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Quantum Theory of an Optical Maser. VI. Transient Behavior*t
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The transient behavior of a laser is discussed using the quantum theory as did Scully and Lamb. The
formal solution of the density-matrix equation is expressed in terms of exponentially decaying eigenmodes.
Some of the lower decay constants are obtained numerically. The equations for the moments of the density

matrix are then derived and solved by a truncation method. The equations of motion are integrated

numerically for the case where the average number of photons in a laser cavity has the realistically large
value 1.3 )( 10'. An alternative Fokker-Planck-equation approach is discussed.

I. INTRODUCDON

In the quantum theory of a laser by Scully and

Lamb, ' the laser is considered to be a lossy cav-
ity of the Fabry-Perot type driven by an inverted
population of active atoms. The electromagnetic
field is described in the interaction picture by a
reduced density matrix p of the system which, in
the g representation for single-mode operation,
obeys the following equations of motion:

p„„,= -[(n+1}Z„„.+(n'+1)ZP„]p„„.

'[B»-|..-i 'C- ..-i]n' (n'}~p.-|,.—

- -,' C(n +n'}p ~ + C(n +1)~'(n' + l)~'p„„„,„.
The constant C is the cavity bandwidth v/Q, where
v is the laser frequency and Q is the cavity quality
factor. The coefficients P ~ are given by

y, (y +is)+g*(n -n')
y, y~(y,~+ 62) +2y2+(n +1+n'+1) +g (n -n')[g (n' -n) +is(y, -y~)] ' (2)

where the detuning a = co —v, g is a coupling con-
stant between the field and active atoms, and the
y's are atomic decay constants.

Equations (1) describe the transient behavior of
laser action. It is the purpose of this paper to
investigate the solutions of these equations.

A = 2r, (g*/y, y„),
B = Sr. (g'/r, r~}(g'/r, r&) (4)

D= r, (g'/r. r.,Ng'/r. r.,) .
The steady-state solution p„„of the diagonal
density-matrix equation (1) can be'readily found
to be

II. FORMAL SOLUTION OF THE EQUATION
OF MOTION: EIGENVALUES

n

p.".' = p".'ll (A/C)(1+ B}t/A) '. (5)

Let us, for simplicity, consider a perfectly
tuned laser, i.e., ~=co-v=0, then

—,'A+D(n -n )
1+ —,'(B/A)(n+1+n'+1)+(g'/y, y~)(n -n')' '

where

It is by no means trivial to obtain transient solu-
tions of (1). We may, however, simplify the
problem by expanding R„„.into powers of g' (small-
signal theory). To order g', we have

B„„.= —,'[A ——,'B(n+1+n'+1)]+D(n -n')
and (1}becomes

p = -[A ——,'B(n +1+n' +1)]—,'(n +1+n'+1)p„„—D(n -n')'p„„. +[A ——,'B(n+n')](nn')' 'p„, „

—-', C(n+n')p„„. +C(n+1)' '(n'+1)' 'p„„„.„.
866
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Let us first consider Eq. (7) for the diagonal
elements

p„„=—[A- B(n + 1)](n+1)p„„-Cn p„„

+[A Bn-]np„, „,+C(n+1)p„„„„.
A particular solution of {8)has the form

(f)-p e ht

if the p„obey the difference equations

c„p„,+(a„-A,)p„+b„„p„„=0,n=0, 1,2, "

(8)

(10)

a„= [A -B(n+1)](n+1)+Cn,

b„= Cn, c-„=-[A-Bn]n .
Equation (10) can be written in the form Mp = gp,
where p is a column vector and M is the matrix

(a, b, 0 0
e, b~ 0
cm gg b,
0 c, a,

We note that the decay constants A. are the eigen-
values of the matrix M, and satisfy the secular
equation

a~ -A, b~+l 0
cy+ l +y+ l ~ by+2
0 c~+2 Qg, +2 —X

0 o ~ e

0 . (15)

By expandhng D, in minors, we find the recursion
relations

(5), we see that this difficulty arises from our
expansion of B ~ into powers of g'. This expan-
sion is obviously invalid for very large n.

We note that from (5) that for n &A/B the exact
steady state p~'„ is well beyond its peak at n~
=A. {A —C)/BC and tends to zero exponentially,
vjrhGe if n* is an integer, the approximate solu-
tion (14) is identically zero for n &n*=A/B, and

does not have the oscillatory divergence. From
now on, we shall take n*=A/B= an integer to
avoid this oscillatory divergence.

%e now derive some properties of the eigen-
values that will be useful for our further discus-
sion. One helpful fact is that all eigenvalues are
real. Proof: It is easy to show that the eigenvalue
equation Mp = A p can be transformed into Hermitian
form, i.e., &o = Ag where H is a Hermitian matrix.
The eigenvalues of a Hermitian matrix are real.
Q.E.D.

To proceed further, let us define the determi-
nants

a, -A. b,
c, u, -A.
0 c,

0 0 ~ ~ ~

0 0 ~ 0-0
«A. b2

{13)
Do= (ao —A.)D, b,c,D, =—0,
D, =(a, -~}D,-b,c,D„

It is easily seen that A. =0 is one of the eigen-
values, corresponding to the steady-state solu-
tion of (8). Proof: If we add every element in
each column to the first element of that column,
(13) becomes

c a -x b 0 ~ ~ -0
0 c, a, -A, b,

Da = {aa-~)De+ i -ba. ice.i'.2

where by (13), D, has been set equal to zero.
These equations lead to a continued fraction
equation

ao —X = b,c,(D2/D, )

b,c,

(18)

It is seen that X =0 satisfies (13). Q.E.D.
The steady state of the density matrix corre-

sponding to z =0 can be obtained from (10) to be

n

p„=p D(A —Bb)/C,
A=l

(14)

where p, is determined by normalization,
We note from (14) that for n sufficiently large,

p„ in general reverses sign and increases in
magnitude with each increment of n. This cor-
responds to an unphysical situation. However,
comparing with the exact steady-state solution

b2c2

D2/D,

b,c,
gl —A. —

D ~
2

bn —lcm -l
g„W l -A.

We may prove that all roots of (IV) are greater
or equal to zero. Woof: Define
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b,c,
~»+ 1~5+1

g ~ g o ~ ~
»+ 1

Suppose X& 0, then proceeding from k =n*-1,
n*-2, ...2, 1, we can show by mathematical
induction that

f,(X) &f,(0) for k =n* —1, n* —2, .. .2, 1.
In particular, for k=1, we have

(18)

which implies A. &0 in contradicting our supposi-
tion X &0. Therefore, X must be non-negative.
Q.E.D.

We may write down the formal solution of (8)
for the density matrix in the form

~o

p (f) p(0) + Q pal)e hat
»=&

where p+ are the nth components of the eigen-
vector corresponding to the eigenvalue A» Since
all eigenvalues are real and positive, the steady
state of the density matrix is stable and equal to
p~'~ as given in (14).

Aside from the eigenvalue A =0, other eigen-
values can be found only by numerical methods.
In certain cases, we may use the continued frac-
tion (17) to find the eigenvalues by an iteration
procedure. Let us consider the following set of
parameters: n*=1600, C=1.0 psec ', while g
ranges between 0.8 psec ', which is under thresh-
old, and 1.2 psec ', which is well above thresh-
old. The numerical procedure can be outlined
as follows.

(i) We find the eigenvalues approximately by
plotting numerically the continued fraction f, (a)
on the right-hand side of (17}, and compare it
with the function Qo A, .

(ii) We pick an approximate eigenvalue, say
A, . For those values of 1. near A„we fit f,(X)
for k=10 by a hyperbolic function of the form
o. +P/(X —y). The constants u, P, and y are
determined from the values off»(A, —A),
f,o(AO}, and f»(AD+A) for an appropriate A.

(iii) Substituting the extrapolated hyperbolic
function for f~(A.) into (17}, we solve (17) then by
Newton's method. A better approximate eigen-

'.e
Xp

.9
xi fr

I.O

A/C

l.2

Fig. 1. Lowest eigenvalues of the diagonal-density-
matrix equation as a function of the pumping parameter
ratio A/C calculated by the continued fraction method
when N = 1600. The dashed lines represent eigenvalues
for the linear case B = 0.

value A, can thus be obtained.
(iv} We replace A, by A, in step (2), and repeat

steps (2) and (3). We then obtain A, as a better
approximation than A, . The process is continued
until ~A„„-A„~ is reduced to a preassigned value,
say 10 'A, .

In this way, we find the P dependence of the
seven lowest eigenvalues. The results are shown
in Fig. 1. We observe that the nonzero eigenvalues
are nearly pairwise degenerate when A is well
above the threshold value. In particular, it is
seen from Fig. 1 that X, and A, are closely de-
generate for A e 1.2C. The eigenvector p'„" cor-
responding to A., has only one node, and p„' of X,
has two nodes. As A., and A, approach degeneracy
we find that p„' and p„' become equal to each other
except in a small region of n where both

~

p~"
~

and (
p~'~~ are very small compared to their peak

values. In that region p„' has an extra node point.
The actual symmetry corresponding to the de-
generacy is not known to us.

The off-diagonal elements of the density matrix
can be written from (7) as

p„„,~= —[A -B(n 1+x'k)](n+1+ —,'k)p„„,~ —Dk'p„„„—C(n+ —,'k)p„„,~+[A -B(n+—,'k)]n' '(n+k)' 'p„, „„~
+C(n +1)'~'(n +1+k)'~'p„„„„,~. (20)

We note that the off-diagonal elements of the
density matrix in the form p„„,» are coupled only
with themselves. A particular solution of (20) is

p„„,~(t) =Q„e (21)

if the coefficients Q„obey the difference equations
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III. MOMENT EQUATIONS

A. Moment Equations and Their Solutions

The diagonal elements of the density matrix
p„„(t) are equal to the probability of finding n
photons in the laser cavity. They can be used to
calculate the moments of the photon distribution
(n), (n'), etc. defined by

&n& =g np„„(t),

(n2) =Q n'p„„(t) .
g=0

The derivative of (n) with respect to t is

d(n)
~ =gnp„„(t)

=conj- [A -8(n+ 1)](n+1)p„„-Cnp„,

+[A -Bn]np„, „,+C(n+l)p„„„,g

=(A-8)+(A -28-C)(n) -8(n') . (26)

For higher moments, we have, in general,

d(n')
dt

=(A -8)+(8 -»&n'&

+P([AC,'„-BC,'„+(-I)' "'CC' -)(n'&}
/= 1

—ka(n~+ '), (26)

where C~» =k!/[j!(k j)!]is the co—mbinatorial
factor.

Equations (26) are coupled differential equations
which describe the transient behavior of the
moments. A systematic approximation procedure
has been found for solving them.

Let t', =(n') '»'. We assume that p„„(t) have the
property such that g~ is a smoothly varying func-
tion of k. Then, by polynomial extrapo1. ation, we
may appx oximate Pa,x in terms of &„p2, . . . , 4a.

c„Q„,+(s„-p)Q„+b„„Q„„=O, n =0, 1,2, ~ ~ ~

(22)
where

s„=[A -8( n+I +'k)]( n+I +'k)+8k'+C(n+-,'k),

5„= —Cn'»'(n+ 0)'»', (23)

c„= —[A -8(n+ 2k)] —n&'(n+!t)~2.

A procedure similar to that used before can be
applied to find the eigenvalues and eigenvectors of
the off-diagonal elements. %e plot the lowest
eigenvalue of the p„„„equations for m*=1600 in
Fig. 2. For a laser well-above threshold, the
lowest eigenvalues p~~ of the p„„„equations are
found in Ref. 1 to be appx oximately equal to
g'~ =4iPCB/(A —C). We find that our results are
very close to this approximation for A &1.1C.

.08-

.06-

X
G

O4 I-

&„,=g(-I)'c',"g, „.
J 0

(2V)

the first 4 moment differential equations become
self-contained, and a numerical procedure, for
instance, the Runge-Kutta method, ' can be applied
to integrate them.

Let us first take only the first moment equation
and extrapolate to (n') '»' by (n), or (n') = (n&'
%e have

—(n) =(A -a)+(A —2a-C)(n) -a(n)'
dg

= -a((n) -n, )((n) -n, ),
where

(28)

n, =(I/28)[(A -28 -C)+[(A -28 -C)'
+48(A -a)]'"},

n, = (I/28)[(A -2a -C) - [(A -2a -C)'

+48(A -8)]"}. (29)

The solution of (30) with the initial condition

(n)(0)=n, at t=0

is

(n) —n, n, -n, e(„„),
(n) —n, n, -n, (30)

lf we consider higher-order moment equations,
we need a higher-order polynomial extrapolation
and have more differential equations to integrate.
%'e applied a fourth-order Runge-Kutta method to
integrate the four and six extrapolated moment
equations for the case of n* =1600, A, =1.15 p,sec ',
and C = 1.0 psec '. The results are Plotted in Fig.
3. Use of this procedure in higher-order extrap-
olation seems to give rapid convergence.

l.O

A/C

FIG. 2. Lowest eigenvalue for the p~, „+&
equations as

a function of the pumping parameter ratio A/C when n*
= 1600. The dashed line indicates the correspon@~~
eigenvalue for the linear case 8 = 0.
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200

(n)

IOO

ent eqns.

TABLE I. Comparison of the eigenvalues calculated
by the continued-fraction method (CFM) and by the mo-
ment-equations method for various values of the ratio
A/C. The value of n* is 1600.

A2 A3

(in units of C)

20 40
t (Iu, SeC)

I

60
I

80

B. Moment Equations and the Eigenvalues

The success of the extrapolation procedure for
the moment equations suggests a similar method

for the calculation of the eigenvalues of Sec. II.
We note that

(n) =Qnp (t)=Qn p„"+Q p„"'e "a'~
n n 0 1 )

(31)

FIG. 3. Time-dependent moment (n) (t ) obtained by
considering one-, four-, and six-moment equations.
The parameters used areA= 1.15 @sec ~, C= 1.0 @sec ~,

and n* = 1600. The initial condition is (n) (0) = 0.

CFM
m=2
m=5
m=8
m =11
m=14

CFM
m=2
m=7
m=12

CFM
m=2
m=5
m=8

0.049 825
0.048 21
0.049 627
0.049 807
0.049 823
0.049 824

0.073 72
0.096 02
0.083 01
0.0'79 38

0.19088
0.1942
0.1911
0.1909

A=C

0.127 16
0.1616
0.12926
0.127 39
0.127 19
0.127 16

A =1.1 C

0.102 11
0.2634
0.1560
0.1297

A=1.2 C

0.19097
0.4398
0.3614
0.3524

0.225 31 0.3404

0.240 38
0.225 81
0.225 09
0.225 25

0.442 98
0.364 29
0.345 94
0.341 60

0.164 61 0.2417

0.2859
0.2247

0.4827
0.3578

0.5711
0.5065

0.9051
0.7207

0.3446 0.3534

where (n)~=+np„" aIre the moments corresponding
to the eigenvector p„" belonging to the eigenvalue

Near steady state, the second term Q~(n)~e "~'

in (31}is small compared to (n), and can be put
approximately equal to (n),e "~', with x, being
the smallest eigenvalue other than 0. Let

where (n'), =~n~p~'I. To first order in 8's, we
get a matrix equation of the form

(34)

5, =g(n), e "~'=( )n, e "~'

and substitute it into (28):

—((n), + I),) = (A —B) + (A —2B —C)((n), + II,)
d

-B((n), +5,)2.

To first order of 5„we have

~= (A —2B —C —2B(n), )5, ;
d5

the solution is obviously

(n) e k~t

where

A., = (C -A +2B) + 2B(n)0 .

(32)

Let 5~~ e "', and substitute into (34). We hope
to obtain the lower eigenvalues A. 's from the sec-
ular equation.

In Table I, we compare the eigenvalues calcu-
lated by the moment-equations method and that
by the continued-fraction method of Sec. II. We
note that in the region where the eigenvalues are
well separated, the moment-equations method
gives results in excellent agreement with our
previous calculation. When two eigenvalues are
close together, the method is only partially suc-
cessful. The reason is probably that the extrapo-
lation method is not sufficiently accurate to ac-
count for the fine structures of the eigenvalues in
the case of near degeneracy.

IV. TRANSIENT BEHAVIOR OF THE
DENSITY MATRIX

By considering m of the moment equations with
the truncation (27) for t „, we can introduce

(n~) = (n'), + II, , k = 1, 2, . . . , m

We shall try to integrate the diagonal equations
(8) in this section. First, we note that the di-
agonal elements of the density matrix have the
conservation of probability property
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TABLE II. Comparison of the time dependence of the
moment (n) calculated by the moment equations method
of Sec. III and by integrating the density matrix equa-
tions. Also tabulated is the trace of the density matrix
Q„p„„(t). The parameters used are A/C =1.15 and
n*=108. Time is measured in units of C which typical-
ly might be 1 @sec.

Ct

0
4
8

12
16
20
24
28
32
36
40
44
48
52
56
60
64
68
72

&n)

(moment
equations)

0.007 978 8
0.014 487
0.026 088
0.046 415
0.081 029
0.13732
0.222 80
0.341 18
0.487 90
0.649 51
0.808 64
0.950 40
1.0658
1.1520
1.2105
1.2498
1.2732
1.2868
1.2946

&n)

(density
matrix)

0.007 978 8
0.014482
0.026087
0.046430
0.081074
0.13742
0.222 99
0.34146
0.488 12
0.649 04
0.80608
0.944 21
1.0556
1.1394
1.2059
1.2469
1.2710
1.2850
1.2932

1
1.000 34
1.0010
1.0016
1.0021
1.0024
1.0027
1.0030
1.0034
1.0042
1.0057
1.0091
1.0166
1.0310
1.0478
1.0759
1.1709
1.1363
1.1567

The initial condition is chosen for the sake of
convenience to be

p„„(0}=p,e "/'", gp„„(0)=i.
n

We take ~ =10', and apply a fourth-order Runge-
Kutta method (with a relatively large time incre-
ment at=0.02 psec) to Eg. (37). The resulting
function S(n, t) is plotted in Fig. 4. The diagonal
elements of the density matrix p„„(t) can be found

by taking the exponential of S(n, t). The density
matrix we found is satisfactory in the following
sense. (i) To a good approximation the total
probability is conserved, i.e. , ~p„„(t)= 1 (see
Table II). A further correction for p„„(t) can be
achieved by multiplying in a normalization factor
so that+p„„(t)=1. (ii) The moments calculated
from the normalized p„„(t) are consistent with the
result of Sec. III. In Table II, we compare the
moments calculated by the two methods.

We plot the normalized p„„(t}for the case in
Fig. 5. We mention that the transient solution for
the case n*=1600 has been considered by Scully,
Sargent, and Lamb, ' using a different numerical
integration procedure. Also, Gordon and Aslaksen4
considered the dynamics of the turn-on of a Q-
switched laser using different analytic approxi-
mate solutions for different stages of the time
development. Their results have some similarity
to ours.

V. DISCUSSION

So far, we have considered the transient behavior
of the density matrix in the ~n) representation.
Equivalently, we can use the "coherent represen-
tation. "' For a laser not too far from threshold,
the equation of motion in this representation turns
out to be a Fokker-Planck equation of the approxi-
mate form'

—-~r(t)

d 4
2

—-m @,
dQ

2(C —A) R —+2u +sB i4R u+R —
~

, du~

dR i dR)

(41)

(d'u 1 dg m'
+4A. ~ 2 +-———,u = -A,u,4

where A. and m' are the separation constants. The
general solution for (41) is of the form

2p(n, n~, t), (s s
= —,'(C -A)

~

—(np)+ (n'p)
~8 t Bo.'8(M+

)

+A +2B —(nn*np)
s'p, (a

BckBQ+

, ( * p)&~. (3)8

Hempstead and Lax' found that a rotating-wave
van der Pol oscillator can be described by a
Fokker-Planck equation of the above form, and
obtained solutions of the eigenvalue problem.
Haken and Risken' have also calculated sets of
eigenvalues for the approximate Fokker-Planck
equation (39}. The steady-state solution for
p(n, n*, t) can be found as

p(n, n*,~}=N exp(- [(A -C}/A]nn~ --,'(B/A)n'n*')

(39a)
but the general solution of (39) is certainly no
simpler than the one we found in Sec. IV.

We may apply (39) to find the eigenvalues of
Sec. II by a method adopted by Haken and Risken. '
Let n=Re'e and n~=Re~e and write p(n, n*,t}
= q(R, p, t); then Eg. (39) can be written

sq, f sq &, (, , sq—=-.'(C -A)
~

R —+2q
~

+-,'B
~

4R'q+R'—

1 s'q 1 e'q) 1 sq
4 l&sR'&I +4

which can be solved by the method of separation of
variables. Let q(R, y, t) = T(t)C (p)u(R), and sub-
stitute it into (40). We have
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Q(R Q, t)=+A e ~
~ '~~eU„(R)

n. nt

where n and m are integers, and U„„(E)is the

(42) eigenfunction corresponding to g . From (42),
we can identify the separation constants X, and

, with our eigenvalues of Sec. II.
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Using semiclassical theory, we investigate the shot- and thermal-noise effects on the behavior of a
laser. The Fokker-Planck equations for the probability distribution of the laser field are derived. These
equations are approximately solved, using a Gaussian function, from which we calculate the spectral
profile of the laser field. The width constant for the thermal noise is related to the temperature of the
cavity.

I. INTRODUCTION

The basic paper on laser theory' was semiclassi-
cal, in that quantum-mechanical atoms were cou-
pled to a classical electromagnetic field. It gave
a satisfactory discussion of phenomena such as the
threshold condition, power output, frequency pull-
ing and pushing, mode competition, frequency
locking, etc. , but omitted any consideration of
fluctuation phenomena of the laser. Later, one of
us' extended the semiclassical method to consider
the phase diffusion caused by thermal fluctuations
and found the corresponding width of the Lorentz-
ian spectral profile of the laser radiation. The
development of a fully quantum-mechanical laser
theory by Scully and Lamb' made possible' a cal-
culation of both thermal and spontaneous emission
contributions to the spectral profile. With this as
a guide, a simple change in the noise polarization
of Ref. 2 leads to the correct linewidth.

Many other papers have been written on laser
noise phenomena. Very complete bibliographies

have been given by Lax' and by Haken. ' With few
exceptions, the emphasis of these papers has been
on noise phenomena, and the underlying laser the-
ory has been rather schematic and not as well
adapted for a discussion of the actual operating
characteristics of a laser, somewhat above thresh-
old, as the semiclassical theory of Ref. 1. The
present work applies a simple version of the semi-
classical theory to shot effect, and also extends
the previous consideration' of thermal noise to
allow for amplitude fluctuations.

As in Ref. 1, the laser is considered to be a
lossy cavity of the Fabry-Perot type in single-
mode operation with circular frequency v driven
by an inverted population of active atoms. The
electric field is taken to be transverse to the
cavity axis:

E(z, t) = E(t) cos[vt+ cp(t) ] sinKz, (I)
where z is the distance measured along the cavity
axis and K is the wave number K= nw/L, with L
being the length of the cavity and the mode number


