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The binarymicounter approximation (BEA) is transformed from momentum space to configuration

space. In this frame the impact-parameter representation allows one to calculate a variety of quantities

pertinent to the general problem of ionization. Among these are cross sections for proton io~i~tion of
hydrogen and helium; in the latter case, cross sections for ejection of both electrons are also given. A
number of tables and formulas are given, enabling one to correct the simple hydrogenlike-model

predictions of the BEA for effects which arise in multielectron atoms. Multiple-ionization probabilities

(K + I shell) are calculated and compared to experimental results and to the predictions of the
semiclassica1 approximation.

I. INTRODUCTION

A vast amount of literature over the past several
years has been devoted to experimental and theo-
retical inquiries into the effects which arise when

a charged particle passes through an atomic charge
cloud. With increased enthusiasm and ingenuity,
researchers have obtained experimental results
which refute many of the simplest predictions of
the prevailing theories. Although many of these
theoretical failures may arise because of the often
concomitant alteration of the atom and hence its
resemblance with the simple model by which it
may be theoretically described, these same fail-
ures have created an environment stimulating to

the theoretical reinvestigation of some of the de-
tails of charged-particle atomic collisions.

The present paper is presented with two distinct
objectives in mind. The first goal is one of for-
mulating in configuration space a model of the
interaction of two charged particles, a bound
electron and a particle of fixed trajectory with
respect to the nucleus. The model evolves from a
transformation of the widely used binary-encounter
approximation (BEA}from momentum space into
configuration space and then through a reexpres-
sion in the impact-parameter representation. The
latter representation enables one to view the inter-
action process in terms of probabilities from which
the cross sections can be obtained.
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This representation (impact parameter) shows
in a natural way that possible violations of prob-
ability conservation can lead to erroneous con-
clusions in the heretofore applied BEA. As a
consequence, we shall distinguish between two
distinct BEA theories which shall be called in the
present text the "unconstrained BEA" and the
"constrained BEA." The predictions of the former
of these two theories yields identical resu1ts in
either its momentum-space or configuration-space
representation. The predictions of the latter theo-
ry lead to cross sections whose magnitude is less
than the conventional (unconstrained) BEA.

The second goal is the task of modifying the BEA
such that it ean more readily account for dis-
crepancies which arise because of differences
between the real system of complex atom and
particle and the theoretical system of hydrogenlike
atom and particle. This task, the author realizes,
ean be only partially fulfilled with the simple for-
mulas and tables as presented here, but these may
be useful nevertheless in the intexpretation of
certain experimental anomalies which may arise
in such collisions.

The present paper deals solely with the process
of ionization by light ions and, as a consequence,
ignores much of the work concerning atomic ex-
citation and ionization by electrons or by heavy
ions.

II. BACKGROUND

A classical theory of ionization was first de-
veloped by J. J. Thomson' in his effort to estimate
the energy loss of charged particles in passing
through matter. Being interested primarily in
the interactions of fast incident particles and
relatively slow, bound electrons he assumed that
the velocity of all bound electrons was zero.

The BEA as formulated by Thomson gives only
a qualitative description of the ionization process
and hence, was for the most part ignored until
Gryzi6ski' ' presented his comprehensive papers
on the classical theory of ionization. In these
papers Gryzinski derived expressions desex ibing
the interaction of two charged particles in free
space, in which the incident particle, with velocity
v, , transfers part of its energy to the field particle
with velocity v, . Summation over those inter-
actions giving rise to energy exchanges exceeding
a certain value AE yields a quantity @~a(v, , a, )
useful in the calculation of ionization cross sec-
tions. Gryzihski further developed a prescription
for the velocity distribution of the field particles
(bound electrons), until then assumed to be a 6
function at zero velocity. The Gryzidski theory
was very successful when judged upon a basis of
re1ative simplicity, versatility, and accuracy;

consequently, it stimulated the interest of others
in the field.

Ger juoy' and Vriens' independently rederived the
free-particle cross section (FPC) for particles of
arbitrary mass, charge, and velocity and showed
that failure to explicitly average the cross section
with respect to directiona1 distribution of fieM
particles, as in the Gryzi6ski theory, can lead to
significant error. The expressions derived by
Gerjuoy and Vriens give the exact classical free-
particle cross sections for an assumed isotropic
distribution of field-particle velocity vectors.
Vriens has further shown' that this classical re-
sult for protons coincides exactly with the quantal
result (i.e., interference terms arising in elec-
tron-electron collisions are negligible for proton-
electron collisions).

The velocity distx'ibution of the bound electrons,
as prescribed by Gryzifiski, was for the most part
derived semiempirically. A number of other
authorse ' have presented results for the BEA
estimates of the ionization cross section of atomic
hydrogen by protons using a velocity distribution
appropriate to the 1s state in atomic hydrogen.
Their results for the ionization cross section
&ru(u, ) followed from averaging the correct"
o„(u, , u, ) over this normalized velocity distribu-
tion. The subscript U indicates that the above-
mentioned summation was conducted for all energy
exchanges exceeding the binding energy U. Par-
ticularly noteworthy was an analytical derivation
of ov(e, ) given by Vriens' who amongst others has
also related the BEA to quantal theories. ~ Quite
recently, the BEA has been applied to a variety
of problems which include ionization of complex
atoms by light ions. Garcias xo x' and his co
workers have shown in a series of papers that the
classical BEA for incident-particle velocities less
than the mean velocity of the bound electron is
comparable in accuracy to the predictions of the
plane-wave Born approximation. '0

In Ref. 12, an excellent review of the BEA has
been given by Vriens. A comprehensive investiga-
tion of the underlying principles of this theory is
undertaken and numerous comparisons of its pre-
dictions with the predictions of other theories and
experimental results are made. Less detailed,
yet complementary, discussions of the BEA are
also to be found in Refs. 13 and 14.

HI. SEA IN MOMENTUM SPACE

In the present section a general formulation for
the BEA is given. This formulation indicated that
the velocity distribution of the bound electron
evolves directly from the (square of the) momen-
tum-space wave function of the bound electron.
Others authors" "over the past several years
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«U(V, }=Q (UU(V, , VS)&

=Q J O'U(v1, v2}P„1(v2)4sv2dv2
ar

=Q f f21(VS) &U(V1 / VS) (3.1)

have employed a similar formulation, and in order
to distinguish these results from the results of
the classical BEA have referred to them as having
been derived from the "quantal BEA."

The more commonly used "classical BEA" is
seen to be derived from two approximations: (i)
The velocity distribution for an electron in any
subshell (22, l) is described by the Ls distribution
and (ii) within the hydrogenlike wave function for
the bound electron, the effective or screened
charge divided by the principle quantum number
n is replaced by the square root of the binding
energy in rydberg units, i.e. , S.«/n- (U/ft)'".

For ionization of the 1s state of hydrogen the
classical BEA and general BEA predict identical
results since Z,«/n=(U/R)' '=1. For other elec-
trons in other atoms, and particularly for elec-
trons in subshells other than the 1s, it is shown
that the classical and general BEA lead to dif-
ferent predicted cross sections. Owing to a direct
relationship between the average momentum dis-
tribution of any total shell n and the momentum
distribution for the 1s shell, the classical BEA
and the general BEA should lead to very nearly
identical results for the total n shell cross sec-
tions.

The primary assumption within the theoretical
framework of the BEA is that the bound electrons
(fieM particles) can be treated as free insofar as
their interaction with the incident projectile is
concerned. As a consequence of this assumption
the nucleus and other atomic electrons only play
a passive role in aiding to determine the ionization
potential and velocity distribution of the electron
involved in the Coulombic collision with the inci-
dent charged particle. This binary, or two-par-
ticle, approximation to the ionization process, and
additionally ignoring the consequence of any com-
petitive yroeesses which might occur for electrons
receiving an energy exceeding their ionization
potential, allows us to proceed within these approx-
imations to a general formulation for the ioniza-
tion process.

Given the free-particle cross section" «U(v, , v, )
for each arbitrary field-particle velocity v, , an
average (&U(v, , v, )) can be found contingent upon
an accurate prescription for the probability of
finding a bound electron between v, and v, +do, .
The general or quantal BEA ionization cross sec-
tion for an atomic shell containing N electrons can
thus be formulated as&5

32 5]~ 'U

f//I ( }
{U 2)4 (3.2a)

where U is the binding energy in rydbergs (1 Ry
=13.6 eV) and v is in units of /2c (Lac = 7.3x10 '
x2.998x10"cm/sec). The inverse Fourier trans-
formation leads us to

f (+) 4+ 2USI2 e-2r«1 2

=4$r Sp„,(r) =4lrr 2$„*,(r) /I/„, (t'},

and we find that

(y) Us/4e-rU1/2/U1/2 (3.2c}

where x is the electron distance from the nucleus
in units of Bohr radii (/22=5. 29x10 ' cm). This
for the 1s state of hydrogen gives

Z S/2 +-24«r/+1/2

with S,« = i =U"'. For an electron in the is state
of a multielectron atom, a more accurate wave
function P„ is probably found by replacing S,« in
Eq. (3.3) by Z -0.3,"rather than by U"', as in
Eq. (3.2c}. The use of the approximation S,« = U"'
does lead to a very convenient scaling law, name-
ly ~o

(3 3)

U,.„(E,', U,) = (U*./U', ) U,.„N„U.), (3.4)

where E,' = (U,/U, )E, . Here E, and E,' are the ener-
gies of particles incident upon electrons having
binding energies U, and U~, respectively. These
simple scaling laws have facilitated comparisons
of experimental and theoretical cross sections for
atoms with different binding energies. Equation
(3.2a) is also directly derivable from a classical
microeanonical ensemble of particles, and in this
context we might consider predictions based upon
this premise as being derived from the "classical
BRA."

where p„,(v) = 4/„, (v) /I/„, (v) and /t/„, (v ) is the solu-
tion to the Schrodinger equation in momentum
(velocity) space."

Perhaps of even greater significance than the
derivation of Q„,(v} from Schrtidinger's equation
in momentum space is the fact that these same
p„,(v} are directly related to the p„,(2) in config-
uration space through the Fourier transforma-
tion zs, ze Gonsequently, we conclude that the most
accurate f„,(v) must directly follow from our best
(Hartree-Fock) description of the $„,(s ). This has
been recognized earlier, ""and in efforts to test
the predictions of the BEA for simple systems,
f„,(v) has been derived directly from numerical
momentum-space Hartree-Fock wave functions
following a Fourier transformation from configura-
tion space

The prescription most widely used"0'" for
f„,(v) is
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For subshells other than the 1s, use of the clas-
sical momentum distribution f„rather than the
momentum distribution f„, can lead to significant
error. Because each of the proper momenta dis-
tributions f„, gives rise to identical scaling prop
erties as given in Eq. (3.4) (provided we replace
Z,ff/n' by U/Ry in their respective wave functions},
we have tabulated these scaled cross sections for
the L subshells (Table I). As an example we cal-
culate the ionization cross section per 2p electron
in Ti (U = 500 eV) for 250-keV incident a particles.
%'e find

250 keV
v /v =(E /M )(I/U)=

( }( }( )s
=0.136.

The cross section corresponding to this value of
v,'/v' is therefore q'/U' multiplied by the value
found in the last column in the table yielding
cr =9&&104 b per electron. The classical BEA cross
section is seen to be smaller by a ratio of approxi-
mately 4.7/5. 5 =0.85.

In Fig. 1 we compare the momenta distributions
for the ls, 2s, and 2p states of (hydrogenlike)
atoms having equivalent binding energies. Using
the values from Table I, we can calculate the
cross sections for ionization of the 2s and 2p sub-
shells of Au by protons (Figs. 2 and 3) and directly
compare them to the results of the classical BEA,
the semiclassical approximation (SCA}"and the
plane-wave Born approximation (PWBA).~3 Direct
comparison of the classical BEA and the more
appropriate descriptions a[f„(v)] and o[f»(v)]
indicate that the total cross sections are for the
most part insensitive to the details of the momenta
distributions (Fig. 1).

Of further consequence is a rule derived by
Fock'4 which shows that for fully occupied and
degenerate substates (n, l), the average momentum
distribution of the total shell (n) is identical with

f„(v}. That is to say

TABLE I. BEA cross sections per electron. (OU /z )
P (key)'j.

1s 2p

2.00x10 s

2.70x10 '
3.65x 10-'
4.92x 10 s

6.64x10 '
8.97x10 '
1.21x10 ~

1.63x10 '
2.21x10 '
2.98x 10
4.02x10 ~

5.43 x 10
7.32x1p ~

9.89x10 '
1.33x10 ~

1.80x10 '
2.43x10 '
3,28x 10
4,43x 10 ~

5,98x 10 i

8.08x 10
1.09x 100

1.47x 10
1.99x 100

2.68x 100

3.62x 10~

4.88x 100

6.59x 100

8.90x 100

1.2 x10
1.62x 10~

2.95x 10'

1.23x10 '
1.23x 10-'
4.36x10 ~

1.40x 10 ~

4.42x 10
1.3px 100

3.71x 10'
1.04x 10'
2.82x 10'
7.4 x10'
1.88x 10~

4.56x 10~

1.06x 10s
2.31x 10s
4.67x 10s
8.7 x10'
1.48x 104

2.27x 104

3.15x 104

3.93x 104

4.43x 104

4.51x 104

4.31x 104

3.81x 104

3.20x 104

2.57x 104

2.02x 104

1.55x 104

1.18x 104

8.8 xlps
6.6 x 10s
3.66x 10'

6.0 x10 s

4,73x 10
1.54 x 1p-'
4.93x 10
1.45x 10
3,96x 10O

1.02x 10'
2.50x 10~

5.70x 10~

1.18x 10
2.19x 10~

3.60x 10
5.5 x10'
9.65x 10'
2.32x 1ps

6.2 x lps
1.45x 104

2.71x 104

4.05x 104

4.94x 104

5.10x 10
4.38x 104

3.91x 104

3.25x 104

2.68x 104

2.20x 104

1.78x 104

1.42x 104

1.10x 104

8.4 x10'
6.4 x10'
3.62x 10s

9.1 x10 ~

1.42x 10
5.8 x10 s

2.62x10 '
l.pgx10 '
4.15x 10-~

1.53x 1(p
5.45x 100

1.86x 10~

5.95x 10~

1.77x 10

4.8gx 10
1.23x 10
2,76x 10
5.5 x10s
9.55x 10s
1.49x 104

2.13x 104

2.85x 104

3.60x 10'
4.22x 104

4.53x 104

4.44x 10'
4.00x 104

3,37x 10'
2.70x 104

2.09x 104

1.59x 10'
1.20x 104

9.0 x lps

6.6 xlps
3.68x 10'

SCA (Figs. 2 and 3) are widely divergent from any
of the other theories suggesting perhaps an error
in the numerical calculations for the 2s and 2p
states ""

p„(v ) = 8 [2p~, (v ) + 6p»(v )], (3.5) IV. TRANSFORMATION OF SEA
INTO CONFIGURATION SPACE

which can easily be substantiated by referring to
Fig. 1. Therefore, provided Pock's conditions
are not too strongly violated, comparison of total
cross sections for a particular shell (n} will lead
to similar results regardless of whether one uses
the exact descriptions of f„,(v) for each subshell
or averages the FPC over the classical f„(v}
distribution with an assumed weighted mean binding
energy. Comparisons of this sort have not been
carried out but the results of the classical pre-
diction for the total L-shell cross section of Au
have been made with the PWBA and with experi-
mental results, and all have been found" to be in
very close agreement. The predictions" of the

Gryzinski has pointed out that the BEA may be
described in configuration space by'

ere(v, ) =Q f ov[v~(r ), v~(r)] p(r)4vr~dr.
N

(4.1)

The problem heretofore in using such a formula-
tion has been that of developing a suitable and
consistent relationship between the velocity of a
bound electron and its distance from the nucleus.
In order that such a transformation be successful
one must satisfy two criteria: (a) The solution of
Eq. (4.1) for o(v, ) must be identical to the solution
of Eq. (3.1}and (b) the transformation must lead
to physically plausible results for v(r)
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the second criterion, we may first observe that
the probability distribution functions f„,(r) and

f„,(v) permit" all finite and real values of distance
and velocity in configuration and momentum space,
respectively. Second, we observe that from both
the Heisenberg uncertainty yrinciyle and the law
of total-energy conservation it is predicted that as
the radial distance becomes diminishingly small,
the electron's velocity becomes unlimitingly large.
Thus with the condition that criterion (a) be satis-
fied and further, that the velocity of the electron,
v', increases to infinity as its distance from the
nucleus, r', decreases to zero, we deduce the
following relationship between e' and r ':

f,"p„, (v)4wv'dv —f; p„,(r)4vr'dr =0, {4.2)

where the p„,(v)4wv'= f„,(v) and p„,(r}4vr'= f„,(r)
have been defined in Sec. XII.

The predicted magnitudes of the velocity for an
electron in the 1s, 2s, or 2p shells of hydx ogen
are given in Figs. 4 and 5. In these figures, the
v(r) relationship from Eq. (4.2) is compared with
a classical definition based solely upon the con-
servation of total energy. The present prescription
differs from this classical definition primarily in
the fact that in the so-called "nonclassical" do-
main, "where the classical description predicts
negative kinetic energy (imaginary velocities),
the present description predicts velocities both
finite and real. Use of the classical definition in
the case of subshells with angular momentum
quantum number /&0, e.g. , 2p subshell, leads to
a nonclassical region at small y as well as at
large g. Consequently, using the purely classical
definition leads to the implausible conclusion that

6.

5-

0 I I f g I . l ~ ~ ~

0 2 4 28 6 8 l0 12 I42SI6 8
0 2 42P6 8

FIG. 5. Velocity of an electron as a 5mction of its
distance from the nucleus for the 2s and @ states of
hydrogen. Curves have the same signi5cance as in
Fig. 4.

although the yrobability of finding an electron at
small ox' large y remains finite, our best estimate .

for its velocity nevertheless is undefined, i.e.,
the kinetic energy is negative. Owing to the ad-
mission by the probability distribution functions
of all velocities and distances between zero and
infinity, the present formulation overcomes these
physically unacceptable solutions.

The use of screened hydrogenic wav8 functions
in Eq. (4.2) gives the following relationship between
the velocity of an electron in an atom of effective
nuclear charge Z,s and the velocity of an electron
in hydx'ogen:

v g „(r)=z,ffv„(rz.ff). (4.8)

As stated above, Eq. (4.1) [where v(r) is found
from Eqs. (4.2) and (4.8)] will predict identical
results for v(v, }as that found from the momentum-
syace formulation, Eq. (8.1). One must of course
use a definition for p„,(r) = p„,(r) p, (r) consistent
with the choice of Z~ in Eq. (4.8) see, for ex-
ample, Eq. {8.8)].

Having the SEA in configuration space allows
Eq. (4.1}to now be transformed from spherical to
cylindrical coordinates, thus giving the imyact-
parameter representatiorP9

(4.4)

R(a)

FIG. 4. Average velocity of an electron in the gx'Ound

state of hydrogen as a function of its distance from the
nucleus. Solid curve: estimate from Eq. (4.2); dashed
curve: classical estimate from conservation of total
energy. Velocities in the latter case become imaginary
for r/uo & 2.

Here we explicitly indicate that although [provided
criterion (a) is satisfied] e(v, }is indeyendent of
the form of v, (r}, the probability of ionisation
P&&„&(b,v, ) does depend upon the details of the
description of v, (r). The total cross section for a
particulax' shell in an atom is found by summing
the cross section per electron over the number Of
electrons as in Egs. (3.1}and (4.1).

In Fig. 6, a test of the validity of our relationshiy
for v(x) is provided through a comparison of the
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present calculated total probability of ionization
of the 1s shell of Se with the experimental results
of Laegsgaard et al. '0 In this figure the proba-
bility of ionization per electron [P &„&(b,v, ), in
Eq. (4.4)] has been multiplied by 2 to account for
the two electrons occupying the 1s shell.

V. CONSTRAINED BEA ARISING
FROM PROBABILITY CONSERVATION

DERSON
V. LETT.

4

I

O

CO

Kl
O
0

0
2

b(lo ' cm)

FIG. 6. Probability of proton ionization of the 1s state
(X shell) of selenium. Solid curve: present theoretical
results. Experimental values taken from Ref. 30.

To this point in the present paper, emphasis has
been placed upon the equality of the predictions of
the BEA whether calculated in momentum space
or in configuration space. In this section we show
that under certain circumstances that probability
is not properly conserved in the conventional BEA,
which until now has been formulated in momentum
space exclusively. In configuration space, how-
ever, these probability violations become apparent
and use of a properly unitarized form of the ioniza-
tion probability leads to substantially different
predictions in cases where the probability of ioni-
zation is of the order of unity. These predictions,
based upon a unitarized probability, shall be
called the predictions of the (probability) con-
strained BEA and in context the predictions of the
conventional BEA shall then be referred to as the
unconstrained BEA predictions. "'"

In order to facilitate notation, the preceding

equation shall be rewritten as

o= f, 2»bP(b}db, (5.1)

where P(b) is the total ionization probability for
a particle traveling in the direction of increasing
z with an impact parameter b. For a given in-
cident-particle rate, R(-~) at Z=-~, the proba-
bility of ionization may be defined as P(b) = 1
-R(~}/R(~), where R(~) then represents the
number of particles per unit time at S =~ which
have not been involved in ionization of one of the
bound electrons. Defined in this manner, the ratio
R(~)/R(-~) may be found from solving the follow-
ing differential equation:

P(b}=1 —[I -P(5)]»,
where P(b) is given by

P(b}=1 —exp[-f p(r}v(r)dz]

(5.5)

(5.6)

dR(z) = [o(bm+z )' ][2vbdbdz p»(b2+z )i ].
(5.2)

The number of ionizations which take place per
unit time between z and z +dz in a circular ring
of inner and outer radius of b and b+db, respec-
tively, and whose plane is normal to the z axis is
given in Eq. (5.2) as the product of the particle
flux, cross section per electron, and number of
field particles in the volume 2mbdb dz. The field-
particle density p»(b'+z')"' for a shell containing
N electrons may be approximated by the product
of the number of electrons in the shell and

P (&'+z')"' = 4*(r)4(r)
The probability of ionization, P(b), derived from

Eq. (5.2}, is the constrained-BEA definition of the
probability of ionization:

P(b) =1 — =1 —exp( Nf „p(r)-v(r)dz)R(+") 00

constrained BEA. (5.3)

As the magnitude of the integral becomes small
with respect to unity, Eq. (5.3) reduces to the
following:

P(b) =N f „p(r) o(r)dz

unconstrained BEA. (5.4)

Using Eq. (5.1}and P(b) as defined by Eq. (5.4)
yields identical cross sections as found in the
conventional or momentum-space BEA, whereas
P(b) as defined in Eq. (5.3) leads, in general, to
cross sections smaller in magnitude than the
conventional BEA.

The probability of ionization per electron, P(b),
is related to the total ionization probability P(b)
by
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Equation (5.6) when substituted into the preceding
equation, (5.5}, therefore produces the con-
strained-BEA definition of P(b}.

In certain cases it is convenient to define the
total cross section as I4

&r =N f 2«bdbP(b),

q'«H (~,/U"')
(XU V2

The charge density in hydrogenlike atoms is nor-
malized" such that within the above assumptions

r.( )r=U"'y. (rU"').

By using Eq. (4.3), we therefore find

~ 00 U

q9rS. (bU"*)
U/Ry

(5.3}

with P(b) given by the preceding expression. This
approximation will be suf'ficiently accurate pro-
vided P'(b) «3P(b)/(N-1), as can be verified by
expanding the right-hand side of Eq. (5.5).

Differences in the magnitude of the constrained-
and unconstrained-BEA cross sections will be
negligible yrovided that Eq. (5.4) is a close ap-
proximation of Eq. (5.3). In the following section
we shall comyare the proton-ionization proba-
bilities and cross sections for hydrogen calculated
from the constrained- and unconstrained-BEA
theories. %e shall estimate here the approximate
binding-energy and projectile-charge (q) depen-
dence of the integral given in these equations and
show that provided U/q'N»1 Ry, that differences
between the constrained- and unconstrained-BEA
cross sections will be negligible.

Let us define the probability of ionization by a
fixed-velocity particle of charge q traversing some
impact parameter 5 in an atom containing N elec-
trons, each with binding energy U, as

P«(b) =N f ««[~, (r}]p„(r}dz, r = (b'+g')'".

Accepting the classical assumption (Sec. III) that
we may replace Z,«/n by (U/Ry)"', and further
that the ls velocity distribution is sufficiently
accurate in its description of the distribution of
an electron in any shell provided the energy per
nucleon of the projectile of charge q is U times
greater than that of the proton interacting with

hydrogen, then the free-particle cross section for
ionization of an electron with binding energy U

by a particle of charge q is related to the free-
particle proton-ionization cross section of hydro-
gen by

l,2

I-
I.O

Q3

0 0.8

0
0.6

04
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FIG. 7. Probability of ionization of the 18 state of
hydrogen by 25-keV incident protons. Curve A results
from a direct transformation of the BEA from momen-
tum space and is calculated using Eq. {5.4). Curve 8 is
the constrained BEA ionization probability calculated
from Eq. {6.3).

Thus in general Eq. (5.4) will be a close approxi-
mation to Eq. (5.3) provided U/q'N» 1 Ry.

VI. APPLICATION OF
CONFIGURATION%PACE BRA

A. Ionization of Hydrogen and Helium by Protons

In Fig. 7 are shown the constrained- and uncon-
strained-BEA proton-ionization probabilities for
ground-state hydrogen as a function of impact
parameter. Curve A has been calculated from
Eq. (5.4) and when integrated according to Eq.
(5.1) yields the exact results as given by the con-
ventional BEA. Curve B has been computed from
Eq. (5.3) and when this equation is integrated
according to Eq. (5.1), cross sections smaller in
magnitude than the conventional BEA result. In
Fig. 8, proton-ionization cross sections resulting
from these two approaches are compared with the
available exyeximental xesults. The experimental
data at low energies are in better agreement with
the constrained-BRA calculation, whereas the
high-energy results are in better agreement with
the unconstrained-BRA calculation. The fact that
the two sets of experimental data do not appear
consistent will hopefully provide incentive for
further measurements.

Envisioning the ionization process as occurring
event by event, we can express Eq. (5.1) in the
following manner:



830 J. S. HANSEN

CV

C3

I
I

I
I
I

I
I
I

E{ltsV}

1

Ioo IOOO

PIG. 8. Comparison af
the melmured ioniiation
cross sects of bgdrogen
&th the ceaatrlined «nd
unoonatrained SEA. Solid
curve: oOnstrained BRA;
dashed curve: uncon-
strained SEA. Experimen-
tal values: en circles,
Ref. 38~ solid ciroles,
Ref. $4.

g J' mvb(P (b}[1-P (b)]+[1-P (b)]P (b)

+ P„(b)P„(b))db (5.1)

=~i+~3 ~ (5.2)

The first term in braces represents the proba-
bility of ionizing the first electron in helium
having a binding energy U ~24.58 eV=1.807 Ry
and not removing the second electron with binding
U'=54. 4 eV 4 Ry. The Second term in braces
represents the probabQfty of not ejecting the first
electron but ejecting the second electron. The
final term represents the probability of removing
both electrons, the first with binding energy U
and the latter with binding energy U'. The first
two processes lead to ejection of exactly one
electron and the resulting partial cross section is
designated as c, , whereas the latter process
leading to ejection of both electrons is designated
as e, . The sum of the three terms in braces is
the total probability of ionization and is shon in
Pig 9as a f.unction of impact parameter for 100-
keV protons. The probabQity of double ejection,
gfven by the latter term in Etf ($.1), is al.so shown
in Fig. 9 and at small impact parameters is seen
to occur during approximately 20% of the fonisa-
tions. The third curve in this figure fs the total
fonisation probability as found using Etf. {5.4).
Again as in the case of proton fonisation of hydro-
gen, the predicted ionization probabilities exceed
unity over a considerable range of impact param-
eters.

In general, these violations of unitarity will be
somewhat more severe in the proton ionization of
helium than in proton ionization of hydrogen. This

is predicted by Etf. (5.8) and results from an fn-
hex'ent apptoHmation in the unconstrained-SEh
calculation that the total probabQfty of fonisatfon,
P(b), fn helfum fs related to the fonfsatfon prob-
abQity per electron, P(b}, by P(b) e RP(b). Use
of such a definition in lieu of the unitariied defi-
nftion, f.e., P(b) e RP(b) -P'{b), Isa&~ to violations
of unftarfty for the individual p{b}exceeding 0.5
as opposed to ionization of hydrogen where vtolI-
tions occur only for P(b) excsedfng unity.

In many experimental measurements one often
is required to determine the ioniiation cross lec-
tion from a measurenieat of the number of elec-
trons ejected rather than from a measurement of

l.2

)os
$04

oo l 2 3
IMPACT PARAMETER (Qp/2)

Fto. 9. Probabilities of conflation as a Sanction of hn- .
pact parameter for 100-keV protons incident ~~ helium.
The los er curve ~hich represents the prababilig of
ejecting bath electrons fram hi)lium has been wultiplied
by a factor of 5. The abeoieea ta in untta of fee $.55
xiO ~cm.
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FIG. 10. Ionization of
helium by protons. Lower
curve: cross section fox
ejection of both electrons.
Curve labeled 0 designates
the total calculated cross
section. Upper curve is
the gross cross section
(see text). Experimental
values: solid circles,
Hef. 36; squares, Ref. 37;
triangles, Hef. 3S; open
circles, Ref. 39.
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the number of ionizations which occur, without
regard for the number of electrons ejected. The
latter of these two measurements is compatible
with EIl. (6.1), the conventional definition of the
ionization cross section. The former of these two
measurements has been called" the gross ioniza-
tion cross section and in general exceeds the con-
ventional ionization cross section o. The gross
ionization cross section for a two-electron system
such as helium is given by

culations are all in good agreement, the magnitude
of the unconstrained-BEA cross sections are ap-
proximately 70% greater. A gradual convergence
of the constrained- and unconstrained-BEA cross
sections will occur at very low and very high in-
cident-particle energies as the probability of
ionization becomes significantly less than unity.
At very high energies the BRA calculations will
decrease more rapidly with energy than the PWBA
calculations owing to a neglect on the part of the

In Fig. 10, the double-ionization cross section
om, ioni.zation cross section. o, and gross cross
section 0&'", are presented for the proton-atomic-
helium system. The latter two cross sections are
compared with the available experimental results.
It is difficult to determine which of the above-
mentioned cross sections (cr or ol" ) were mea-
sured in each experiment, but discrepancies be-
tween sets of measurements may arise partially
from the effects of simultaneous ejection of both
electrons which in the one case may have been
accounted for but not in the other case.

The constrained-BEA proton-ionization cross
sections of helium are compared to the predictions
of the plane-wave Born approximation and the
unconstrained BRA in Fig. 11. The constrained-
BRA and the P%'BA calculations are in reasonable
agreement with one another at all energies al-
though at high energies the P%'BA calculations in
general lie closer to the experimental results
(compare with Fig. 10). On the other hand, in the
region around 60 keV, where the experimental
results and the PVfBA and constrained-BEA cal-
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FIG. 11. Comparison of theoretical total ionization
cross sections of helium by protons. Upper dashed
curve: conventional BRA; solid curve: present con-
strained BRA; lower broken curve: PWBA calculation,
Ref. 40.
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BEA theory to account properly for interactions
involving small momentum transfers. 9 " The
present calculations were carried out using an
effective Z [Eqs. (6.1) and (6.2)] for the 1s shell
of 1.7 in order to approximate the proper momen-
tum distribution. This choice was made in the
case of helium since large relative differences
between the rule

U "' 24.58ev '"

and Z,«=1.7 occur. Vriens" has shown for the
unconstrained BRA that cross sections calculated
using the latter rule are in far better agreement
with the results found in using two- and three-term
Hartree-Fock wave functions than are the results
using the former rule Z,ff —1 3 Use of this
"faster" momentum distribution has the effect, in
both the constrained and unconstrained BRA, of
increasing the calculated energy at which the cross
section reaches its maximum, giving better agree-
ment with the apparent experimental energy. The
magnitude of the cross section at its maximum
value i.s also found to diminish slightly in the pres-
ent case with the use of this faster momentum
distribution. Catlow and McDowell" in using a
Hartree-Fock momentum distribution find fax
greater reduction (35'fp) in the maximum value of
the calculated cross section than was observed in
the present work using a screened hydrogenic
distribution with the same approximate mean ki-
netic energy of the bound electrons (39.3 vs 39.49
eV, the latter being the expectation value from a
Hartree-Fock distribution).

8. Ionization Cross Sections of'

Medium- and High-Z Atoms

Theories based upon models strictly applicable
to hydrogenlike atoms, when compared in detail
with real atomic systems, often fail because of
dissimilarities between the simple theoretical
model and the c~mPEex atom. In cases in which
highly charged projectiles interact with an atomic
system, apparent failure in the predictions of the
general theory may be attributable to failure on
the part of the idealized model to describe the
highly disrupted atom. Several corrections are
given here which may aid in such cases, in the
interpretation of anomalous experimental results.

(a) Increased binding. Effects giving rise to an
increase in the binding of an electron will modify
the measured cross section, in general, causing
significant reductions at low incident-particle
velocities, i.e. , for (mE, /M, U)"'«1. To a good
approxima, tion, the modified cross section for an
electron with a ground-state binding energy of U
and suffering an increase LU, is found from Table

1 by replacing v', /v
' in the first column by

(v,'/v ') [U/(U+ AU)] (6.4)

and dividing the result found in the adjacent col-
umns by (U+AU)'. Owing to the steepness of
descent at low v,'/v ' of the excitation functions
(columns 2-4), a 5% increase in binding of a 1s
shell electron at v', /v ' =0.0045 yields an approxi-
mate corrected cross section of 0.75 times the
uncorrected cross section.

In light of the above, it is of interest to consider
a,n atom under two different conditions. The first
state is one in which the neutral atom is ionized
in the 1s shell with the ejection of exactly one
electron. In this case the minimum energy trans-
fer (upon which the cross section is so very sen-
sitive) is given by

E . = U~, =E~ ~ -E~. (6.5}

Here E„is less negative than Ev, (the total energy
of the ground-state configuration) by exactly the
binding of the 1s electron. The second condition
to consider is one in which a second electron
(e.g. , 2p) is ejected during the same particle-atom
encounter. In this case the minimum energy trans-
fer is

Emin Ey&-1 »-1 Ega Uls +U» (6.6)

where U» is the binding energy for a 2p electron
in the ground-state configuration [see Eq. (6.5)].
The latter condition in Eq. (6.6) is due to a de-
crease in the mutual electronic repulsion relative
to the ground-state configuration. Using the re-
sults of a Hartree-Fock-Slater calculation, 4' we
find using iron as an example,

(Elm-~ 2~-~ -EN*}- (Uis+Uap}

= 'l675.4 —(7066 + 720.2}

=89.2 eV.

Consequently, an increased binding energy of 89
eV must be shared between the two ejected elec-
trons. With the simplifying assumption that this
increase is shared evenly, the 1s ionization poten-
tial in iron is found to increase by 0.6%. Under
these assumptions, the corrected cross section at
v, /v =0.0045 is =0.975 g(v,'/v }. As has been
shown in a number of K x-ray and K Auger-elec-
tron measurements" 4' the probability of removing
a considerable number of electrons in a single
encounter, even using low-S projectiles (protons,
c. s) is quite high. Hence a decrease in the mea-
sured cross sections (with respect to the uncor-
rected) should be evidenced, particularly for low-
velocity projectile interactions, with target elec-
trons of moderately low-S atoms. In Sec. VIC,
the problem of estimating the magnitude of multi-
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provided that, yer ionizing event, the average
probability of ionization per electron, P, is sub-
stantially less than unity. The probability', with
some difficulty, can be calculated rigorously from
Eq. (6.1), but in lieu of this more detailed treat-
ment a semiempirical estimate is made here which
can be useful in estimating the influence of multi-
ple ionization in certain experimental cross-sec-
tion measurements.

With the assumytion that an experimental mea-
surement is unable to discriminate between single-
and multiple-ionizing events in a shell containing
N electrons, Eq. (6.3) can be more generally
written as

where, .o is the cross section for ejection of exactly
i electrons from the shell. The calculated cross
section, on the other hand, is given by

N
ocsk Q of'

!j=l

Consequently,

(6 'L)

where o~~ is given by Eq. (5.1). The partial cross
steicon;sion Eq. (6.I) are given by

(LIL-i}!i! P*'(5) [1 -P (5)]"-'ada

(6.8)

under the condition that the removal of each elec-
tron does not influence (increase the binding of)
the other electrons [see Eq. (6.3)]. It follows
then that

=1++ . .
' {P' '(b) [1-P(b)]" ')

oaac {LL t)!i!
(6.9a)

where

{P' '(5) [1-P(LI)]" ') = (6.9b)

pie ionization shall be considered in more detail.
(b) Multiple ion-ization effects. As shown in

Sec. VIA, the simultaneous removal of both elec-
trons in helium may lead to significant differences
between measured ionization cross sections,
0~'", and calculated cross sections, v~'. In the
present section, Eq. (6.1) is generalized to also
include cases in which a shell contains an arbi-
trary number of electrons, ¹ The ratio of the
gross cross section o &'" to the calculated cross
section sr ~' is then shown to be given by

ou' /o~ = I +(N- I)P/2

If the average probability of ionization per elec-
tron, P, is much less than unity, then Eq. (6.9a)
is found to reduce to

=1+(LL 1}-(P(b})/2—= 1+(N 1)-P/2. (6.10)

The probability P has been semiempirically de-
rived in the present work by assuming that the
incident particle on the average interacts only at
the "adiabatic" radius. 4' The constant ('L X10 ')
was estimated from the exact calculations for P
for the 1s, 2s, and 2p shells of several elements.
The probability P was found to be

U' 0IeV)' n'( L+2) v, o(v,'/v'=1) '

where v, +v=(mE, /MU)"', a0=5.29XIO ' cm, n is
the principle quantum number, and Z the nuclear
charge.

The cross section corrected for this effect can
be found using Table I by replacement of v~I/v ~ by

vI /v —nm'Vq/MvI, (6.12)

where n is the principle quantum number, q the
projectile charge, and m/M the ratio of electron
to projectile masses. Equation (6.12) has been
derived by assuming that the incident particle
interacts at the adiabatic radius with a consequent

with Z and q the charges of the target element and
projectile, respectively. U is the binding energy
in keV, n and l are the principle and angular-
momentum quantum numbers, and v/v,
=(MU/mE)' '. The quantities o(v', /u') may be
taken from Table I.

(c) Decrease of the incident-particle kinetic
energy in the vicinity of the nucteus. As had been
discussed previously" '" during close encounters
with the nucleus, the positively charged projectile
suffers a decxease in kinetic energy, counteracting
its increase of yotential energy in the repulsive
Coulomb field of the nucleus. This decrease in
kinetic energy will at low incident-particle veloc-
ities result in a significant decrease in the ioniza-
tion cross section, which can be accounted for
exactly only in impact-parameter theories such
as the present. For theories in which this cor-
rection cannot be applied continuously as a func-
tion of the incident particle's distance from the
nucleus, one can nevertheless correct for this
effect provided one knows the average distance
from the nucleus at which ionizing events occur.
This average distance is defined to be the adiabati&
radius, r,~, and is given by"

U x 28' Qon 2U
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loss of kinetic energy, prior to ionization, of
QZ 8 /r~.

(d} APPr opriate momentum di strtbution. As
discussed in Sec. III, replacement of Z,a/n by
(U/6t)'" where dl is the Rydberg energy in the wave
function describing the bound electron leads to a
convenient set of scaling laws discussed in detail
elsewhere4'"'" and given in Eq. (3.4).

A more appropriate Z,~ is probably found by
use of semiempirical screening rules, e.g.,
Slater rules. " The ionization cross section has
been shown to be relatively insensitive to sub-
stantial changes in the momentum distribution of
the bound electron (see, for example, Fig. 2,
p. 339, Ref. 4 and Figs. 1-3 of this paper). As
pointed out in Sec. VIA, one of the effects of an
increase in the mean kinetic energy of the bound
electrons is to shift the maximum in the cross
section to higher incident-particle energies.
Therefore, in cases where (Ur/4t}/(Z -0.3) or
(n'U~/dt)/(Z -4.15)' is significantly less than
unity, one might expect the maximum cross sec-
tion to occur at somewhat higher projectile ener-
gies than E, =M, U/m.

(e) Relativistic effects. For medium- and high-
Z atoms, the innermost electrons, during close
encounters with the nucleus, can reach extreme
relativistic velocities (e.g. , in Au an electron at
O.la, /79 attains an average kinetic energy of
approximately 1.3 MeV). In a more exact BEA
theory, one should use relativistic expressions
for the wave functions of the electron in order to
generate the proper momentum distribution. An
approximate correction can be made in lieu of a
more detailed treatment by assuming the kinetic
energy of the bound electron to be given correctly
by the nonrelativistic equations E, = ~moo', . Rela-
tivistic equations can then be used to determine
the relativistic mass and velocity. In the present
case we have taken v, from Eq. (4.2) and found
the relativistic velocity arel and mass m from

V.i = [R/(I +R)1"'(c)

m = m./(1 —P')~",

where R =(E,/mac*)'+2(E, /mac') and p =V„,/c. In
these equations, c is the velocity of light and m,
the rest mass of an electron.

Table II gives the ratio of corrected (1s) cross
sections to the uncorrected (1s) cross sections, as
found in this manner, each as a function of
E,m/UM=v, '/v ' The magnit. ude of the correction
increases at low incident-particle velocities since
in this case ionizing events must involve electrons
in the high-velocity portion of the velocity distri-
bution in order to conserve momentum during the

TABLE H. HelatMstic corrections.

1.2 x10 '
1.81x 10-'
2.7 x10 2

4.0 xl0 '
7.3 x10 '
1.6»0-~
3,6 x10 ~

9.9 x10 '
4.0 x10'
2.4 x10'

1.34
1.22
1.146
1.096
1.05
1.02
1.014
1.01
0.99
0.97

2.44
1.V36
1.48
1.31
1.16
1.06
1.04
1.02
0.96
0.91

5.85
3.21
2.38
1.87
1.44
1.17
1.09
1.05
0.89
0.82

10.2
5.17
3.53
2.56
1.755
1.28
1.15
1.07
0.81
0.V5

interaction' (see Sec. VIBc).
In a recent paper it has been observed in high-Z

atoms that measured K-shell ionization cross
sections at low incident-particle velocities
(v, /v" &~O. V) rise consistently higher than the BEA
predictions. %'ith increasing target Z the experi-
mental data deviates further above ge BEA curve,
being as much as a factor of 2 above for gold in
the velocity range v, tv =0.4. A simple *'semi-
relativistic" correction to the experimental data
is used in Ref. 49 which clusters the data around
a single experimental curve which falls below the
BEA curve by approximately 15% in the velocity
range surrounding v, tv =0.4. Corrections to their
experimental data, using the values from Table
II, appear to cluster the data more closely about
the BRA curve. A detailed comparison of these
relativistic effects shaQ be the subject of a future
paper.

C. Multiple Ionization

A distinct advantage which the configuration-
space SEA has over its momentum-space counter-
part is that the former, when expressed in cylin-
drica1 coordinates, gives the impact-parameter
representation. In this section we apply the im-
pact-parameter representation of the BEA to the
problem of simultaneous Coulomb ejection of
bound electrons from different shells.

The first part, Sec. VI C a, uses as an example
the simultaneous ejection of electrons from the
g =1 and n=2 shells in order to develop the general
formulation of the problem.

In Sec. VIC b me compare the present theoretical
predictions with the predictions from a SCA cal-
culation' as well as with recent experimental
results" for the probability of simultaneous K+I
shell ionization. Also, the problem studied ear-
lier" of the influence of L-shell vacancy shifts
upon measured K+A-sheD multiple-ionization
probabilities is reconsidered.
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experimental findings with experimental results
falling systematically below the present theoretical
predictions. In Fig. 12, a comparison at Z=29 of
the present calculated values of P~ is also made
with recent values calculated" using the SCA.
The poor agreement probably reflects the dis-
crepancies which exist between the calculated
I she-ll cross sections {see Figs. 2 and 3).

In Ref. %1, the probability of L-shell vacancy
shifts was considered, i.e., the experimental re-
sults measured the probability of an L vacancy
being present when a K x ray was emitted. Con-
sequently they have shown that the values of P~"
corrected for this effect are related to the uncor-
rected values P~' by

P""=[(I;+I;,)/I;]P ', (6.19)

where I~ and I~ are the average level widths"
for the E and I., shells, respectively. " A deriva-
tion of Eq. {6.19}is found in Ref. 51 along with a
discussion of its expected accuracy.

In the present work, the correction factor C&
= (I» + I~ )/I» has been deduced from our theo-
retical P~ and from P~' from Ref. 51, and is
shown in Fig. 13 for,OCa»2Ti and, eFe. For each
element, values of C& were derived at the experi-
mental energies shown in Fig. 12. The data points,
in Fig. 13, are the averages of these Cz for each
element and the error bars represent the maxi-
mum variation of C& from the mean value. Also
shown are the values of Cz, taken from Ref. 51,
and computed from the values of I~ as calculated
by Chen et a/. '4 and by McGuire. " These two
calculations differ radically and neither fit our
derived values of Cz. The total K width (I» in C~)

was computed in Ref. 51 from I» = I'»s/&o», where
I'" is the total radiative width of the K level5' and
ru» the K-shell fluorescence yield. " The compari-
son made in Fig. 13 presupposes that the total
level widths I» and Iz, in Eq. (6.19), representing
states with an I. plus a E vacancy, do not differ
significantly from I'» and I~ representing states
containing but a single vacancy in the K and I.
shells, respectively. Also in the computation" of
the correction factor Cz from Eq. (8.19), associ-
ated uncertainties in the determination of I'~ and
(d~ were not considered.

(c) Derioation of approximate formulas. Analyt-
ical formulas for the probability of multiple ioniza-
tion can be derived from the equations in Sec.
VI C a provided certain approximations are made.
These formulas do not, in general, agree well
with the rigorous results because of the severity
of certain of the necessary approximations. They
may be useful, nevertheless, in estimating the
magnitude of multiple ionization and its consequent
effect in experimental measurements. If the con-
dition given in Eq. (6.18a) holds for the I, and I»
subshells, we may approximate the probability
of ejecting one or more L shell electrons from
Eq. (6.18b}, i.e.,

P =P, +P =2(P (b)}+6(P (b)). (6.20)

Assuming further thatPz (b}~P~ (0) andPz (b)
~P~„(0)[see Eq. (6.15)], i.e., the probability of
I -shell ionization over the "mean" E-shell dimen-
sions is ayproximately the same as the probability
at b=0, thenP~ =2(P~, (0}}+6(Pz (0)}, but from
Eq. (5.3),

Pz, (b) = t o(r) pz, (r) dz
dp

""&(r)pz, (r}4»z'pz, (z)dz
(8 21).0 4»z&pz, (z)

with r = (b'+ z')'". Then

(6.22)

I.O- ~Mc Quire
Also,

(6.23)

20 30 40 50
Z

FlG. 13. Correction(I'z + lL, )jX'&. The curves labeled
Chen et al . and McGuire have been computed using theo-
retical values of I& from Refs. 54 and 55, respectively.
The total width of the K state, 1z, in both cases is the
same (see text). Experimental values found from com-
bining present theory with experimental results from
Ref. 51.

(1/z'} = ~eQ'

n'(I+-,') a',
' (6.24)

Consequently, combining expressions (6.22) and
(6.23) and using Eq. (6.24):

where (o} in both cases is the cross section yer
electron (Table I). The average value (1/z') for
screened hydrogenlike atoms is given by'
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(6.26)

where o~, and 0~ are the cross sections per23
electron for the L, and I.„subshells, respectively,
as found from Table I. Thexefore,

f~-6x]0 o~(Q)g,a (6.26)

for incident protons. For projectiles of charge q
within the limits of the above approximations, we
can assume P~(q}=qQ~(q =1). In general, Eq.
(6.26) gives only a very crude estimate of the
probability of multiple ionization. What appears
to be the most serious of the above approxima-
tions leading to Eq. (6.26}, is made in Eg. (6.22)
and (6.28), namely, (E(x)/G(x)) =(E(x})(1/G(x}}.
Because of the strong dependence of the ionization
cross section upon the velocity of the bound elec-
tron and therefore upon the distance z from elec-
tron to nucleus, the approximation made in these
equations might be expected to lead to considerable
error.

In the velocity region, v, -vL, , a partial account
for the z dependence of o~ was made in the present
work, and a somewhat more accurate estimate
of P~ was empirically found to be a factor of 3
less than that predicted by Eq. (6.26). Finally
one must recall that Eq. (6.26) has been derived
with the assumption that the probability of ioniza-
tion per electron is small, or more precisely
NP«1. If this condition is not met, e.g. , if
P~ &1, the value more closely corresponds to the
avex age number of L shell electrons ejected during
a collision and the probability of one or more
electrons being ejected will be better described
using the constrained BEA definition, i.e., by
replacing P~ by 1-e

VII. SUMMARY AND CONCLUSIONS

A configuration-space formulation of the BEA has
been carried out following a transformation which
relates the velocity of an electron to its distance
from the nucleus. This new representation of the
BEA appears more successful in some areas,
e.g., ionization of He by protons, when compared
with the conventional momentum-space version of
the BEA. The new representation also allows us
to calculate multiple-ionization probabilities and
further provides corrections which facilitate direct
comparisons of the predictions of the BEA with
multielectron-atom experimental results.

The calculated ionization probabilities from this
new model of course depend directly upon the form
of the transformation u(r}. At an early stage of
this work, classical rules for u(r) based upon

conservation of energy were seen to lead to very
nonphysical pictures of the atom, e.g., imaginary
velocities, or "holes" in the central regions of the
atom for the 2p states. The present u(r) trans-
formation does not in this way create false images
of the atom and does appear to predict reasonably
well the ionization probability as a function of
impact parameter (Fig. 6). The u(r} prescription
is idealized in the sense of assigning exactly one
velocity for each r. At low incident-particle veloc-
ities, this will lead to overestimations of the
probability of ionization during close encounters
with the nucleus and underestimate the probability
fox more distant eneountex s. The assignment of
a distribution of velocities at each point, based
perhaps upon the Heisenberg uncertainty principle,
would be of physical interest but computational
time might well become prohibitive except in a
few simple problems.

In the case of ionization of hydrogen by protons,
the model and the real system are very nearly
identical (save for the presence of the nucleus) so
the inherent approximations of the BEA are rig-
orously tested. The present results seem to favor
the lower of two sets of experimental data, whereas
the unrestricted BEA is in good agreement with the
higher of the two sets of experimental data. At
low energies, the present calculated cross sections
for hydrogen tend to lie above the experimental
results. Vriens has pointed out that because of
an overlap of energy regions, the ealeulated BEA
ionization cross section actually includes a part
of the electron exchange cross section. For in-
cident-proton velocities less than the mean orbital
velocity of the electron, this suggests that the BEA
should overestimate the true ionization cross sec-
tion. The neglect of the presence of the third body
(another proton) will also lead to error. Classical
three-body calculations" do appear to be in far
better agreement with the low-energy experimen-
tal data than are the two-body calculations.

In the case of He, charge exchange and the
presence of the nucleus, both neglected in the
present theory, will also influence the ionization
cross sections. In addition, the effects of elec-
tron correlation in He are neglected and, con-
sequently, the multiple-ionization cross sections
given here are done so with the assumption that
cox relation effects are negligible. To correctly
account for these correlation effects would require
a much mox e detailed treatment than is presented
here.

The energy-exchange FPC as used here was
dex'ived on the basis of an isotropic distribution
of field-particle velocity vectors. '~ In the special
case of atoms prealigned with respect to the in-
cident beam, lack of isotropy in the electron mo-
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mentum distribution has been shown to lead to
differences in calculated cross sections. " We
have assumed throughout that the target atoms
have no preferred alignment with respect to the
incident beam, hence justifying the use of the FPC
as derived in Refs. 5 and 6.

A point which the present author has become
aware of through comparisons of the predictions
of this theory and others is that owing often to
"poor" seiection of fluorescence yields (the con-
version factor from x-ray yields to cross sec-
tions) or use of inappropriate binding energies,
apparent experimental-theoretical corroboration
has been achieved in some cases. In the present
paper, the author has used only experimental
binding energies. Far better agreement with the
experimental results in the case of the proton-
helium ionization problem could be achieved by
using a suitably selected semiemyirical binding
energy but no sound basis for such a selection
could be found.

Finally, in the case of multiple ionization, we
have neglected those interactions which involve
the ejection of a bound electron which during its
departure from the atom ejects a second electron.
Cascading effects such as this can be shown to
become important only at relatively high incident-
particle velocities (see, for example, Ref. 4).
Also very weakly bound electrons will be subject
to ejection via the shakeoff process, i.e., an
inability on the part of such electrons to adia-
baticallp ad)ust to the ionic potential arising when

a neutral atom is ionized in one of its inner shells.
This important complementary multiple-ionization
process has been recently reviewed by Krause. "¹ieadded in proof. More extensive tabulations
of Table I (Ss, 3p, and 3d subshells) and of Tabie
II (even Z& 28) are available from the author upon
request.
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The Bethe theory for the calculation of the total inelastic cross section crit for the scattering of fast
charged particles by atoms and molecules is applied to neon. As part of the analysis, the spectral
distribution of the oscillator strength has been determined by critical evaluation of all experimental data
and by test of several sum rules. The result is o„, = z'p 't3.524pn(p'i(1 —p')) —p')
+ 36.06) X 10 cm' for a particle of charge re and speed pc. As an application, the ionization
cross section is estimated by subtracting the sum of all the discrete excitation cross sections from sr~,
and is compared with experimental values.

I. INTRODUCTION

In recent years renewed interest has been seen
in the study of inelastic scattering of chax'ged
particles by atoms and molecules. The basic the-
ory for treating fast incident particles, mithin the
Born approximation, mas developed by Bethe' in the
19308,but its definitive application to anything oth-
ex' than atomic hydrogen mas limited by the lack

of reliable mave functions. More modern consid-
erations began mith the study of He by Inokuti,

'Kim, and Platzman, ' mho utilized a pomerful sum
rule to reduce the calculation of the total inelastic
scattering cross section to tmo separate tasks:
first, analysis of optical oscillator-strength data,
and second, calculation of certain propex ties from
ground-state mave functions. This mork has been
follomed by careful treatments of other tmo-elee-


