have

A(t)= Q

where

T/2
s„=- atA(t)e """'.

-&/2

(A2)

(AS)

lim g Z', =e,V lim br((s„(')
oo

1= hru(e, V/2v) lim-r--T

x dtAte ' ' (As)

The average energy ~„associated with the compo-
nent of the field with frequency ru =+2vr/T is
given by

&r=~ lO(l+rl ) ~
(A4)

where the average means ensemble average, and

V is the volume of the cavity.
As T-, the spectrum of the field approximates

a continuum. The energy of the field associated
with a frequency ranging from &u =2wr/T to ~+ h&u,

with &ar =2wnr/T, is given by

The spectral function f(&u), equal. to the energy
of the field per unit volume per unit frequency
range ls

&/2 &/2

f(&o) =a ltm — dt dt'
2w 2'~ ~ ~ -T/2 -T/2

where only positive + are considered.
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