
ELECTRON-IMPACT IONIZATION OF ALKALI METALS

Lond. 85, 1121 (1965).
' R. H. McFarland, Phys. Rev. 139,A40 (1965).
' M. R. C. McDowell, Proc. Phys. Soc. Lond. 89, 23 (1966).
"J.D. Garcia, J. Chem. Phys. 47, 3679 (1970).
'~G. Catlow and M. R. C. McDowell, Proc. Phys. Soc. Lond.

92, 875 (1967).
' A. N. Tripathi, K. C. Mathur, and S. K. Joshi, J. Phys. 8

2, 155 (1969).
' H. W. Drawin, Z. Phys. 164, 513 (1961).
' S. S. Prasad, Proc. Phys. Soc. Lond. 92, 871 (1967).

M. R. C. McDowell, Case Studies in Atomic Collision Physics
(North-Holland, Amsterdam, 1969), p. 47.

'M. Gryzinski, Phys. Rev. 138, A336 (1965).

'R. C. Stabler, Phys. Rev. 133,A1268 (1964).
23L Vriens, Proc. Phys. Soc. Lond. 89, 13 (1966).
"B.B. Robinson, Phys. Rev. 140, A764 (1965).
~'(a) A. E. Kingston, Phys. Rev. 136, 1537 (1964);(b) Proc.

:Phys. Soc. Lond. 87, 193 (1966).
M. Synek and A. E. Rainis, Phys. Rev. 141, 174 (1966).

2'E. Clementi, D. L. Raimondi, and %'. P. Reinhardt, J.
Chem. Phys. 47, 1300 (1967).

28K. J. Nygaard, Phys. Rev. A 4, 125 (1971).
P. A. Redhead and S. Feser, Can. J. Phys. 46, 865 (1968).
C. E. Moore, Atomic Eneqp Levels, Natl. Bur. Std. Circ. No.

467, (U.S.GPO, washington, D.C., 1952), Vol. 1.

PHYSICAL REVIEW A VOLUME 8, NUMBE 8, 2

Angu&er Distributions from Resonant Two-Photon Iom~tion

Melissa M. Lsunbropoulos~ and R. Stephen Berry
Department of Chemistry and the James Eranck Institute, University of Chicago, Chicago, Illinois 60NF

(Received 16 April 1973)

A general theory is developed to treat two-photon ionization through a single intermediate state in

which an arbitrary degree of relaxation may occur. The method, is set up to probe the parameters

governing the relaxation, by det~&ri~tion of the angular distribution of photoelectrons. The method is

applied to the ionization of Na atoms, through the 3p p„and 3p P ~ intermediate states.

I. INTRODUCTION

This work deals with the photoionization of atoms
by a two-step or resonant two-photon process.
In contrast to the situation described by Goeppert-
Mayer, ' in which a virtua1 intex mediate state of
the absorber is represented as a superposition of
many stationary states, we treat the case in which
the energy of one proton matches closely an in-
terval connecting a normally occupied state with

some electric-dipole-aOowed excited state of the
absorber. This excited state then dominates the
intermediate state of the two-photon absorption
process. Our particular concern is to show how

the angular distribution of photoeleetrons pro-
duced in such a process provides data about the
intermediate excited state. %'e develop a general
theory for atoxns, and apply it to the specific
example of the ionization of Na atoms via the ini-
tial 3~ -SP transition.

The kinds of information provided by the angular
distribution of photoelectrons are of several vari-
eties, as we shall see. One can obtain the ratio
of transition axnplitudes for photoionization in the
two allowed channels that can be reached from the
intermediate state. More important, one can ob-
tain information about the relaxation processes
that oecux in the intermediate state. It was pri-
marily for this purpose that we undertook the in-
vestigation of resonant two-photon ionization, and

it wiB be in this area, we feel, that the method
wiQ be most useful. In the case of atoms, to
which this piece is devoted, the major relaxation
processes are eollisional. However, in electron
ically excited molecules, even in complete isola-
tion, relaxation processes may occur which in-
fluence the angular distribution of photoeleetrons;
future discussions will deal with such processes.

The analysis of angular distributions of photo-
electrons has a venerable history in atomic phys-
ics, although the sub)set, particularly in connec-
tion with multiphoton processes, has been much
more developed in the context of nuclear and par-
ticle physics. General considerations governing
the angular distributions for two-photon processes
were given by Goerzel, ' Yang, 4 and Abragam and
Pound'; Zernike provided explicit expressions for
the angular distribution of photoelectrons px oduced
by a nonresonant two-photon process from hydro-
gen atoms, particularly from the metastable 2s
state. Yatsiv, Wagner, Picus, and McClung' car-
ried out experiments on a resonant two-photon
absorption process in potassium atoms, but the
upper state in their study lay below the ionization
limit. Bebbs determined theoretical transition
rates for two-photon ionization of alkali-metal
atoms, and pointed out that cesium could be stud-
ied as a near-resonant case if it were excited
with the second harmonic of the ruby laser. Then
Risso and Klewe demonstrated the multiphoton
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ionization of alkalis, ~ '0 and Hall" and Kishi and
co-workers" "showed that laser-induced photo-
ionization of Cs and Na mere best interpreted as
two-photon processes of the type described by
Bebb. The dependences of the two- and three-
yhoton ionization cross sections on polarization
have been studied experimentally by Fox, Kogan,
and Robinson, "and interpreted theoretically by
Lambropoulos. " These studies mere all concerned
primarily with transition probabilities and total
ionization cross sections, and, at most, second-
arily with angulax distx'ibutions.

Further investigation of the angular distribution
of photoelectrons appeared with the work of Coopex
and Zare for atoms, "and of Buckingham, Orr,
and Sichel" and of Tully Berry and Dalton"
(TBD) for molecules. The work of TBD is partic-
ularly germane to the present mork because TBD
given an explicit derivation for the angular distri-
bution of photoelectrons from nonresoncn& tmo-
photon ionization, the sort described by Mayer.
The TBD results mere worked out in terms of the
txansition dipole matrix elements, under the con-
ditions that the one-electron angular momentum
quantum numbers of the active electron are good
quantum numbers in the intermediate state.

In order to give a clear physical picture of the
process of concern here, let us contrast tmo ex-
treme situations of two-photon ionization. Suppose
the target is an isotropie collection of gaseous
atoms, and, for the sake of simplicity, assume
that the photons all have the same linear polar-
ization. Recall that in a one-photon ionization
process, under these conditions the angular dis-
tribution of photoelectrons has the form

I,(8) = a+ pP,( c8o)s,

where 6) is the angle between the polarization axis
and the k vector of the photoelectron. In the non-
resonant or Goeppert-Mayer limit of two-photon
ionization, the angular distribution has the form

I,(8)= a'+ p'E, ( c8o)s+ y&, ( co8s).

The reason for this result is simply that the in-
termediate states, generated by the action of
vector interaction on a scalar distribution, cor-
respond to an anisotropic spatial distribution.
%hen the second photon is absorbed, the accessi-
ble continuum states are those that can be reached
from that anisotropic intermediate-state distri-
bution.

Now suppose that a relaxation process can occur
in the intermediate state, and in particular, a re-
laxation process that can spoil the m, quantum
number of the active electron. If relaxation is
complete, then the intermediate-state distribution
becomes isotropic and the angular distribution of

photoelectrons must be given by (1), rather than
(2). Clearly, for intermediate times, the coeffi-
cients a', P', and y' of (2) must be functions of
time and of the relaxation rate. It is our principal
purpose here to show how a'-a, P'-P, y'-0,
and hom one ean infer relaxation times from mea-
surements of these coefficients.

For collisional relaxation of atoms, the method
gives essentially the same information as optical
pumping, a relaxation time for m, . For other
processes, such as intramoleculax energy con-
vel'sion one obtains nem information.

II. GENERALTHEORY

The basic problem is the determination of an
intensity distribution

where the trace is taken of the product of the final-
state density matrix pz and the detector operator
E. The matrix p& is conveniently evaluated as a
succession of transformations of an initial-state
density matrix p„ the initial state can be repre-
sented by the product of p„a matrix for the atom-
ic system, and p„ the matrix for the field asso-
ciated with the first photon:

P =P~Pg (4)

The transformations of the initial system are
written in terms of the radiation interaction oper-
ator 8, for the first absorption process, the time
evolution operator I' for the interval between the
first and second excitation processes, the density
matrix p, for the field associated with the second
photon (and p, may be the same as p, ), and then
the second radiation interaction operator R,:

pX=pepan

=RQR~ p, p,Rt~J'tp+I .
The final-state density matrix, like the initial-
state density matrix, is expressed as a product;
for the final state, the product is taken for the
outgoing electron (p,) and the remaining ion (p„g.

Since our concern in the final state is only with
the electron, we can specialize (3) to

where me have replaced a general detector opera-
tor E with an electron detector efficiency operator
~, and the total final-state density operator p~
with the part p, referring only to the outgoing
electron.

Insofar as the target absorber may have its own
internal symmetry, there may be a natural set of
axes in which to compute the transformations
represented by (5). A linear molecule, i'or example,
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has natural axes along and perpendicular to the
internuclear axis. However, the final description
of p, should be in terms of laboratory axes, if it
is to be useful for computing angular distributions.
We may write the density matrix (and other opera-
tors, when appropriate) in terms of a represen-
tation in a series expansion in terms of irreducible
te o .'~" Following the notation of Devons and

Goldfarb, i we let a, b, ~ ~ ~ denote total angular
momentum guantumnumbers; a, P, . .. denote
the quantum numbers for the well-quantized com-
ponents of angular momentum, and A., I3, . .. in-
dicate all other quantum numbers. Moreover the
density matrix in its conventional angular momen-
tum representation can be expanded in multipoles,
or statistical (irreducible) tensors, thus:

(«A~p~a'a'A) =Q (-1)" "'(a, &; a', -&'I aa'k, q,)

x p „(aA, a'A').

Here, (a, o; a', n'~aa'k-, g, ) is a Clebsch-Gordan
coefficient, and &„q, represent the quantum
numbers, respectively, of the resultant of cou-
pling a with a', and its well-quantized component.

(We use parentheses for Clebsch-Gordan coeffi-
cients and angular brackets for matrix elements. }
Thus I

a-a'I + k, + a+ a'. The multipoles or irre-
ducible statistical tensors p» „(aA, a'A') are in-
dependent of n and e', and have only one quantum
number g, referring to a component. Similarly,
the efficiency tensor & can be expressed in terms
of its angular momentum representation
&a'o'A'I ~I «A) or its multipole or efficiency
tensors»» (aA, a'A'), which are related as are
the two forms of p by (I) and its inverse, which,
for &, has the form

e» „(aA, a'A')=Q ( —1)" (a, u;a', -n'~kJ), )
OL

x(auA~F~a a A ) .
A particular convenience of the irredueible-

tensor representation is the form of the transfor-
mation from one set of axes to another, as in the
transformation between laboratory or reference
axes and molecule-fixed or natural axes:

p» „(aA, a'A'; lab) =Q D „' „(nat - lab)
a a gs 0 g

a

x p» „.(aA, a'A';nat).

%'e denote the sum over aQ components of a tensor
of rank &, by the tilde, e.g.,

notation of Devons and Goldfarb,

l =(2l+1)

where & may be any angular momentum quantum
number.

VI"e derive the expression for the angular distri-
bution W(Q) of photoelectrons by finding:

p» ~ (bB, bB), the density matrix for the atomic
excited intermediate state; the density matrix

p, „(fF,f'F') of the final state; and &» „(&'&',e&),
the efficiency tensor for detection of the final
electron. The dynamical relaxation during the
intermediate state is introduced in a phenomeno-
logieal way, as a set of random events, whose
ensemble average is isotropic in space.

It is convenient to express the density matrices
for the radiation field, p, q&(L,', L, ) and1' 1

p+ „(&„I ), in terms of the natural atomic or
2

molecular coordinate system. Hence we introduce
the appropriate rotation operators [D„„(B)]'
and [D„„(&)]' explicitly into our expressions.
The angufar momentum coupling is expressed
explicitly by the Clebsch-Gordan coefficients and
the 9-j symbols, in braces. The density matrix
for the intermediate state is

p, „(bB,bB)=g (bB)B[aA, L,', b)(aA, I„b[ftt[bB)
1, 1

a a
xQ b»kk, (k»rI, ~k,q„k„q,) I,,' I,,

x p, „(aA, a'A')(D» ] 'p „(f,", L,) .

We obtain p„by summing (11)over rl».
Since we assume that the targets form an iso-

tropic ensemble, p» vanishes unless 4, =q, =0;
that is, the isotropic distribution has only mono-
pole terms. Moreover the density matrix p, it-
self is diagonal, with equal elements, for the
ensemble we postulate. (Experiments with orien-
ted or suitably selected targets vrou3d require a
different form of the density matrix, of course. )
Thus, for our case,

p, (aaA, a'n'A) =a '5„5 „,5„„,,
and, since a( —1}' (aa, a —a(00) =1, and the
Clebsch-Gordan coefficients form unitary matrices,
we obtain the particularly simple form for the
statistical tensors of the initial state,

p, (aA, a'A') =Q p» „(aA, a'A'). (10)

Vfe also abbreviate with a caret, aeeording to the In other words, the statistical tensors are diago-
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nal, vanish for all ranks greater than zero, and
have diagonal elements (2a+1) ' for states with a
units of angular momentum. This allows us to
reduce the 9-j symbol to a 6-j symbol,

L'0
( 1)oz+a+5+oo z

so that the statistical tensor of the intermediate
state becomes

p, . (bB, »)=g (bBIRI~, L,'b&(~, L,blR'IbB&
4 1

density matrix p» for the intermediate state is
b. y

the result of an anisotropic excitation, we cannot,
in general, make the same reductions of (16) that
we made in deriving (15) from (11). If relaxation
is complete in the intermediate state, that reduc-
tion is applicable, but we are interested in the
more general situation here.

The "maximum-information" probability func-
tion is the angular correlation function for polar-
ized iona and polarized electrons,

W(A„a„Q„e,) = Q p, (fF,f'F') R' (fF,f'F'),

bo o bo o(ko~bl00 «1~i) (-1)""'""

x

Lt [Doo 1 pg'g ( zl 1)I, L,' a 1

Here, the statistical tensor of the radiation field
p» is in laboratory coordinates and the matrix

1
elements of 8 and Rt are calculated in natural
molecular coordinates. Note that D« is a multi-

~1

pie of an associated Legendre function.
The manner of presenting the relaxation of the

distribution of the intermediate state will be
described below. We go on now to describe the
density matrix of the final state in terms of its
statistical tensors p, „(fF,f'F'). For ion plus

le gf
electron,

p,,„,(fF,f'F')

(fFlRlbB, L,f&(bB, Lo, f'lRtlf'F'&
QB,J2 oL2

b L, fIlxg g'kp, b I,,'a&' Il u2 Af

where E includes all quantum numbers for elec-
trons and iona. The efficiency tensor components
can be written in terms of the (presumed indepen-
dent) electron and ion detectors whose efficiency
tensors have components &» and &, „:ltd k] gg'

&o „(fF,f'F')= Q eo „(eE,e'E')e, „(iI,i'I')'e", '
g ie' g'p

x(kyzI lk,q, «zan, )ff 'k,kz e' i' f'
n, &g &y

(18)
For the unobserved ion, the efficiency tensor

~o, o, (ii, i 'I') =z" ~o, obq, obz, z'

so that, like the reduction of (11),

(19)

a o~(fF f'F') ~ff'(-1)"" '"y

'
ky

EI ~ 8E g E, 20

Thus, we obtain the angular distribution function
for the electrons

xPo q (bB, bB)[D+q (R)]-zP „(Lo,Q)

(16)

p. , (fF f'F')(-1)""' "~(ff'lk )
.eE, e'8'
ff'. ly, ny

Again, the rotation operator D» assures that the
radiation field is described in natural molecular
coordinates, or, as we have done here, the in-
verse transformation refers the molecular tran-
sition to the laboratory frame. Because the

k (21)

If we use the electric dipole approximation, so
that L, = L, =1, and we take both photons in the
same beam with the same polarization we find

W(Q, ) = &flRlb, 1;f&(b, 1;f'IR'lf'&(blRla, 1;b&(b, 1; blR'I b&

A2 A b 1 f"Ef f
( 1)8+~+f+Ap f f f 2- 6 t(k)kp b 1 f& ( 1)1+a+b+o&

a 1 I a
Ay

xQ(-1)"t "s&o „(e'E', eE) g (kyzzylkzqp, r~)p, „(11)p» +(11).
nf nll712

(22)
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The function t(/'», }is the relaxation factor for the
4,-order statistical tensor for the intermediate
state, which we shaQ discuss below.

Efficiency Tensor

We next eonstruet the explicit efficiency tensor
for the photoelectron, following Devons and Gold-
farb. We assume that the detector does not mea-
sure spin, so that the spin contribution (olI l

o'& or
(olelo') is merely a & function &„. If «axis «
quantization for the angular momentum of the
electron is along the propagation vector in the
direction A„ the detector efficiency is

&L/AII»IL'/'A'& =5 &L/Alf/o& &olI"I o'& &«'IL'/'A'&,

(23)

which gives efficiency tensors

4„=x,„eo" =pc „lhfj, p&+c „lEj,p&. (2g)
/=1

For x- and y-linearly polarized light, we obtain

4.= {2)-'~~gll, 1)+ll, -1&
/=1

+lE, 1) —lE, —1) (30)

ton is a spin-1 particle with a zero value of spin
angular momentum along the propagation direction
k. The photon wave function 4„ for arbitrary
polarization 0 (g =+1 for left- or right-circularly
polarized light, p, = x, y for linearly polarized
light) is expanded in terms of 2j-pole states for
electric and magnetic multipoles lE», +1) and

le», +1&, with amplitudes given by coefficients
egg~ and c@gp.

~, „(/L, /'L') = Q (-1)'-'(I,, A; L', A'l/»„»/. )
A, A», g

e„= -/(2)-'" Q lu, 1& —l//I,
/=1

+lE, 1) +lE, -1), (31)
x(L/Al/. ~.& &L/A lao& &nolL / A & .

(24)

The frame most useful for us is the laboratory
frame, in which the propagation vector of the elec-
tron is specified by the angle 0 = 8, p and the ~ ax-
is the approximate symmetry axis of the radiation
field. In such a system,

e„„(/L, /'I ') =Q C~ „,(LL'}D„„,(//} {25)

respectively. The density-matrix element speci-
fied by E,If ' (which may be E or M), j,j ' and p,p', for a pure state 4, is

(Ic',j 'p 'l plxj p& = (K'j'p 'l4& (4 l Ecj g & .

TABLE I. Values of expansion coeÃieients C& &»g L ')
of the efficiency tensor.

and the coefficients

C, „.(II') =+{-1)~' '(I, /; L', -/'l/», »/'}

&&(LA/l0o)(OolL'A'/'& .
The projections of the form (Ool LA/) are multiples
of Clebsch-Gordan coefficients

(OolIA/) =(4s) ' 'f(lO, solLA),

for particles with total spin and orbital angular
momenta l, s and well-quantized components 0, o'.

If polarization is not observed and we deal with
electrons, for which s =&, the coefficients C~ „.
reduce to this form:

C (I.I. ) =(8m)-«'LL (-1)"&-'~'
k~0

x(L, —,'; L', ——,'lk, O}. (28)

Table I contains values of the efficiency tensor for
electrons, with angular momentum quantum num-
bers e, e' through 9, corresponding to g-wave
electrons.

Photon StatisticaI Tensor

The photon density matrix is most simply de-
rived by the method given by Peshkin. mm The pho-

1.41421
0.0
0,0
0.0
0.0

0.0
2.000 00
0.0
0.0
0.0

0.0
0.0
2.449 48
0.0
0.0

0.0
0.0
0.0
2.828 42
0.0
0.0
0.0
0.0
0.0
3.162 27

0.0
2.000 00
2.449 48
0.0
0.0

-2.00000
-2.00000
1.309 80
3.207 13
0.0

2.449 48
-1.309 80
-2.618 61
1.069 04
3.779 64

0.0
3.207 13

-1.069 04
-3.086 06

0.93048

0.0
0.0
3.779 64

-0.93048
-3.481 55

0.0
0.0
0.0
2.828 42
3.162 27

0.0
0.0

-8,207 13
-2.890 45
1.90692

0.0
8.207 13
2.267 78

-2.162 24
-3.057 88

-2.828 42
-2.39045

2.162 24
2.900 96

-1.799 10

3.162 27
-1.906 92
-3.057 88
1.799 10
3.365 80
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p, (E,E)= for right circular,0 0

p (E,E)= ~, , 2 for »polarized,
2 2

1 1

p„(E, E)=, , for y polarized,
2 2

(ssb)

(3M)

1

p„(E,E}= ', for unpolarized light. {33e)
2

For an electric dipole process, we need only the
lE1, 1) and lE1, -1) components. We have only

pi(E~ E) = for left circular ~ (33a)0

—(mlplm) =+A„,(mlplm&,
m'

(38)

in terms of a transition matrix A. Conservation
requires sums on rows or columns of A to be zero.

The perturbation process of a set of kinds of
events If, associated with transition potentials (or
T-matrix elements, more accurately) U», over
whose effects we must sum or integrate gives

A„., = gP(E)[l(ZmlU, lcm'& l'-8.„,], (38)

where P(K) is the relative probability of the Eth-
type of event. If the events differ according to
class, as to their reference to spatial orientation,
which we may denote by +, then

The photon statistical tensor components are de-
rived by the expansion we have already used:

A, =(8» ) ' g d+P„(&o)

x[1&~mlU. (~)1~m'& I'-8...]. (4o)

p,,„(1,1)= Z (f,n, lip, lp')(-I)' "
P. 0'

x&E1, plpl«, ~'&.

These components take on the foQowing values, if
the reference (») axis is the propagation axis:

for x polarization (» reference):

p00=3 3 pmo= 6 y p22 = PI-a = -&i1/'8 1 /2

for unpolarized light:

p 3-x/2 p 6-1/s ~ p

If the reference (»') axis for x-polarized light is
taken along the polarization direction, then the
tensor becomes diagonal, with

p..=s "*, p..=-(sls) '", p.,=p. .=o (3'I).

(se)

This is a particularly convenient choice because,
if p is diagonal, the angular distribution & be-
comes a sum of Legendre polynomials.

Relaxation in the Intermediate State

%e follow the method of Dillenberg and Naris" '
to derive a phenomenological description that
parametrizes the relaxation of our intermediate
state lb'&. We assume that the intermediate state
is a weQ-quantized pure state when it is first
formed, and not a superposition of the sort set up
in quantum beat experiments. The reference axis
for this quantization is the natural axis for the
incident light, either the polarization axis for
linearly polarized light, or the propagation axis
for circularly polarized or unpolarized light. The
perturbation causing relaxation is assumed to be
incoherent, so that it introduces no special phase
relations among the states. Then we may write
the relaxation equation for the diagonal elements
of pas

Note that 4 represents the conserved quantum
numbers, which, in our present context, wiO in-
clude the total orbital momentum of the active
electron.

Now we make the physical assumption that P„(to)
is independent of ~, and rotate our reference
frame to evaluate the elements of U„(&u):

(ZmlU„(tu)lJ'm'& = Q (ZmlD „((u) 'leap&
Pe P'

x «~IU. (o)l~p'& &~AID.„(~)l~..&.

(41)

Integration over angles reduces the transition ma-
trix to the form

A = QS„~g XqS,

where

Sg =(-1)~ "{8,m; J; -mlfo)

A., = QP„(-1) ~z 2 Q Q [(zp, J- vl EO)
I P, P P, P

x(zp', g plio)(gp'lU leap)

(43)
x&~p I Un l~l '&8@-u p'-v

The matrix 8, is the unitary matrix that diago-
nalizes A ~ to provide the eigenvalues A, These,
in turn, define the time decay of the irreducible
tensorial components of the density matrix, which
describe the behavior of (mlplm). The general
solution to (38) is

(mlp(E)lm) =(mlp ~lm&+Q S qgq(0)s g', (44)

where the initial conditions determine the f,(0)'s.
The boundary conditions we apply are that the
isotropic component p~ of the statistical tensor is
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identically 1, and that all other p„'s decay toward
zero. (We can choose our axes so that p,„is iden-
tically zero for }7 o0o.) Writing the statistical ten-
sor in terms of the density matrix, we have

p», = Q(kOlJ, m; J, -m)(-1)~ (mlp(t)lm)

Note that 7', may be field dependent in intense ra-
diation fields.
This expression incorporates all the relaxation
information that we have included thus far in the
analysis. However, it is still rather cumbersome
in its present form.

e k((»

k=o (45) Explicit Expressions

We now identify

R„=g,(0) g(-1)~ S,(J, m; J, —mlk0)

= C, (O) g(-1)'- (-1)'-"

x(J, m; J, -mliO)(J, 'm; J, -mlkO}

=4(0}bg„ (46}
so that the g»(0)'s are indeed the initial conditions
of p, (t):

p,.(t)=p,.(o)e '»' (47)

Finally, we need only integrate over time, with
the weighting factor e ' '» for the intermediate
state whose natural lifetime from spontaneous,
stimulated, and reactive causes is &b:

It is very useful for comparing predictions with
experimental data, to express the angular proba-
bility function W(Q) in terms that allow all the
angular parts to be calculated explicitly, once and
for all, and to introduce the radial factors of the
transition dipole matrix elements and relaxation
factors as parameters or as numbers derived
from microscopic theory. We choose the reference
frame of the photon density tensor so that qf =0.
Then we may write

w(Q}=E 2 [(flRlb, lof&&b, 1;f'lRrlf")
y, y' a, b

x (blRl a, 1; b) (a, 1;blR rib)

W(Q, t-~) =
4 p

p 00

e ' '»W(Q t)dt e ' '»dt
Dp

xg "(a, b, i, e, f, e', f')].
e, e', $

(49)

e '~'a Q W» (Q, O) e»»' dt
b

= Q W» (Q, O)(1+X» r») '.
ab

b
(48)

The factors " contain the angular dependencies in
terms of the irreducible tensors and the relaxation
factors:

"(a, b, i, e, f, e', f')=f'f'»ba '( 1)' '"~Q-kP f f'
e e'

b 1 f
k& D00(R) 'C» 0(e'e)+5»» (1+A.» r, ) 'k» b 1

x ( 1}"'*"'
I

'
p~, ((, 1'} r o, p, ,(1,1}(o,o(o,o, o,o}. (50}

+ [B»+B»(1+A r») ']P,(cos8)-
+ B (1 oA»r»+) 'P4(cos8}. (51)

Every factor and term of " is calculable except
the relaxation factors (1+X» r,) ' of each k,th ten-

Ab

sorial rank. In general, with two electric dipole
processes, there are only five nonvanishing terms
in ", corresponding to the following combination
of ranks: k&=0, kb=0' k&-0, kb=2; kf =2, kb=0i
k&=2, k, =2, and kz -—4, k, =2. We can reduce (50)
to a simple sum over terms, each consisting of
numbers, relaxation factors, and Legendre poly-
nomials D~~ =P, (cos8):f

"=B~+B»(1+A r») '

Naturally the coefficients B» contain all the de-
Ayk b

pendence on the initial angular momentum a, the
angular momentum b of the intermediate state,
and the polarization of the radiation, as we11 as the
angular momenta e, e' of the outgoing electron, i
(of the final ion), and f, f', the total angular mo-
menta of the final channels.

We have derived a program and evaluated the
five coefficients B»» (actually, B, 0 and B, 0j' b

+B, ), to give the completely relaxed and com-
pletely unrelaxed distributions, respectively) for
all values of a, b, f, f', and i from 0 through 5
and e, e' from 2 through +. The values are tabu-
lated in Ref. 27 through a=2, b=3, f,f'=4, i =4,
and e, e'=&.
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TABLE II ~ Terms in the angular distribution of photo-
electrons arising from ionization of sodium via the
3P P &~2 state and a 3371-A (molecular N2 laser) photon.
Note that the terms B22 and B42 are zero. " = "@,b, i,e,
f,e',f') is abbreviated as (b,f f'), sinces=k, i=0,
e =f, and e'=f'.

t.o-

.8-

=-(k, 2, 5)
111"(2,2, 2)
13 1"(2,2 2)

Q =-(k,f,f') (flRlb)(b IRtlf')
JFf'

Boo

2.000

1.000

0 ~ 520

Blo

0.893

0.894

-0.32

4-

.2-

I I I

g/4 m/2 3v/4

W (Q) = 0.52L p
—0.032P2

= 0.536 —0.048 cos20 FIG. 1. Angular distribution of photoelectrons from
ionization of Na (3P P«~) with 3371-A. light.

Interferences

There is one point to bear in mind associated
with the levels b, f, and f'. Our present treat-
ment is based on the assumption that the band-
width of the excitation source is narrow enough to
ensure that only one intermediate state

~
bB) domi-

nates the first excitation step. The results ob-
tained by Hall" and by Kishi et al. ' "demonstrate
that this is a realistic assumption for atoms.
Moreover, the recent studies of Stevens, Swagel,
Wallace, and Zare28 demonstrate that this kind of
preparation can be achieved for a molecule at
least as complex as NO„ in which the excited
state is a single rovibronic level. It is unlikely
that single intermediate states can be excited in

complex polyatomic molecules. For such systems,
the description requires summation over all the
closely spaced intermediate levels excited togeth-
er by the absorption of the first photon. Moreover,
the phase relations among these states are de-
termined by the mode of excitation, so that the
time dependence of the composite intermediate
state must be taken into account explicitly, in ad-
dition to the time dependence associated with the
relaxation processes we have described. The two-
photon photoionization process then becomes a
means to probe the composite intermediate state.

Even when the first photon excites only a single
~bB) intermediate state, the second photon gener-
ally excites two outgoing waves in which the de-
parting electron has orbital angular momentum

TABLE III. Angular distribution terms in the ionization of sodium via the 3p P~2 interme-
diate state and a 3371-~ photon. As in Table II, we abbreviate the indices to " = (b,f,f').

Bop B20 Bpp+B p2 B2p+B22 B42

311"(2,2, 2)
"(k s k)
=-8.8, —:)

="S,S, a)
=-S,It, S)
="(r,~2, —:)

0.707
0
0
1.414
0
2.121

0
—0.200
-0.735
-0.505

0.465
0.759

1.414
0
0
0.283
0
2.55

0
-0.400
-1.47,

0.128
0.133
1.30

0
0
0
0
0 ~ 594
7 ~ 727

"-(~,2, 2) x0.226 0.160 0
"(2,2, y) x-0.066 0 0.013
"(2,e, k) x-0.480 0 0.353
"(»2,2) x0.005 0.007 -0.003
" (2, 2, 2) x 0 073 0 0.034
„-(2,2, 2) x 0.256 0.543 0.194

(2,f,f')x(flRlb)(blRtl f') 0 710 0.~01.

ff'
for Qv~ » 1,W(Q) = 0.710+0.591P2 ——0.415+0.886 cos e

0.320
0
0
0.0014
0
0 ~ 653
0.9744

0
0.026
0.706
0.0006
0.0097
0.333
1.0753

0
0
0
0
0.043
0.186
0.229

for A2'Ty &&1 W(Q) = 0.974+1.075P2+0. 229P4= 0.522+0.754cos 8+1.002cos &



ANGULAR DISTRIBUTIONS FROM RESONANT TWO- PHOTON. .. 863

III. APPLICATION TO SODIUM

.8

.2

0 I I

+&2 3Ir&4

FIG. 2. Angular distributions for taro-photon photo-
electrons from Na, via the 3p Ps/2 level and a 3371-A.
photon. Upper curve: fast relaxation, Q~&»1; lovrer
curve, slovr relaxation, A,2=0.

one unit greater or smaller than in the intermedi-
ate state. Only if the intermediate state is an s
level is the final state restricted to a single chan-
nel. Hence, in general, the sum over final states
will contain pure terms associated with f and f'
equal to b-1, b, and b+1 and, for each pair of
exit channels, an interference term that depends
both on f and f' As in .the angular distribution for
single-photon ionization, ""the coefficients
appearing in W(A) depend on the ratio of the b-f
and b- f' dipole matrix elements.

We present here the calculations for our atomic
example. Photoionization of sodium illustrates
how collisional relaxation can be determined by
measurement of the angular distribution W(Q); in
this case, the b-f and b-f' matrix elements can
be estimated reliably enough to permit the full
calculation of the five B, coefficients to be done.
The second example, that of two-photon ionization
of the titantium atom, is the subject of experiments
now in progress and the analysis will be presented
with the experimental work. The titanium case
offers a situation in which the angular distribution
is a means to measure the ratio of channel ampli-
tudes and the type of angular momentum coupling,
which can be thought of as an intra-atomic relax-
ation process.

The resonant two-photon process with sodium
can be studied with a first photon from a tuneable
dye laser and a second photon from another fixed-
frequency source such as a molecular nitrogen
laser. The '&, /, and 'P,~, levels are separated by
17 cm ', with energies of 16956 and 16973 cm ',
respectively. Bandwidths of order 0.1-1 cm ' are
achieved with tuneable dye lasers so each fine-
structure component may be studied independently.
The N, laser (more specifically, the most impor-
tant line for our own experiments, to be described
elsewhere) has an energy of 2966i cm ', and the
ionization potential of sodium is 41449 cm '.

TABLE IV. Transition amplitudes for all nonvanishing (Isj m
l xl I's'j'm') processes in the

Si/2 P j/2 s/2 S f/2 Ds/2 5/2 two-photon process. (The redundant —~ -m' amplitudes are
omitted. )

w component S Amplitude

2 2S i/2
—P i/2

2 2
Si/2 PS/2

2 2
Pi/2 —DS/

2 2PS/2- DS/

2 2PS/2- DS)2

(0
(0

(0

(o k

(1

(I k k

(I k
(& k
(1
(I
(I k

(& k
(& k
(I
(I k

kl

kl

kl
kl

Sl
kl

Sl

Il
kl
kl

g +tp
z

X —lg

X +$g
z

X —$g

z
+C$

X -tg
z

x —4g

X +f$
z

x +4/
X —$g

z
x -4g

ls
k

k
k
k

k

r)
-')

-r')
Q. )

-')

~)
1-2)
-')

8)
~)
k)
-')

-k)

3 i/gr
3-i/2

2 %pi
(4)~+at
6-i/2

(10)i/Q

())tl'P&

(qS
i/2

S-i/2
5-1/P

15-i/2

2(15)-~Vi2

-3"9
2„d

-3(5)-i/2
i2

3(10)-~V»

3(10)- /2 „
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3 OI

"10'

I/2

l/2

Of

2
/2

3/2

3 "fO 2
I/2

I

15 12

i2 5 12

5 2
5 ~f2

05)2 +2 5 r12

FIG. 3. Schematic dia-
gram of the two-photon pro-
cesses for ionization of Na
through P&y2, Qg2 inter-
mediate states. All ampli-
tudes are for the z compo-
nent, along the polarization
mls,

with m=2 Only,
I 3

with m=p and m =
2

in intermediate state.

Hence the kinetic energy of the outgoing electron,
resulting from resonant excitation of the '&, ~, or
+3/, level of Na, fol lowed by absorption of a-

photon from the N, laser, would be 5168 or 5185
cm ', respectively.

From the quantum-defect method (QDM),"we ob-
tain the radial factors for the two transition ampli-
tudes

Na(3p- &'s) =-0.4'r5

Na(3P - ~'d) = 0.5r 5

(where we have given relative values only, and
dropped the common constants superfluous for
this calculation). The d wave consists of two com-
ponents, coming from the channels 'D, ~, and
2
D5

The process via '&, ~, gives rise to a distribution
involving only B«and B,o, and independent of the
relaxation. This is because a state with angular
momentum j& 1 has no tensorial components be-
yond 4', =0. The angular distribution for two-pho-
ton ionization through the '&, ~, state is described
in Table II, and is illustrated in Fig. 1.

The ionization of Na via the 3P &,~, state is
richer and affords a clear example of how the re-
laxation process could operate to change W(Q).

The B,~ coefficients and angular distributions for
this case are given in Table III, and the two ex-
treme cases of X,&~«1 and A T,»1 are shown in
Fig. 2.

The sodium example is sufficiently simple that
it can also be carried through in explicit terms,
without the powerful irreducible tensorial tech-
niques. By evaluating each transition amplitude
(lsjm vari l's 'j 'm'), one obtains the components ex-
plicitly that are contained in (49). These are
given in Table IV, with the phase convention of
Condon and Shortley. " For the case in which both
photons have the same plane polarization, we ob-
tain the amplitudes indicated in the diagram of
Fig. 3. Note that if the two photons had bandwidths

great enough to span the 'P«, 'P, ~, inte-rval, the
intermediate- state distribution would correspond
to the superposition of these two states, and the
expression for the angular distribution of photo-
electrons would include interference terms be-
tween the two states. However, we expect most
experiments on this system to be done with only
one intermediate state, '&, ~, or 'P, ~» excited at
a time.
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